Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Liposomes are spherical vesicles composed of lipid bilayers that have gained significant attention in the realm of drug delivery and therapeutic applications. They offer several advantages over traditional drug delivery systems, including:

●   Protection of drugs from degradation and clearance

●   Enhanced bioavailability

●   Reduced systemic toxicity

●   Precise, site-specific drug delivery

To elucidate the multifaceted aspects of liposomes, from their fundamental structure and composition to their cutting-edge applications in medicine and biotechnology.

This comprehensive review was conducted through a systematic search of relevant literature on liposomes. The search was limited to English-language articles published in the past 10 years. A total of 150 articles were selected for review based on their relevance and impact.

The review provides a detailed overview of the following aspects of liposomes:

●   Structure and composition

●   Mechanism of action

●   Targeting strategies

●   Preparation methods

●   Biomedical and biotechnological applications

Liposomes are a promising drug delivery platform with the potential to revolutionize the treatment of various diseases. Their unique properties, including biocompatibility, versatility, and tunability, render them ideal for encapsulating a wide range of therapeutic agents. The review highlights the significant progress made in liposome research in recent years, paving the way for their translation into clinical practice.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855288237240222072928
2024-03-22
2025-08-16
Loading full text...

Full text loading...

References

  1. Kumar GiriT. GiriA. Kumar BarmanT. MaityS. Nanoliposome, is a promising carrier of protein and peptide biomolecule for the treatment of cancer.Anticancer. Agents Med. Chem.2016167816831
    [Google Scholar]
  2. BlankenD. FoschepothD. SerrãoA.C. DanelonC. Genetically controlled membrane synthesis in liposomes.Nat. Commun.2020111431710.1038/s41467‑020‑17863‑5 32859896
    [Google Scholar]
  3. XiaY. XuC. ZhangX. Liposome-based probes for molecular imaging: From basic research to the bedside.Nanoscale201911135822583810.1039/C9NR00207C 30888379
    [Google Scholar]
  4. LianT. HoR.J.Y. Trends and developments in liposome drug delivery systems.J. Pharm. Sci.200190666768010.1002/jps.1023 11357170
    [Google Scholar]
  5. AshtianiH.R. BisheP. LashgariN.A. NilforoushzadehM.A. ZareS. Liposomes in cosmetics.J Skin Stem Cell201633e6581510.5812/jssc.65815
    [Google Scholar]
  6. SarafS. JainA. TiwariA. VermaA. PandaP.K. JainS.K. Advances in liposomal drug delivery to cancer: An overview.J. Drug Deliv. Sci. Technol.20205610154910.1016/j.jddst.2020.101549
    [Google Scholar]
  7. CruzM.E.M. CorvoM.L. MartinsM.B. SimõesS. GasparM.M. Liposomes as tools to improve therapeutic enzyme performance.Pharmaceutics202214353110.3390/pharmaceutics14030531 35335906
    [Google Scholar]
  8. MaurerN. FenskeD.B. CullisP.R. Developments in liposomal drug delivery systems.Expert Opin. Biol. Ther.20011692394710.1517/14712598.1.6.923 11728226
    [Google Scholar]
  9. StryerS. Cell membranes.Biochemistry1981213Available from: https://www.biology-pages.info/
    [Google Scholar]
  10. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review of novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  11. ElizondoE. MorenoE. CabreraI. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine.Prog. Mol. Biol. Transl. Sci.201110415210.1016/B978‑0‑12‑416020‑0.00001‑2 22093216
    [Google Scholar]
  12. EmamiS. Azadmard-DamirchiS. PeighambardoustS.H. ValizadehH. HesariJ. Liposomes as carrier vehicles for functional compounds in food sector.J. Exp. Nanosci.201611973775910.1080/17458080.2016.1148273
    [Google Scholar]
  13. MaheraniB. Arab-TehranyE. MozafariM.R. GaianiC. GaianiM. Liposomes: A review of manufacturing techniques and targeting strategies.Curr. Nanosci.20117343645210.2174/157341311795542453
    [Google Scholar]
  14. OlusanyaT. Haj AhmadR. IbegbuD. SmithJ. ElkordyA. Liposomal drug delivery systems and anticancer drugs.Molecules201823490710.3390/molecules23040907 29662019
    [Google Scholar]
  15. AkbarzadehA. Rezaei-SadabadyR. DavaranS. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  16. AljamalW. KostarelosK. Construction of nanoscale multicompartment liposomes for combinatory drug delivery.Int. J. Pharm.2007331218218510.1016/j.ijpharm.2006.11.020 17223294
    [Google Scholar]
  17. Catalan-LatorreA. RavaghiM. MancaM.L. Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin.Eur. J. Pharm. Biopharm.2016107495510.1016/j.ejpb.2016.06.016 27349806
    [Google Scholar]
  18. DuaJ.S. RanaA.C. BhandariA.K. Liposome: Methods of preparation and applications.Int J Pharm Stud Res2012321420
    [Google Scholar]
  19. SahayG. AlakhovaD.Y. KabanovA.V. Endocytosis of nanomedicines.J. Control. Release2010145318219510.1016/j.jconrel.2010.01.036
    [Google Scholar]
  20. BanghamA.D. De GierJ. GrevilleG.D. Osmotic properties and water permeability of phospholipid liquid crystals.Chem. Phys. Lipids19671322524610.1016/0009‑3084(67)90030‑8
    [Google Scholar]
  21. NkangaC.I. BapolisiA.M. OkaforN.I. KrauseR.W. General perception of liposomes: Formation, manufacturing, and applications.In: Liposomes-Advances and Perspectives. IntechOpen2019268425510.5772/intechopen.84255
    [Google Scholar]
  22. MeureL.A. FosterN.R. DehghaniF. Conventional and dense gas techniques for the production of liposomes: A review.AAPS PharmSciTech20089379880910.1208/s12249‑008‑9097‑x 18597175
    [Google Scholar]
  23. HeleniusA. FriesE. KartenbeckJ. Reconstitution of Semliki forest virus membrane.J. Cell Biol.197775386688010.1083/jcb.75.3.866
    [Google Scholar]
  24. OllivonM. LesieurS. Grabielle-MadelmontC. PaternostreM. Vesicle reconstitution from lipid–detergent mixed micelles.Biochim. Biophys. Acta Biomembr.200015081-2345010.1016/S0304‑4157(00)00006‑X
    [Google Scholar]
  25. LombardoD. KiselevM.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application.Pharmaceutics202214354310.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  26. SzokaF.Jr PapahadjopoulosD. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA19787594194419810.1073/pnas.75.9.4194 279908
    [Google Scholar]
  27. BéalleG. Di CoratoR. Kolosnjaj-TabiJ. Ultra magnetic liposomes for MR imaging, targeting, and hyperthermia.Langmuir20122832118341184210.1021/la3024716 22799267
    [Google Scholar]
  28. LiuC. LiuY.Y. ChangQ. Pressure-controlled encapsulation of graphene quantum dots into liposomes by the reverse-phase evaporation method.Langmuir20213748140961410410.1021/acs.langmuir.1c02338 34808057
    [Google Scholar]
  29. PidgeonC. McNeelyS. SchmidtT. JohnsonJ.E. Multilayered vesicles prepared by reverse-phase evaporation: Liposome structure and optimum solute entrapment.Biochemistry1987261172910.1021/bi00375a004 3828297
    [Google Scholar]
  30. ShiN.Q. QiX.R. Preparation of drug liposomes by reverse-phase evaporation.Liposome-Based Drug Delivery Systems2021374610.1007/978‑3‑662‑49320‑5_3
    [Google Scholar]
  31. GoudaA. SakrO.S. NasrM. SammourO. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications.J. Drug Deliv. Sci. Technol.20216110217410.1016/j.jddst.2020.102174
    [Google Scholar]
  32. Jaafar-MaalejC. DiabR. AndrieuV. ElaissariA. FessiH. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation.J. Liposome Res.201020322824310.3109/08982100903347923 19899957
    [Google Scholar]
  33. HasanM.M. HamiduzzamanM. JahanI. HasanA.H.M.N. AsaduzzamanM. Formulation development, characterization and in-vitro evaluation of tamoxifen loaded liposomes.J. Pharm. Res. Int.2020326648210.9734/jpri/2020/v32i630449
    [Google Scholar]
  34. MendezR. BanerjeeS. Sonication-based basic protocol for liposome synthesis.Methods Mol. Biol.2017160925526010.1007/978‑1‑4939‑6996‑8_21
    [Google Scholar]
  35. SchneiderT. SachseA. RöβlingG. BrandlM. Generation of contrast-carrying liposomes of defined size with a new continuous high pressure extrusion method.Int. J. Pharm.1995117111210.1016/0378‑5173(94)00245‑Z
    [Google Scholar]
  36. OngS. ChitneniM. LeeK. MingL. YuenK. Evaluation of extrusion technique for nanosizing liposomes.Pharmaceutics2016843610.3390/pharmaceutics8040036 28009829
    [Google Scholar]
  37. HamiltonR.L.Jr GoerkeJ. GuoL.S. WilliamsM.C. HavelR.J. Unilamellar liposomes made with the French pressure cell: A simple preparative and semiquantitative technique.J. Lipid Res.198021898199210.1016/S0022‑2275(20)34758‑1 7193233
    [Google Scholar]
  38. BrandlM. BachmannD. DrechslerM. BauerK.H. Liposome preparation by a new high pressure homogenizer gaulin micron lab 40.Drug Dev. Ind. Pharm.199016142167219110.3109/03639049009023648
    [Google Scholar]
  39. CroweL.M. CroweJ.H. RudolphA. WomersleyC. AppelL. Preservation of freeze-dried liposomes by trehalose.Arch. Biochem. Biophys.1985242124024710.1016/0003‑9861(85)90498‑9 4051504
    [Google Scholar]
  40. LiC. DengY. A novel method for the preparation of liposomes: Freeze drying of monophase solutions.J. Pharm. Sci.20049361403141410.1002/jps.20055 15124200
    [Google Scholar]
  41. FranzéS. SelminF. SamaritaniE. MinghettiP. CilurzoF. Lyophilization of liposomal formulations: Still necessary, still challenging.Pharmaceutics201810313910.3390/pharmaceutics10030139 30154315
    [Google Scholar]
  42. KiselevM.A. LesieurP. KisselevA.M. A sucrose solutions application to the study of model biological membranes.Nucl. Instrum. Methods Phys. Res. A20014701-240941610.1016/S0168‑9002(01)01087‑7
    [Google Scholar]
  43. KiselevM.A. LesieurP. KisselevA.M. LombardoD. KillanyM. LesieurS. Sucrose solutions as prospective medium to study the vesicle structure: SAXS and SANS study.J. Alloys Compd.20013281-2717610.1016/S0925‑8388(01)01348‑2
    [Google Scholar]
  44. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
  45. CastorT.P. ChuL. AphiosCorp Methods and apparatus for making liposomes containing hydrophobic drugs.U.S. Patent 5776486.1998
  46. LesoinL. CramponC. BoutinO. BadensE. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method.J. Supercrit. Fluids201157216217410.1016/j.supflu.2011.01.006
    [Google Scholar]
  47. MagnanC. BadensE. CommengesN. CharbitG. Soy lecithin micronization by precipitation with a compressed fluid antisolvent — influence of process parameters.J. Supercrit. Fluids2000191697710.1016/S0896‑8446(00)00076‑0
    [Google Scholar]
  48. SohS.H. LeeL.Y. Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques.Pharmaceutics20191112110.3390/pharmaceutics11010021 30621309
    [Google Scholar]
  49. TürkM. Particle synthesis by rapid expansion of supercritical solutions (RESS): Current state, further perspectives and needs.J. Aerosol Sci.202216110595010.1016/j.jaerosci.2021.105950
    [Google Scholar]
  50. ChakravartyP. FamiliA. NagapudiK. Al-SayahM.A. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems.Pharmaceutics2019111262910.3390/pharmaceutics11120629 31775292
    [Google Scholar]
  51. WenZ. LiuB. ZhengZ. YouX. PuY. LiQ. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique.Chem. Eng. Res. Des.20108881102110710.1016/j.cherd.2010.01.020
    [Google Scholar]
  52. TrucilloP. CampardelliR. ReverchonE. A versatile supercritical assisted process for the one-shot production of liposomes.J. Supercrit. Fluids201914613614310.1016/j.supflu.2019.01.015
    [Google Scholar]
  53. TrucilloP. MartinoM. ReverchonE. Supercritical assisted production of lutein-loaded liposomes and modelling of drug release.Processes202197116210.3390/pr9071162
    [Google Scholar]
  54. TrucilloP CardeaS BaldinoL ReverchonE Production of liposomes loaded alginate aerogels using two supercritical CO2 assisted techniques.J CO2 Util20203910116110.1016/j.jcou.2020.101161
    [Google Scholar]
  55. MeureL.A. KnottR. FosterN.R. DehghaniF. The depressurization of an expanded solution into aqueous media for the bulk production of liposomes.Langmuir200925132633710.1021/la802511a 19072018
    [Google Scholar]
  56. ZhaoL. TemelliF. Preparation of liposomes using a modified supercritical process via depressurization of liquid phase.J. Supercrit. Fluids201510011012010.1016/j.supflu.2015.02.022
    [Google Scholar]
  57. ZhaoL. TemelliF. Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method.Innov. Food Sci. Emerg. Technol.20173911912810.1016/j.ifset.2016.11.013
    [Google Scholar]
  58. ErkmenO. Effects of dense phase carbon dioxide on vegetative cells.Dense phase carbon dioxide: Food and pharmaceutical applications.201229679710.1002/9781118243350.ch4
    [Google Scholar]
  59. Boloix AmenósA. Feiner-GraciaN. KöberM. Engineering pH-sensitive stable nanovesicles for delivery of MicroRNA therapeutics.Small2022183e2101959
    [Google Scholar]
  60. Merlo-MasJ. Tomsen-MeleroJ. CorcheroJ.L. Application of quality by design to the robust preparation of a liposomal GLA formulation by DELOS-susp method.J. Supercrit. Fluids202117310520410.1016/j.supflu.2021.105204 34219919
    [Google Scholar]
  61. van SwaayD. deMelloA. Microfluidic methods for forming liposomes.Lab Chip201313575276710.1039/c2lc41121k 23291662
    [Google Scholar]
  62. JahnA. VreelandW.N. DeVoeD.L. LocascioL.E. GaitanM. Microfluidic directed formation of liposomes of controlled size.Langmuir200723116289629310.1021/la070051a 17451256
    [Google Scholar]
  63. Al-AminM.D. BellatoF. MastrottoF. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: Formulation challenges.Int. J. Mol. Sci.2020215161110.3390/ijms21051611 32111100
    [Google Scholar]
  64. JahnA. VreelandW.N. GaitanM. LocascioL.E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing.J. Am. Chem. Soc.200412692674267510.1021/ja0318030 14995164
    [Google Scholar]
  65. JahnA. StavisS.M. HongJ.S. VreelandW.N. DeVoeD.L. GaitanM. Microfluidic mixing and the formation of nanoscale lipid vesicles.ACS Nano2010442077208710.1021/nn901676x 20356060
    [Google Scholar]
  66. ShumH.C. LeeD. YoonI. KodgerT. WeitzD.A. Double emulsion templated monodisperse phospholipid vesicles.Langmuir200824157651765310.1021/la801833a 18613709
    [Google Scholar]
  67. FunakoshiK. SuzukiH. TakeuchiS. Formation of giant lipid vesiclelike compartments from a planar lipid membrane by a pulsed jet flow.J. Am. Chem. Soc.200712942126081260910.1021/ja074029f 17915869
    [Google Scholar]
  68. SuzukiH. HamamuraJ. KatsudaT. KomodaY. KatohS. UsuiH. Size characteristics of liposomes formed in a micro-tube.J. Chem. Eng. of Jpn200841873974310.1252/jcej.07we307
    [Google Scholar]
  69. YamashitaK. NagataM.P.B. MiyazakiM. NakamuraH. MaedaH. Homogeneous and reproducible liposome preparation relying on reassembly in microchannel laminar flow.Chem. Eng. J.2010165132432710.1016/j.cej.2010.09.007
    [Google Scholar]
  70. Jaafar-MaalejC. CharcossetC. FessiH. A new method for liposome preparation using a membrane contactor.J. Liposome Res.201121321322010.3109/08982104.2010.517537 20860451
    [Google Scholar]
  71. AkashiK. MiyataH. ItohH. KinositaK.Jr Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope.Biophys. J.19967163242325010.1016/S0006‑3495(96)79517‑6 8968594
    [Google Scholar]
  72. EstesD.J. MayerM. Electroformation of giant liposomes from spin-coated films of lipids.Colloids Surf. B Biointerfaces200542211512310.1016/j.colsurfb.2005.01.016 15833662
    [Google Scholar]
  73. PottT. BouvraisH. MéléardP. Giant unilamellar vesicle formation under physiologically relevant conditions.Chem. Phys. Lipids2008154211511910.1016/j.chemphyslip.2008.03.008 18405664
    [Google Scholar]
  74. Baykal-CaglarE. Hassan-ZadehE. SaremiB. HuangJ. Preparation of giant unilamellar vesicles from damp lipid film for better lipid compositional uniformity.Biochim. Biophys. Acta Biomembr.20121818112598260410.1016/j.bbamem.2012.05.023 22652256
    [Google Scholar]
  75. LaouiniA. Jaafar-MaalejC. Limayem-BlouzaI. SfarS. CharcossetC. FessiH. Preparation, characterization and applications of liposomes: State of the art.J Colloid Sci Biotechnol20121214716810.1166/jcsb.2012.1020
    [Google Scholar]
  76. MayerL.D. BallyM.B. HopeM.J. CullisP.R. Techniques for encapsulating bioactive agents into liposomes.Chem. Phys. Lipids1986402-433334510.1016/0009‑3084(86)90077‑0 3742676
    [Google Scholar]
  77. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b00046 26010257
    [Google Scholar]
  78. LiT. CipollaD. RadesT. BoydB.J. Drug nanocrystallisation within liposomes.J. Control. Release20182889611010.1016/j.jconrel.2018.09.001 30184465
    [Google Scholar]
  79. ZuckerD. MarcusD. BarenholzY. GoldblumA. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug’s physicochemical properties.J. Control. Release20091391738010.1016/j.jconrel.2009.05.036 19508880
    [Google Scholar]
  80. ElsanaH. OlusanyaT.O.B. Carr-wilkinsonJ. DarbyS. FaheemA. ElkordyA.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems.Sci. Rep.2019911512010.1038/s41598‑019‑51065‑4 31641141
    [Google Scholar]
  81. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.00286 26648870
    [Google Scholar]
  82. WilliamB. NoémieP. BrigitteE. GéraldineP. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes.Chem. Eng. J.202038312310610.1016/j.cej.2019.123106
    [Google Scholar]
  83. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  84. KoppelD.E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants.J. Chem. Phys.197257114814482010.1063/1.1678153
    [Google Scholar]
  85. KimA. NgW.B. BerntW. ChoN.J. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly.Sci. Rep.201991263910.1038/s41598‑019‑38915‑x 30804441
    [Google Scholar]
  86. KlangV. MatskoN.B. Electron microscopy of pharmaceutical systems.Advances in imaging and electron physics. Elsevier201418112520810.1016/B978‑0‑12‑800091‑5.00003‑3
    [Google Scholar]
  87. BibiS. KaurR. Henriksen-LaceyM. Microscopy imaging of liposomes: From coverslips to environmental SEM.Int. J. Pharm.20114171-213815010.1016/j.ijpharm.2010.12.021 21182914
    [Google Scholar]
  88. RuoziB. BellettiD. TombesiA. AFM, ESEM, TEM, and CLSM in liposomal characterization: A comparative study.Int. J. Nanomedicine2011655756310.2147/IJN.S14615 21468358
    [Google Scholar]
  89. HelvigS. AzmiI.D. MoghimiS.M. YaghmurA. Recent advances in cryo-TEM imaging of soft lipid nanoparticles.AIMS Biophys.20152211613010.3934/biophy.2015.2.116
    [Google Scholar]
  90. AlmgrenM. EdwardsK. KarlssonG. Cryo transmission electron microscopy of liposomes and related structures.Colloids Surf. A Physicochem. Eng. Asp.20001741-232110.1016/S0927‑7757(00)00516‑1
    [Google Scholar]
  91. SpyratouE. MourelatouE.A. MakropoulouM. DemetzosC. Atomic force microscopy: A tool to study the structure, dynamics and stability of liposomal drug delivery systems.Expert Opin. Drug Deliv.20096330531710.1517/17425240902828312 19327046
    [Google Scholar]
  92. ChetanachanP. AkarachalanonP. WorawirunwongD. Ultrastructural characterization of liposomes using transmission electron microscope.Adv. Mat. Res.200855-5770971110.4028/www.scientific.net/AMR.55‑57.709
    [Google Scholar]
  93. FröhlichM. BrechtV. Peschka-SüssR. Parameters influencing the determination of liposome lamellarity by 31P-NMR.Chem. Phys. Lipids2001109110311210.1016/S0009‑3084(00)00220‑6 11163348
    [Google Scholar]
  94. KiselevM.A. ZemlyanayaE.V. RyabovaN.Y. HaussT. DanteS. LombardoD. Water distribution function across the curved lipid bilayer: SANS study.Chem. Phys.20083452-318519010.1016/j.chemphys.2007.09.051
    [Google Scholar]
  95. HunterR.J. WhiteL.R. ChanD.Y. Foundations of colloid science.Clarendon Press19871673
    [Google Scholar]
  96. McNeil-WatsonF. TscharnuterW. MillerJ. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS).Colloids Surf. A Physicochem. Eng. Asp.19981401-3535710.1016/S0927‑7757(97)00267‑7
    [Google Scholar]
  97. MonteiroN. MartinsA. ReisR.L. NevesN.M. Liposomes in tissue engineering and regenerative medicine.J. R. Soc. Interface2014111012014045910.1098/rsif.2014.0459 25401172
    [Google Scholar]
  98. BakonyiM. BerkóS. Budai-SzűcsM. KovácsA. CsányiE. DSC for evaluating the encapsulation efficiency of lidocaine-loaded liposomes compared to the ultracentrifugation method.J. Therm. Anal. Calorim.201713031619162510.1007/s10973‑017‑6394‑1
    [Google Scholar]
  99. EdwardsK. BaeumnerA. Analysis of liposomes.Talanta20066851432144110.1016/j.talanta.2005.08.031 18970482
    [Google Scholar]
  100. AnzaiK. YoshidaM. KirinoY. Change in intravesicular volume of liposomes by freeze-thaw treatment as studied by the ESR stopped-flow technique.Biochim. Biophys. Acta Biomembr.199010211212610.1016/0005‑2736(90)90378‑2
    [Google Scholar]
  101. CraigD.Q.M. TaylorK.M.G. BarkerS.A. Calorimetric investigations of liposome formation.J. Pharm. Pharmacol.201142Suppl. 129P10.1111/j.2042‑7158.1990.tb14402.x
    [Google Scholar]
  102. PentakD. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC.Thermochim. Acta2014584364410.1016/j.tca.2014.03.020
    [Google Scholar]
  103. YoussefianS. RahbarN. LambertC.R. Van DesselS. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature.J. R. Soc. Interface2017141302017012710.1098/rsif.2017.0127 28539484
    [Google Scholar]
  104. AmiriM. GholamiT. AmiriO. The magnetic inorganic-organic nanocomposite based on ZnFe2O4-Imatinib-liposome for biomedical applications, in vivo and in vitro study.J. Alloys Compd.202084915660410.1016/j.jallcom.2020.156604
    [Google Scholar]
  105. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.2010673217223 20524422
    [Google Scholar]
  106. LehnerR. WangX. MarschS. HunzikerP. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application.Nanomedicine20139674275710.1016/j.nano.2013.01.012 23434677
    [Google Scholar]
  107. WickiA. WitzigmannD. BalasubramanianV. HuwylerJ. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications.J. Control. Release201520013815710.1016/j.jconrel.2014.12.030 25545217
    [Google Scholar]
  108. GogoiM. KumarN. PatraS. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications. HolbanAM GrumezescuG. Nanoarchitectonics Smart Delivery Drug Targeting.201677378210.1016/B978‑0‑323‑47347‑7.00027‑6
    [Google Scholar]
  109. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  110. Marqués-GallegoP. de KroonA.I. Ligation strategies for targeting liposomal nanocarriers.Biomed Res. Int.2014201412945810.1155/2014/129458
    [Google Scholar]
  111. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  112. PengT. XuW. LiQ. DingY. HuangY. Pharmaceutical liposomal delivery—specific considerations of innovation and challenges.Biomater. Sci.2022111627510.1039/D2BM01252A 36373563
    [Google Scholar]
  113. GuoH. HuangJ. TanY. Nanodrug shows spatiotemporally controlled release of anti-PD-L1 antibody and STING agonist to effectively inhibit tumor progression after radiofrequency ablation.Nano Today20224310142510.1016/j.nantod.2022.101425
    [Google Scholar]
  114. ZuM. MaY. ZhangJ. An oral nanomedicine elicits in situ vaccination effect against colorectal cancer.ACS Nano20241843651366810.1021/acsnano.3c11436 38241481
    [Google Scholar]
  115. BlumeG. CevcG. Liposomes for the sustained drug release in vivo.Biochim. Biophys. Acta Biomembr.199010291919710.1016/0005‑2736(90)90440‑Y
    [Google Scholar]
  116. AllisonA.C. GregoriadisG. Liposomes as immunological adjuvants.Nature1974252548025210.1038/252252a0 4424229
    [Google Scholar]
  117. WatsonD.S. EndsleyA.N. HuangL. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens.Vaccine201230132256227210.1016/j.vaccine.2012.01.070 22306376
    [Google Scholar]
  118. Mc CauleyJ.A. Flory’s Book.; Mc Comb, TG.Biochim. Biophys. Acta199230112
    [Google Scholar]
  119. SchroederU. SommerfeldP. UlrichS. SabelB.A. Nanoparticle technology for delivery of drugs across the blood-brain barrier.J. Pharm. Sci.199887111305130710.1021/js980084y 9811481
    [Google Scholar]
  120. AlvingC.R. SteckE.A. ChapmanW.L.Jr Therapy of leishmaniasis: Superior efficacies of liposome-encapsulated drugs.Proc. Natl. Acad. Sci. USA19787562959296310.1073/pnas.75.6.2959 208079
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855288237240222072928
Loading
/content/journals/cdth/10.2174/0115748855288237240222072928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test