Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

The impact and burden of coronavirus outbreak (COVID-19, SARS-CoV-2) still exists worldwide. Different knowledge, opinions, and techniques determine the various outcomes and potency of preventive and therapeutic strategies. COVID-19 infections, long COVID, and the complexity of treatment variability are challenging issues for therapeutic promotion and cost-effective consideration. To speed up global efforts against COVID-19, clinical diagnosis, therapeutic selections, and drug combination studies should be optimized in different ways. The epidemic condition, vaccination, techniques, and therapeutic options are open to new expeditions. To target infectious and therapeutic variability, biomedical mechanisms and pathways should be understood. Facilitating and enhancing new global machinery and roadmap against viral-induced social damages and potential epidemics should be established for biological and pharmaceutical purposes. Thus, in this study, the ways of medical translation for COVID-19 treatment are discussed.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855287311240416050237
2024-04-19
2025-10-03
Loading full text...

Full text loading...

References

  1. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  2. CiottiM. AngelettiS. MinieriM. COVID-19 outbreak: An overview.Chemotherapy2019645-621522310.1159/000507423 32259829
    [Google Scholar]
  3. LuD.Y. CheJ.Y. LuT.R. WuH.Y. Coronavirus (COVID-19), origin, infectivity, epidemics, therapeutics and global impacts.EC Pharm Toxicol202193100107
    [Google Scholar]
  4. BarupalT. TakP.K. MeenaM. COVID-19: Morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario.Coronaviruses202011828910.2174/2666796701999200617161348
    [Google Scholar]
  5. LuD.Y. LuT.R. COVID-19 study, public health and biomedical bases.Curr. Drug Ther.202419436737510.2174/1574885518666230801091246
    [Google Scholar]
  6. PerlmanS. PeirisM. Coronavirus research: Knowledge gaps and research priorities.Nat. Rev. Microbiology202321312512610.1038/s41579‑022‑00837‑3 36792727
    [Google Scholar]
  7. KimY.K. RNA therapy: Rich history, various applications of unlimited future prospects.Exp. Mol. Med.202254445546510.1038/s12276‑022‑00757‑5 35440755
    [Google Scholar]
  8. KattaM. RapakaS. AdireddiR. EmandiJ.R. A preliminary review on novel coronavirus diseases: COVID-19.Coronaviruses202011909710.2174/2666796701999200615155630
    [Google Scholar]
  9. LuD.Y. LuT.R. Covid-19 study, diagnostic and therapeutic transition. Rec Adv. Anti-Inf.Drug Dis.2024191213510.2174/2772434418666230331115936
    [Google Scholar]
  10. NaqviI.H. RizviS.N.Z. The comprehensive appresal of COVID-19: Its clinical panorama from virology till management and beyond.Coronaviruses202011577210.2174/2666796701999200701132336
    [Google Scholar]
  11. RajS. ChandelV. RathiB. KumarD. Understanding the molecular mechanisms of SARS-CoV2 infection and propagation in human to discover potential preventive and therapeutic approach.Coronaviruses202011738110.2174/2666796701999200617155013
    [Google Scholar]
  12. MitraM. Coronavirus vaccination advancement.EC Emerg Med. Crit. Care2021578996
    [Google Scholar]
  13. LiuT. TianY. ZhengA. CuiC. Design strategies for and stability of mRNA-lipid nanoparticle COVID-19 vaccines.Polymers20221419419510.3390/polym14194195 36236141
    [Google Scholar]
  14. RahmanM.M. MasumM.H.U. WajedS. TalukderA. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges.Virusdisease202233112210.1007/s13337‑022‑00755‑1 35127995
    [Google Scholar]
  15. TianY. DengZ. YangP. mRNA vaccines: A novel weapon to control infection disease.Front. Microbiol.202213100868410.3389/fmicb.2022.1008684
    [Google Scholar]
  16. LuD.Y. LuT.R. Covid-19 vaccine development, emergency workflow.EC Emerg Med. Crit. Care2021592325
    [Google Scholar]
  17. HotezP.J. SARS-CoV-2 variants after a second chance to fix vaccine inequities.Nat. Rev. Microbiol.2023213127128 36324031
    [Google Scholar]
  18. LuD.Y. WuH.Y. YarlaN.S. XuB. DingJ. LuT.R. HAART in HIV/AIDS treatments, future trends.Infectious Disorders-Drug Targets2018181152210.2174/1871526517666170505122800 28474549
    [Google Scholar]
  19. LuD.Y. LuT.R. HIV/AIDS curability study, different approaches and drug combination.Infectious Disorders-Drug Targets2023234e17012321280310.2174/1871526523666230117115826 36650650
    [Google Scholar]
  20. LuD.Y. ChenE.H. WuH.Y. LuT.R. XuB. DingJ. Anticancer drug combination, how far we can go through?Anticancer. Agents Med. Chem.2017171212810.2174/1871520616666160404112028 27039923
    [Google Scholar]
  21. LuD.Y. LuT.R. YarlaN.S. Drug combination in clinical cancer treatment.Reviews on Recent Clinical Trials2017123202211 28782482
    [Google Scholar]
  22. CroweD. SARS-steroid and ribavirin scandal.The Infectious Myth202010.140/RG.2.2.25308.74581
    [Google Scholar]
  23. LedfordH. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments.Nature2020580780331131210.1038/d41586‑020‑01056‑7 32273618
    [Google Scholar]
  24. KebedeT. KumarD. SharmaP.K. Potential drug option for treatment of COVID-19: A review.Coronaviruses202011424810.2174/2666796701999200701131604
    [Google Scholar]
  25. BandayA.H. ShahS.A. AjazS.J. Potential immunotherapy against SARS-Cov-2, strategy and status.Coronaviruses202011233110.2174/2666796701999200625212040
    [Google Scholar]
  26. MaxmenA. How blood from coronavirus survivors might save lives.Nature20205807801161710.1038/d41586‑020‑00895‑8 32214238
    [Google Scholar]
  27. LiuW. ZhuH.L. DuanY. Effective chemicals against novel coronavirus (COVID-19) in China.Current Topics in Medicinal Chemistry202020860360510.2174/18734294MTA16MDQBx 32133962
    [Google Scholar]
  28. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  29. SilveiraD. Prieto-GarciaJ.M. BoylanF. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy?Front. Pharmacol.20201158184010.3389/fphar.2020.581840 33071794
    [Google Scholar]
  30. BehlT. RocchettiG. ChadhaS. Phytochemicals from plant foods as potential source of antiviral agents: An overview.Pharmaceuticals202114438110.3390/ph14040381 33921724
    [Google Scholar]
  31. ManiJ.S. JohnsonJ.B. SteelJ.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.197989 32360300
    [Google Scholar]
  32. ChojnackaK. Witek-KrowiakA. SkrzypczakD. MikulaK. MłynarzP. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus.Journal of Functional Foods20207310414610.1016/j.jff.2020.104146 32834835
    [Google Scholar]
  33. MazzaedoostS. BehhudiG. MousaviS.M. HashemiS.A. Covid-19 treatment plant compounds.J AdvApplNanoBio Tech2020212333
    [Google Scholar]
  34. SytarO. BresticM. HajihashemiS. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds.Molecules202126372710.3390/molecules26030727 33573318
    [Google Scholar]
  35. LuD.Y. LuT.R. LuY. SastryN. WuH.Y. Discover natural chemical drugs in modern medicines.Metabolomics201663181
    [Google Scholar]
  36. OmotayoA.O. OtekunrinO.A. FasinaF.O. OtekunrinO. AkramM. COVID-19 in Nigeria: Why continuous spike in cases?Asian Pac. J. Trop. Med.20211411410.4103/1995‑7645.304292
    [Google Scholar]
  37. PattanayakS. Alternative to antibiotics from herbal origin—outline of a comprehensive research project.Current Pharmacogenomics Personalized Medicine201816196210.2174/1875692116666180419154033
    [Google Scholar]
  38. WangY.X. MaJ.R. WangS.Q. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19.Eur. Rev. Med. Pharmacol. Sci.202024633603384 32271454
    [Google Scholar]
  39. LuD.Y. LuT.R. Herbal medicine in new era.Hospice and Palliative Medicine International J20193412513010.15406/hpmij.2019.03.00165
    [Google Scholar]
  40. CarvalhoA.P.A. Conte-JuniorC.A. Recent advances on nanomaterials to COVID-19 management; A systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation.Global Challenge202155200011510.1002/gch2.202000115 33786199
    [Google Scholar]
  41. RaghavN. SharmaM.R. KennedyJ.F. Nanocellulose: A mini-review on types and use in drug delivery systems.Carbohydrate Polymer Technologies and Applications2021210003110.1016/j.carpta.2020.100031
    [Google Scholar]
  42. SbernaG. BiagiM. MarafiniG. In vitro evaluation of antiviral efficacy of a standardized hydroalcoholic extract of poplar type propolis against SARS-CoV-2.Front. Microbiology20221379954610.3389/fmicb.2022.799546 35350622
    [Google Scholar]
  43. RipariN. SartoriA.A. HonorioM.D.S. Propolis antiviral and immunomodulatory activity: A review and perspectives for COVID-19 treatment.J. Pharmacy Pharmacology202173328129910.1093/jpp/rgaa067
    [Google Scholar]
  44. LuD.Y. CheJ.Y. Holistic covid-19 emergency practice.EC Emergency Medicine & Critical Care20226624
    [Google Scholar]
  45. FerreiraL.L.G. AndricopuloA.D. COVID-19: Small-molecule clinical trial landscape.Current Topics Medicinal Chemistry202020181577158010.2174/156802662018200703154334 32862824
    [Google Scholar]
  46. KnellerD.W. PhillipsG. WeissK.L. ZhangQ. CoatesL. KovalevskyA. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography.J. Med. Chem.20216484991500010.1021/acs.jmedchem.1c00058 33755450
    [Google Scholar]
  47. ZhaoY. DuX. DuanY. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors.Protein Cell2021121187788810.1007/s13238‑021‑00836‑9 33864621
    [Google Scholar]
  48. BhatiaR. NarangR.K. RawalR.K. Repurposing of RdRp inhibitors against SARS-Cov-2 through molecular docking tools.Coronaviruses20201110811610.2174/2666796701999200617155629
    [Google Scholar]
  49. AtnafA. ShiferawA.A. TamirW. Hematological profiles and clinical outcome of COVID-19 among patient’s admitted at Debre Markos isolation and treatment center: 2020L a prospective cohort study.J. Blood Medicine20221363164110.2147/JBM.S380539 36405428
    [Google Scholar]
  50. MpianaP.T. NgboluaK.T.N. TshibanguD.S.T. Aloe vera (L.) Burm F as a potential of anti-COVID-19 plant: A mini-review of its antiviral activity.European J. Medicinal Plants2020318869310.9734/ejmp/2020/v31i830261
    [Google Scholar]
  51. Hafez GhoranS. El-ShazlyM. SekerogluN. KijjoaA. Natural products from medicinal plants with anti-human coronavirus activities.Molecules2021266175410.3390/molecules26061754 33800977
    [Google Scholar]
  52. AkramM. MichaelS. SaeedM. Ethnopharmacological properties of Asian medicinal plants during conflict-related blockades.Phytochemistry, the Military and Health.Elsevier2021536810.1016/B978‑0‑12‑821556‑2‑00025‑6
    [Google Scholar]
  53. CleverS. VolzA. Mouse models in COVID-19 research: Analyzing the adaptive immune response.Med. Microbiol. Immunol.202211910.1007/s00430‑022‑00735‑8 35661253
    [Google Scholar]
  54. BrenbdlerT. Al-HarrasiA. BauerR. Batanical drugs and supplements affecting the immune response in the time of COVID-19: Implication for research and clinical practice.Phytotherapy Res.202011910.1002/ptr.7008
    [Google Scholar]
  55. InkotoC.L. NgboluaK.T.N. KilembeJ.T. A mini review on the phytochemistry and pharmacology of Aframomumalboviolaceum (zingiberaceae).South Asian Res J Natural Products2021432435
    [Google Scholar]
  56. de WildeA.H. SnijderE.J. KikkertM. van HemertM.J. Host factors in coronavirus replication.Current Topics in Microbiology and Immunology.2018419142Springer International Publisher10.1007/82‑2017‑25
    [Google Scholar]
  57. RandolphH.E. BarreiroL.B. Herd Immunity: Understanding COVID-19.Immunity202052573774110.1016/j.immuni.2020.04.012 32433946
    [Google Scholar]
  58. LuD.Y. DingJ. Sequencing the whole genome of infected human cells obtained from diseased patients – A proposed strategy for understanding and overcoming AIDS or other deadest virus-infected diseases.Med. Hypotheses200768482682710.1016/j.mehy.2006.08.042 17055187
    [Google Scholar]
  59. LuD.Y. DingJ. AIDS and human genome studies, from a hypothesis to systematic approaches.Med. Hypotheses200769369510.1016/j.mehy.2007.01.023 17329035
    [Google Scholar]
  60. DownesD.J. CrossA.R. HuaP. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus.Nat. Genetics202153111606161510.1038/s41588‑021‑00955‑3 34737427
    [Google Scholar]
  61. LanderE.S. Initial impact of the sequencing of the human genome.Nature2011470733318719710.1038/nature09792 21307931
    [Google Scholar]
  62. MaherB. Human genetics: Genomes on prescription.Nature20114787367222410.1038/478022a 21979025
    [Google Scholar]
  63. FreedmanD.H. Hunting for new drugs with AI.Nature20195767787S49S5310.1038/d41586‑019‑03846‑0 31853074
    [Google Scholar]
  64. ParlakC. AlverÖ. OumaC.N.M. RhymanL. RamasamiP. Can the antivirals remdesivir and favipiravir work jointly? In silico insights.Drug Res.2022721344010.1055/a‑1585‑1323 34535038
    [Google Scholar]
  65. VianaJ.O. FélixM.B. MaiaM.S. SerafimV.L. ScottiL. ScottiM.T. Drug discovery and computational strategies in the multitarget drugs era.Braz. J. Pharmaceut Sci.201854e0101010.1590/s2175‑97902018000001010
    [Google Scholar]
  66. ScottiL. IshikiH. Mendonca -Junior FJB, Da, Silva MS, Scotti MT. In-silico analyses of natural products on leishmania enzyme targets.Mini Rev. Med. Chem.201515325326910.2174/138955751503150312141854 25769973
    [Google Scholar]
  67. YadavM. EswariJ.S. Modern paradigms towards potential target identification for antiviral (SARS-nCoV-2) and anticancer lipopeptides: A pharmacophore-based approach.Avicenna J. Med. Biotechnol.2022141707810.18502/ajmb.v14i1.8172 35509362
    [Google Scholar]
  68. KalirajanR. Activity of some novel chalcone-substituted 9-anilinoacridines against coronavirus (COVID-19): A computational approach.Coronaviruses202011132210.2174/2666796701999200625210746
    [Google Scholar]
  69. DabinK. Our mutual fiends: Cancer research in a time of COVID-19.Interface Focus20211162021005210.1098/rsfs.2021.0052 34956603
    [Google Scholar]
  70. SchöleyJ. AburtoJ.M. KashnitskyI. Life expectancy changes since COVID-19.Nat. Hum. Behav.20226121649165910.1038/s41562‑022‑01450‑3 36253520
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855287311240416050237
Loading
/content/journals/cdth/10.2174/0115748855287311240416050237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test