Skip to content
2000
image of Design and Characterization of Niosomal In-Situ Gel for Enhanced Bioavailability of Chlorpromazine HCl in Schizophrenia

Abstract

Introduction

Schizophrenia is a typical psychotic disorder, also known as a split mind disorder, characterized by symptoms like delusions, hallucinations, and lack of insight. Chlorpromazine HCl is an antipsychotic medication commonly used to treat schizophrenia. The drug has an extensive hepatic first-pass metabolism and poor bioavailability. In addition, it is poorly permeable, resulting from its hydrophilicity.

Methods

A niosomal nasal gel loaded with chlorpromazine HCl was developed for brain delivery in the current study. The thin-film hydration method was used to formulate noisome, 32 randomized full factorial design was used for optimization. They were evaluated for in-vitro drug release, zeta potential, EE%, particle size, and shape and morphology. To create an gel, these noisome were subsequently incorporated into a Carbopol-934P and HPMC-K4M liquid gelling solution.

Results

The vesicle size ranged from 111.3 nm to 171.4 nm, with the optimized F batch having a zeta potential of -32.0 mV. Entrapment efficiency ranged from 74.71% to 91.78%, and cumulative percent release ranged from 83.83% to 95.61%. Ex-vivo studies showed 93.74% drug permeation through sheep nasal mucosa after 8 hours.

Discussion

The nasal niosomal gel of chlorpromazine HCl offers a promising approach for targeted brain delivery in schizophrenia, improving drug retention and patient compliance. Its potential for rapid relief makes it suitable for patients with poor oral absorption or compliance, and may help reduce hospital admissions during acute episodes.

Conclusion

This research demonstrated that niosomes have the potential for intranasal delivery of Chlorpromazine HCl, offering advantages over conventional formulations.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855396615251031210933
2026-01-08
2026-02-02
Loading full text...

Full text loading...

References

  1. Hany M. Rehman B. Rizvi A. Chapman J. Schizophrenia. In: StatPearls. Treasure Island StatPearls Publishing 2024
    [Google Scholar]
  2. Global health data exchange. 2020 Available from:https://ghdx.healthdata.org/
  3. Viljoen M. Roos J.L. Physical exercise and the patient with schizophrenia. Aust. J. Gen. Pract. 2020 49 12 803 808 10.31128/AJGP‑04‑20‑5384 33254203
    [Google Scholar]
  4. Medalia A. Choi J. Cognitive remediation in schizophrenia. Neuropsychol. Rev. 2009 19 3 353 364 10.1007/s11065‑009‑9097‑y 19444614
    [Google Scholar]
  5. Leucht S. Cipriani A. Spineli L. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet 2013 382 9896 951 962 10.1016/S0140‑6736(13)60733‑3 23810019
    [Google Scholar]
  6. Seeman M.V. History of the dopamine hypothesis of antipsychotic action. World J. Psychiatry 2021 11 7 355 364 10.5498/wjp.v11.i7.355 34327128
    [Google Scholar]
  7. Stielow M. Witczyńska A. Kubryń N. Fijałkowski Ł. Nowaczyk J. Nowaczyk A. The bioavailability of drugs—The current state of knowledge. Molecules 2023 28 24 8038 10.3390/molecules28248038 38138529
    [Google Scholar]
  8. Katare P. Medhe T.P. Nadkarni A. Deshpande M. Tekade R.K. Benival D. Nasal drug delivery system and devices: An overview on health effects. ACS Chem Health Saf 2024 31 2 127 143 10.1021/acs.chas.3c00075
    [Google Scholar]
  9. Li C. Wang J. Wang Y. Recent progress in drug delivery. Acta Pharm. Sin. B 2019 9 6 1145 1162 10.1016/j.apsb.2019.08.003 31867161
    [Google Scholar]
  10. Kim J. De Jesus O. Medication routes of administration. In: StatPearls. Treasure Island StatPearls Publishing 2023
    [Google Scholar]
  11. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  12. An introduction to lipid nanoparticle formulation: Basic concepts preparation procedures. 2023 Available from:https://www.caymanchem.com/news/intro-to-lipid-nanoparticle-formulation
  13. S S S S S SC Vijayan V Nair SC Enzymosomes: A rising effectual tool for targeted drug delivery system. Int J Appl Pharm 2017 9 6 1 10.22159/ijap.2017v9i6.22556
    [Google Scholar]
  14. Saroj S. Baby D. Sabitha M. Current trends in lipid based delivery systems and its applications in drug delivery. Asian J. Pharm. Clin. Res. 2012 5
    [Google Scholar]
  15. Shirsand S.B. Keshavshetti G. Recent advances in niosomal drug delivery - A review. Life Sci Inform Publ 2019 5 3 514 531 10.26479/2019.0503.43
    [Google Scholar]
  16. Rana M. Kumar A. Rana A.J. Drug delivery through targeted approach with special references to phytosomes. In: Role of Novel Drug Delivery Vehicles in Nanobiomedicine. IntechOpen 2020 10.5772/intechopen.86644
    [Google Scholar]
  17. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  18. Yaghoobian M. Haeri A. Bolourchian N. Shahhosseni S. Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int. J. Nanomed 2020 15 8767 8781 10.2147/IJN.S261932 33204087
    [Google Scholar]
  19. Fadaei M.S. Fadaei M.R. Kheirieh A.E. Rahmanian-Devin P. Dabbaghi M.M. Tavallaei K.N. Niosome as a promising tool for increasing the effectiveness of anti-inflammatory compounds. EXCLI J. 2024 23 212 263 10.17179/excli2023‑6868 38487088
    [Google Scholar]
  20. Saraswathi T.S. Mohan M. Jaganathan M.K. Niosomes as an emerging formulation tool for drug delivery - A review. Int J Appl Pharm 2019 11 2 7 15 10.22159/ijap.2019v11i2.30534
    [Google Scholar]
  21. Junyaprasert V.B. Teeranachaideekul V. Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech 2008 9 3 851 859 10.1208/s12249‑008‑9121‑1 18636334
    [Google Scholar]
  22. Laouini A. Jaafar-Maalej C. Limayem-Blouza I. Sfar S. Charcosset C. Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biotechnol 2012 1 147 168
    [Google Scholar]
  23. Bayindir Z.S. Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci. 2010 99 4 2049 2060 10.1002/jps.21944 19780133
    [Google Scholar]
  24. Midekessa G. Godakumara K. Ord J. Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega 2020 5 27 16701 16710 10.1021/acsomega.0c01582 32685837
    [Google Scholar]
  25. Fahmy U. Badr-Eldin S. Ahmed O. Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: In vitro optimization and ex vivo/in vivo evaluation. Pharmaceutics 2020 12 6 485 10.3390/pharmaceutics12060485 32471119
    [Google Scholar]
  26. Mawazi S.M. Ge Y. Widodo R.T. Niosome preparation techniques and structure—An illustrated review. Pharmaceutics 2025 17 1 67 10.3390/pharmaceutics17010067 39861715
    [Google Scholar]
  27. Thabet Y. Elsabahy M. Eissa N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022 199 9 15 10.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  28. Izhar M.P. Hafeez A. Kushwaha P. Simrah N. Drug delivery through niosomes: A comprehensive review with therapeutic applications. J. Cluster Sci. 2023 34 5 2257 2273 10.1007/s10876‑023‑02423‑w
    [Google Scholar]
  29. Liga S. Paul C. Moacă E.A. Péter F. Niosomes: Composition, formulation techniques, and recent progress as delivery systems in cancer therapy. Pharmaceutics 2024 16 2 223 10.3390/pharmaceutics16020223 38399277
    [Google Scholar]
  30. Gugleva V. Titeva S. Rangelov S. Momekova D. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. Int. J. Pharm. 2019 567 118431 10.1016/j.ijpharm.2019.06.022 31207279
    [Google Scholar]
  31. Yeo L.K. Olusanya T.O.B. Chaw C.S. Elkordy A.A. Brief effect of a small hydrophobic drug (Cinnarizine) on the physicochemical characterisation of niosomes produced by Thin-Film Hydration and microfluidic methods. Pharmaceutics 2018 10 4 185 10.3390/pharmaceutics10040185 30322124
    [Google Scholar]
  32. Khatoon M. Shah K.U. Din F.U. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting. Drug Deliv. 2017 24 2 56 69 10.1080/10717544.2017.1384520 29130758
    [Google Scholar]
  33. Basiri L. Rajabzadeh G. Bostan A. α-Tocopherol-loaded niosome prepared by heating method and its release behavior. Food Chem. 2017 221 620 628 10.1016/j.foodchem.2016.11.129 27979250
    [Google Scholar]
  34. Sharma R. Dua J.S. Parsad D.N. An overview on niosomes: Novel pharmaceutical drug delivery system. J. Drug Deliv. Ther. 2022 12 2-S 171 177 10.22270/jddt.v12i2‑S.5264
    [Google Scholar]
  35. Kumar A. Reed G.W. Puri R. Krishnaswamy A. Kapadia S. TAVR in the low risk era: One size doesn’t fit all. Prog. Cardiovasc. Dis. 2022 72 93 95 10.1016/j.pcad.2022.05.006 35654171
    [Google Scholar]
  36. Kurniawansyah I.S. Rusdiana T. Sopyan I. Desy Arya I.F. Wahab H.A. Nurzanah D. Comparative study of in situ gel formulation based on the physico-chemical aspect: Systematic review. Gels 2023 9 8 645 10.3390/gels9080645 37623100
    [Google Scholar]
  37. Kouchak M. In situ gelling systems for drug delivery. Jundishapur J. Nat. Pharm. Prod. 2014 9 3 e20126 10.17795/jjnpp‑20126 25237648
    [Google Scholar]
  38. Fan R. Cheng Y. Wang R. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers 2022 14 12 2379 10.3390/polym14122379 35745954
    [Google Scholar]
  39. a Xu H. Liu Y. Jin L. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals 2023 16 1 90 10.3390/ph16010090
    [Google Scholar]
  40. b Rudko M. Urbaniak T. Musiał W. Recent developments in ion-sensitive systems for pharmaceutical applications. Polymers (Basel) 2021 13 10 1641
    [Google Scholar]
  41. Sobczak M. Enzyme-responsive hydrogels as potential drug delivery sypstems—state of knowledge and future prospects. Int. J. Mol. Sci. 2022 23 8 4421 10.3390/ijms23084421 35457239
    [Google Scholar]
  42. Li L. Scheiger J.M. Levkin P.A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019 31 26 1807333 10.1002/adma.201807333 30848524
    [Google Scholar]
  43. Kumar N. Singh S. Sharma P. Kumar B. Kumar A. Single-, dual-, and multi-stimuli-responsive nanogels for biomedical applications. Gels 2024 10 1 61 10.3390/gels10010061 38247784
    [Google Scholar]
  44. Fungfoung K. Praparatana R. Issarachot O. Wiwattanapatapee R. Development of oral in situ gelling liquid formulations of garcinia extract for treating obesity. Gels 2023 9 8 660 10.3390/gels9080660 37623115
    [Google Scholar]
  45. Vijaya C. Goud K.S. Ion-activated in situ gelling ophthalmic delivery systems of azithromycin. Indian J. Pharm. Sci. 2011 73 6 615 620 10.4103/0250‑474X.100234 23112394
    [Google Scholar]
  46. Kurniawansyah I.S. Sopyan I. Wathoni N. Fillah D.L. Praditya R.U. Application and characterization of in situ gel. Int J Appl Pharm 2018 10 6 34 10.22159/ijap.2018v10i6.28767
    [Google Scholar]
  47. Nair A.B. Shah J. Jacob S. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections. PLoS One 2021 16 3 e0248857 10.1371/journal.pone.0248857 33739996
    [Google Scholar]
  48. Chatterjee S. Hui P.C. Kan C. Thermoresponsive hydrogels and their biomedical applications: Special insight into their applications in textile based transdermal therapy. Polymers 2018 10 5 480 10.3390/polym10050480 30966514
    [Google Scholar]
  49. Verma R. Mittal V. Kaushik D. Quality based design approach for improving oral bioavailability of valsartan loaded smedds and study of impact of lipolysis on the drug diffusion. Drug Deliv. Lett. 2018 8 2 130 139 10.2174/2210303108666180313141956
    [Google Scholar]
  50. Ravalika V. Sailaja A.K. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomed. Eng. 2017 9 3 10.5101/nbe.v9i3.p242‑248
    [Google Scholar]
  51. Rana S.S. Bhatt S. Kumar M. Malik A. Sharma J.B. Arora D. Design and optimization of itraconazole loaded SLN for intranasal administration using central composite design. Nanosci. Nanotechnol. Asia 2019 9 6 10.2174/2210681209666191111113112
    [Google Scholar]
  52. Mohanty D. Rani M.J. Haque M.A. Preparation and evaluation of transdermal naproxen niosomes: Formulation optimization to preclinical anti-inflammatory assessment on murine model. J. Liposome Res. 2020 30 4 377 387 10.1080/08982104.2019.1652646 31412744
    [Google Scholar]
  53. Mathure D. Madan J.R. Gujar K.N. Tupsamundre A. Ranpise H.A. Dua K. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route. Pharm. Nanotechnol. 2018 6 1 69 78 10.2174/2211738506666180130105919 29380709
    [Google Scholar]
  54. Ruckmani K. Sankar V. Formulation and optimization of Zidovudine niosomes. AAPS PharmSciTech 2010 11 3 1119 1127 10.1208/s12249‑010‑9480‑2 20635228
    [Google Scholar]
  55. Sezgin-Bayindir Z. Yuksel N. Investigation of formulation variables and excipient interaction on the production of niosomes. AAPS PharmSciTech 2012 13 3 826 835 10.1208/s12249‑012‑9805‑4 22644706
    [Google Scholar]
  56. Aggarwal G. Bansal S. Chandel P. Harikumar S.L. Design and development of cefdinir niosomes for oral delivery. J. Pharm. Bioallied Sci. 2013 5 4 318 325 10.4103/0975‑7406.120080 24302841
    [Google Scholar]
  57. Galgatte U.C. Kumbhar A.B. Chaudhari P.D. Development of in situ gel for nasal delivery: Design, optimization, in vitro and in vivo evaluation. Drug Deliv. 2014 21 1 62 73 10.3109/10717544.2013.849778 24191774
    [Google Scholar]
  58. Mahajan H.S.S. Dinger S.B. Design and in vitro evaluation of nanoemulsion for nasal delivery of artemether. Indian J. Nov. Drug Deliv. 2011 3 272 277
    [Google Scholar]
  59. Sharma S. Sharma J.B. Kumar M. Verma R. Kaushik D. Bhatt S. Engineering of lurasidone hydrochloride loaded niosomes for enhancing the antipsychotic potential for nasal administration. Curr. Nanomed. 2023 13 1 39 55 10.2174/2468187313666230117163425
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855396615251031210933
Loading
/content/journals/cdth/10.2174/0115748855396615251031210933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test