Skip to content
2000
image of Improved Efficacy of Burdock-loaded Nano-emulsion Gel in Acne Vulgaris Treatment by the Quality by Design Approach

Abstract

Introduction

Acne vulgaris is a dermatological condition that significantly affects the physical appearance and quality of life of patients. The emergence of antibiotic resistance has compromised the therapeutic efficacy of antibiotics in acne management. Burdock is a water-soluble bioactive agent that exhibits antimicrobial, anti-inflammatory, and antioxidant properties.

Methods

Burdock was loaded into w/o/w nano-emulsion using the reverse titration method. The globule size, zeta potential, entrapment efficiency, and percentage cumulative drug release of the nano-emulsion were evaluated. The nano-emulsion was incorporated into a Carbopol 940 (0.5%, 1%, and 1.5% w/w) gel, and the drug permeability of the nano-emulsion gel was evaluated. The formulations of the nano-emulsion were optimized using the Box-Behnken design.

Results

The Burdock was loaded into w/o/w nano-emulsion by applying the Quality by Design (QbD) approach considering the effect of the factors (phase volume ratio: PVR, time of primary emulsification: TPE, and concentration of Transcutol P: TLP) on globule size (GS) and % entrapment efficiency (%EE) of the drug.

Discussion

The optimized nano-emulsion was prepared using Burdock and showed a GS of 176.2 nm and an EE of 99.24% with a PVR of 4.60, a TPE of 3.1 minutes, and a TLP concentration of 8.92%.

Conclusion

The optimized nano-emulsion was transformed into a gel and characterized for morphology, viscosity, pH, drug content, in-vitro release, and ex vivo drug permeation. Finally, skin irritation study and histopathological evaluation suggested that the obtained nano-emulsion gel was effective in the treatment of Acne vulgaris.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855379987250812064127
2025-08-28
2025-12-14
Loading full text...

Full text loading...

References

  1. Vasam M. Korutla S. Bohara R.A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochem. Biophys. Rep. 2023 36 101578 10.1016/j.bbrep.2023.101578 38076662
    [Google Scholar]
  2. Hazarika N. Acne vulgaris: New evidence in pathogenesis and future modalities of treatment. J. Dermatolog. Treat. 2021 32 3 277 285 10.1080/09546634.2019.1654075 31393195
    [Google Scholar]
  3. Toyoda M. Morohashi M. Pathogenesis of acne. Med. Electron Microsc. 2001 34 1 29 40 10.1007/s007950100002 11479771
    [Google Scholar]
  4. Eichenfield D.Z. Sprague J. Eichenfield L.F. Management of acne vulgaris: A review. JAMA 2021 326 20 2055 2067 10.1001/jama.2021.17633 34812859
    [Google Scholar]
  5. Gupta D.K. Aqil M. Ahad A. Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J. Drug Deliv. Sci. Technol. 2020 60 102051 10.1016/j.jddst.2020.102051
    [Google Scholar]
  6. Bhat Y. Latief I. Hassan I. Update on etiopathogenesis and treatment of Acne. Indian J. Dermatol. Venereol. Leprol. 2017 83 3 298 306 10.4103/0378‑6323.199581 28195079
    [Google Scholar]
  7. Reynolds R.V. Yeung H. Cheng C.E. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2024 90 5 1006.e1 1006.e30 10.1016/j.jaad.2023.12.017 38300170
    [Google Scholar]
  8. Juhl C.R. Bergholdt H.K.M. Miller I.M. Jemec G.B.E. Kanters J.K. Ellervik C. Dairy intake and acne vulgaris: A systematic review and meta-analysis of 78,529 children, adolescents, and young adults. Nutrients 2018 10 8 1049 10.3390/nu10081049 30096883
    [Google Scholar]
  9. Rocha M. Barnes F. Calderón J. Acne treatment challenges – Recommendations of Latin American expert consensus. An. Bras. Dermatol. 2024 99 3 414 424 10.1016/j.abd.2023.09.001 38402012
    [Google Scholar]
  10. Liu L. Xue Y. Chen J. DNA methylation profiling and integrative multi-omics analysis of skin samples reveal important contribution of epigenetics and immune response in the pathogenesis of acne vulgaris. Clin. Immunol. 2023 255 109773 10.1016/j.clim.2023.109773 37717673
    [Google Scholar]
  11. Yu W. Shen H. Cai B. Xie Y. Wang Y. Wang J. 15% Azelaic acid gel modify the skin microbiota of acne vulgaris. J Dermatol Sci Cosmet Technol 2024 1 4 100041 10.1016/j.jdsct.2024.100041
    [Google Scholar]
  12. Tan J. Beissert S. Cook-Bolden F. Impact of facial and truncal acne on quality of life: A multi-country population-based survey. JAAD Int 2021 3 102 110 10.1016/j.jdin.2021.03.002 34409378
    [Google Scholar]
  13. Mahmoudi A. Jaafari M.R. Malaekeh-Nikouei B. Preparation, characterization and preliminary in vivo safety evaluation of cationic nano-emulsions containing α-lipoic acid after ocular administration in NZW rabbits. Nanomed. J. 2023
    [Google Scholar]
  14. Cristani M. Micale N. Bioactive compounds from medicinal plants as potential adjuvants in the treatment of mild acne vulgaris. Molecules 2024 29 10 2394 10.3390/molecules29102394 38792254
    [Google Scholar]
  15. Proença A.C. Luís Â. Duarte A.P. The role of herbal medicine in the treatment of acne vulgaris: A systematic review of clinical trials. Evid. Based Complement. Alternat. Med. 2022 2022 1 22 10.1155/2022/2011945 35754694
    [Google Scholar]
  16. Soleymani S. Farzaei M.H. Zargaran A. Niknam S. Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: A mechanistic review. Arch. Dermatol. Res. 2020 312 1 5 23 10.1007/s00403‑019‑01968‑z 31448393
    [Google Scholar]
  17. Chauhan P.N. Sharma A. Rasheed H. Mathur H. Sharma P. Treatment opportunities and technological progress prospective for acne vulgaris. Curr. Drug Deliv. 2023 20 8 1037 1048 10.2174/1567201819666220623154225 35747981
    [Google Scholar]
  18. Nabeshima E.H. Moro T.M.A. Campelo P.H. Sant’Ana A.S. Clerici M.T.P.S. Chapter Seven - Tubers and roots as a source of prebiotic fibers. Advances in Food and Nutrition Research. Cambridge Massachusetts: Academic Press 2020 94 267 93 10.1016/bs.afnr.2020.06.005
    [Google Scholar]
  19. Zhang B. Li M. Qiao Y. Gao P. Li L. Zheng Z. Potential use of low-field nuclear magnetic resonance to determine the drying characteristics and quality of Arctium lappa L. in hot-blast air. Lebensm. Wiss. Technol. 2020 132 109829 10.1016/j.lwt.2020.109829
    [Google Scholar]
  20. Mahboubi M. Arctium lappa and management of liver functions to detoxify the bloodstream. Nat. Prod. J. 2021 11 5 609 616 10.2174/2210315510999200727205254
    [Google Scholar]
  21. Yosri N. Alsharif S.M. Xiao J. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed. Pharmacother. 2023 158 114104 10.1016/j.biopha.2022.114104 36516694
    [Google Scholar]
  22. Zhang X. Zhang N. Kan J. Anti-inflammatory activity of alkali-soluble polysaccharides from Arctium lappa L. and its effect on gut microbiota of mice with inflammation. Int. J. Biol. Macromol. 2020 154 773 787 10.1016/j.ijbiomac.2020.03.111 32199919
    [Google Scholar]
  23. Teixeira R.S. Carvalho P.H.D. Aguiar J.A.K. Medeiros V.P. Da Silva Filho A.A. Nascimento J.W.L. Improved method for obtaining of arctigenin from Arctium Lappa L. and its antiproliferative effect on human hepatocarcinoma HepG2 cells. Curr. Bioact. Compd. 2020 16 3 358 362 10.2174/1573407214666181115124223
    [Google Scholar]
  24. Lal M. Chandraker S.K. Shukla R. 4 - Antimicrobial properties of selected plants used in traditional Chinese medicine. Prakash B. Functional and Preservative Properties of Phytochemicals. Academic Press 2020 119 143 10.1016/B978‑0‑12‑818593‑3.00004‑X
    [Google Scholar]
  25. Lou J. Liu Y. Xu N. Arctium lappa L. root extract improved hyperlipidemia by regulating the esterase activity and gut microbiota of rats on a high-fat diet. J. Funct. Foods 2024 120 106348 10.1016/j.jff.2024.106348
    [Google Scholar]
  26. Fierascu R.C. Georgiev M.I. Fierascu I. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L. (Asteraceae) and Veronica persica Poiret (Plantaginaceae). Food Chem. Toxicol. 2018 111 44 52 10.1016/j.fct.2017.11.008 29126799
    [Google Scholar]
  27. Wu X. Yang Y. Dou Y. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int. Immunopharmacol. 2014 23 2 505 515 10.1016/j.intimp.2014.09.026 25284342
    [Google Scholar]
  28. Pirvu L. Nicorescu I. Hlevca C. Albu B. Nicorescu V. Burdock (Arctium lappa) leaf extracts increase the in vitro antimicrobial efficacy of common antibiotics on gram-positive and gram-negative bacteria. Open Chem. 2017 15 1 92 102 10.1515/chem‑2017‑0012
    [Google Scholar]
  29. Petkova N. Hambarlyiska I. Tumbarski Y. Vrancheva R. Raeva M. Ivanov I. Phytochemical composition and antimicrobial properties of burdock (Arctium lappa L.) roots extracts. Biointerface Res. Appl. Chem. 2022 12 3 2826 2842
    [Google Scholar]
  30. Sigward E. Mignet N. Rat P. Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions. Int. J. Nanomedicine 2013 8 611 625 10.2147/IJN.S35661 23403891
    [Google Scholar]
  31. Nagar L. Saini A. Hussian T. Gulati N. Singh S.K. Gupta G. Recent patents and applications of nanoemulsion and nanoemulgel for topical drug delivery. Curr. Nanomed. 2025 15 10.2174/0124681873329226241016015442
    [Google Scholar]
  32. Shafiq S. Shakeel F. Talegaonkar S. Ahmad F.J. Khar R.K. Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007 66 2 227 243 10.1016/j.ejpb.2006.10.014 17127045
    [Google Scholar]
  33. Pongsumpun P. Iwamoto S. Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020 60 104604 10.1016/j.ultsonch.2019.05.021 31539730
    [Google Scholar]
  34. Mahmud J. Muranyi P. Shankar S. Sarmast E. Salmieri S. Lacroix M. Physiological and antimicrobial properties of a novel nanoemulsion formulation containing mixed surfactant and essential oils: Optimization modeling by response surface methodology. Colloids Surf. A Physicochem. Eng. Asp. 2024 686 133405 10.1016/j.colsurfa.2024.133405
    [Google Scholar]
  35. BenJemaa M. Rahali F.Z. Falleh H. Essential oil stabilisation by response surface methodology (RSM): Nanoemulsion formulation, physicochemical, microbiological, and sensory investigations. Molecules 2022 27 21 7330 10.3390/molecules27217330 36364161
    [Google Scholar]
  36. Sharma M. Chandra Sharma M. Khabiya R. Designing of novel nanoemulsions of retinol using box Behnken design for psoriasis. Mater. Today Proc. 2023 80 420 426 10.1016/j.matpr.2022.10.191
    [Google Scholar]
  37. Ullah N. Amin A. Alamoudi R.A. Fabrication and optimization of essential-oil-loaded nanoemulsion using box–behnken design against Staphylococos aureus and Staphylococos epidermidis isolated from oral cavity. Pharmaceutics 2022 14 8 1640 10.3390/pharmaceutics14081640 36015266
    [Google Scholar]
  38. Yousefi S. Nateghi L. Rashidi L. Improvement of margarine shelf-life using alginate-chitosan coated multiple W/O/W nanoemulsions containing sesamol and retinol. Food Chem. X 2024 24 101803 10.1016/j.fochx.2024.101803 39296483
    [Google Scholar]
  39. Wang J. Shi A. Agyei D. Wang Q. Formulation of water-in-oil-in-water (W/O/W) emulsions containing trans-resveratrol. RSC Advances 2017 7 57 35917 35927 10.1039/C7RA05945K
    [Google Scholar]
  40. Gurumukhi V.C. Sonawane V.P. Tapadiya G.G. Bari S.B. Surana S.J. Chalikwar S.S. Quality-by-design based fabrication of febuxostat-loaded nanoemulsion: Statistical optimization, characterizations, permeability, and bioavailability studies. Heliyon 2023 9 4 15404 10.1016/j.heliyon.2023.e15404 37128342
    [Google Scholar]
  41. Patra C.N. Mishra A. Jena G.K. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance. J. Pharm. Innov. 2023 18 3 1279 1297 10.1007/s12247‑023‑09714‑9
    [Google Scholar]
  42. Qureshi M. Qadir A. Aqil M. Berberine loaded dermal quality by design adapted chemically engineered lipid nano-constructs-gel formulation for the treatment of skin acne. J. Drug Deliv. Sci. Technol. 2021 66 102805 10.1016/j.jddst.2021.102805
    [Google Scholar]
  43. Comoglu T. Ozyilmaz E.D. Chapter 10 - Pharmaceutical product development: a “quality by design” (QbD) approach. Dosage Forms, Formulation Developments and Regulations. Chapter 10 Cambridge, Massachusetts Academic Press 2024 285 310
    [Google Scholar]
  44. Hasnain M.S. Ahmed S.A. Khatoon A. Afzal M. Ansari M.T. Khatoon S. Chapter 4 - Pharmaceutical product development: A quality by design (QbD) approach. Advances and Challenges in Pharmaceutical Technology. Chapter 4 Cambridge, Massachusetts Academic Press 2021 131 146
    [Google Scholar]
  45. Özdemir S. Üner B. Karaküçük A. Çelik B. Sümer E. Taş Ç. Nanoemulsions as a promising carrier for topical delivery of etodolac: Formulation development and characterization. Pharmaceutics 2023 15 10 2510 10.3390/pharmaceutics15102510 37896270
    [Google Scholar]
  46. Jones D. Pearce K.J. Contribution of process variables to the entrapment efficiency of propranolol hydrochloride within ethylcellulose microspheres prepared by the solvent evaporation method as evaluated using a factorial design. Int. J. Pharm. 1996 131 1 25 31 10.1016/0378‑5173(95)04298‑9
    [Google Scholar]
  47. Bakshi P. Jiang Y. Nakata T. Akaki J. Matsuoka N. Banga A.K. Formulation development and characterization of nanoemulsion-based formulation for topical delivery of heparinoid. J. Pharm. Sci. 2018 107 11 2883 2890 10.1016/j.xphs.2018.07.015 30055224
    [Google Scholar]
  48. Sundararajan B. Moola A.K. Vivek K. Kumari B.D.R. Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb. Pathog. 2018 125 475 485 10.1016/j.micpath.2018.10.017 30340015
    [Google Scholar]
  49. Ying X. Gao J. Lu J. Preparation and drying of water-in-oil-in-water (W/O/W) double emulsion to encapsulate soy peptides. Food Res. Int. 2021 141 110148 10.1016/j.foodres.2021.110148 33642014
    [Google Scholar]
  50. Wang Q. Wu Z. Wang F. Zhang H. Gan L. Tacrolimus-loaded cationic nanoemulsion in-situ gel system: In-vitro characterization and performance in a dry-eye rabbit model. J. Pharm. Sci. 2023 112 11 2790 2798 10.1016/j.xphs.2023.05.001 37453530
    [Google Scholar]
  51. Drioli E. Giorno L.T.A.T.T. Bore liquid: Solvent and non-solvent. Encyclopedia of Membranes. Berlin, Heidelberg Springer 2019 1 3 10.1007/978‑3‑642‑40872‑4
    [Google Scholar]
  52. Badran M.M. Taha E.I. Tayel M.M. Al-Suwayeh S.A. Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: Dependency on the type of surfactants. J. Mol. Liq. 2014 190 16 22 10.1016/j.molliq.2013.10.015
    [Google Scholar]
  53. Abedi S. Suteria N.S. Chen C.C. Vanapalli S.A. Microfluidic production of size-tunable hexadecane-in-water emulsions: Effect of droplet size on destabilization of two-dimensional emulsions due to partial coalescence. J. Colloid Interface Sci. 2019 533 59 70 10.1016/j.jcis.2018.08.045 30145441
    [Google Scholar]
  54. Karakuş S. Science and Technology Behind Nanoemulsions. Rijeka IntechOpen 2018 10.5772/intechopen.71147
    [Google Scholar]
  55. Bałdyga J. Bourne J.R. Pacek A.W. Amanullah A. Nienow A.W. Effects of agitation and scale-up on drop size in turbulent dispersions: allowance for intermittency. Chem. Eng. Sci. 2001 56 11 3377 3385 10.1016/S0009‑2509(01)00027‑6
    [Google Scholar]
  56. Patil M.U. Rajput A.P. Belgamwar V.S. Chalikwar S.S. Development and characterization of amphotericin B nanoemulsion-loaded mucoadhesive gel for treatment of vulvovaginal candidiasis. Heliyon 2022 8 11 11489 10.1016/j.heliyon.2022.e11489 36411885
    [Google Scholar]
  57. Ratnam D.V. Ankola D.D. Bhardwaj V. Sahana D.K. Kumar M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release 2006 113 3 189 207 10.1016/j.jconrel.2006.04.015 16790290
    [Google Scholar]
  58. Gokhale J.P. Mahajan H.S. Surana S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019 112 108622 10.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  59. Al-Suwayeh S.A. Badran M.M. Alhumoud G.O. Taha E.I. Ashri L.Y. Kazi M. Design and dermatokinetic appraisal of lornoxicam-loaded ultrafine self-nanoemulsion hydrogel for the management of inflammation: In vitro and in vivo studies. Saudi Pharm. J. 2023 31 6 889 903 10.1016/j.jsps.2023.04.004 37228319
    [Google Scholar]
  60. Malik D.S. Kaur G. Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation. J. Drug Deliv. Sci. Technol. 2018 47 123 136 10.1016/j.jddst.2018.07.008
    [Google Scholar]
  61. Yeo E. Yew Chieng C.J. Choudhury H. Pandey M. Gorain B. Tocotrienols-rich naringenin nanoemulgel for the management of diabetic wound: Fabrication, characterization and comparative in vitro evaluations. Curr Res Pharmacol Drug Discov 2021 2 100019 10.1016/j.crphar.2021.100019 34909654
    [Google Scholar]
  62. Vijaya Rani K.R. Rajan S. Bhupathyraaj M. The effect of polymers on drug release kinetics in nanoemulsion in situ gel formulation. Polymers 2022 14 3 427 10.3390/polym14030427 35160417
    [Google Scholar]
  63. Surendran V. Madheswaraguptha P. Ravula P. Rajavel P. Prabahar A.E. Chemometrics assisted formulation of glimepiride nanosuspension for solubility enhancement in diabetic therapy—A systematic approach. Macromol. Symp. 2024 413 1 2300114 10.1002/masy.202300114
    [Google Scholar]
  64. Palei N.N. Mohanta B.C. Olmesartan medoxomil-loaded niosomal gel for buccal delivery: Formulation, optimization, and ex vivo studies. Turk J Pharm Sci 2024 21 3 199 210 10.4274/tjps.galenos.2023.93765 38994813
    [Google Scholar]
  65. Akhter A. Shirazi J.H. Shoaib khan HM, Hussain MD, Kazi M. Development and evaluation of nanoemulsion gel loaded with bioactive extract of Cucumis melo var. agrestis: A novel approach for enhanced skin permeability and antifungal activity. Heliyon 2024 10 15 35069 10.1016/j.heliyon.2024.e35069 39170221
    [Google Scholar]
  66. Lala R.R. Awari N.G. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Appl. Nanosci. 2014 4 2 143 151 10.1007/s13204‑012‑0177‑6
    [Google Scholar]
  67. Kumbhar D.D. Pokharkar V.B. Engineering of a nanostructured lipid carrier for the poorly water-soluble drug, bicalutamide: Physicochemical investigations. Colloids Surf. A Physicochem. Eng. Asp. 2013 416 32 42 10.1016/j.colsurfa.2012.10.031
    [Google Scholar]
  68. Ahmad N. Albassam A.A. Faiyaz Khan M. A novel 5-Fluorocuracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J. Biol. Sci. 2022 29 5 3704 3716 10.1016/j.sjbs.2022.02.017 35844373
    [Google Scholar]
  69. Yuan Y. Li S. Mo F. Zhong D. Investigation of microemulsion system for transdermal delivery of meloxicam. Int. J. Pharm. 2006 321 1-2 117 123 10.1016/j.ijpharm.2006.06.021 16876972
    [Google Scholar]
  70. Nayeem U. Garg A. Das A.K. Shree N. Development and evaluation of the novel chitosan-based 1% clindamycin & 2.5% benzoyl peroxide transferosomal gel for topical acne treatment. J. Drug Deliv. Sci. Technol. 2023 89 105002 10.1016/j.jddst.2023.105002
    [Google Scholar]
  71. An L. Gong N. Hu T. Study on antibacterial activity and mechanism of improved Dian Dao San Against Cutibacterium acnes (C. acnes). Infect. Drug Resist. 2023 16 4965 4975 10.2147/IDR.S419161 37546368
    [Google Scholar]
  72. Ankomah A.D. Boakye Y.D. Agana T.A. Evaluation of dermal toxicity and wound healing activity of Cnestis ferruginea Vahl ex DC. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 11 10.1155/2022/5268613 35656163
    [Google Scholar]
  73. Chen T. Zhu Z. Du Q. A skin lipidomics study reveals the therapeutic effects of tanshinones in a rat model of acne. Front. Pharmacol. 2021 12 675659 10.3389/fphar.2021.675659 34177586
    [Google Scholar]
  74. Huang Y. Huang Y. Xia D. Lactobacillus rhamnosus ameliorates acne vulgaris in SD rats via changes in gut microbiota and associated tryptophan metabolism. Front. Immunol. 2024 14 1293048 10.3389/fimmu.2023.1293048 38250060
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855379987250812064127
Loading
/content/journals/cdth/10.2174/0115748855379987250812064127
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: W/O/W nano-emulsion ; antioxidant ; Burdock ; nano-emulsion gel ; QbD ; acne vulgaris
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test