Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Alzheimer's disease (AD) is a neurological condition associated with a decrease in levels of acetylcholine and diminished cholinergic functions. This may be caused by the degeneration of cholinergic neurons in the brain, leading to cognitive deficits. Due to the difficulty and invasiveness of collecting cerebrospinal fluid (CSF) required for assessing conventional biomarkers, researchers are currently exploring less intrusive, less expensive, and more straightforward methods for diagnosing AD. Additionally, conventional interventions such as cholinesterase inhibitors like rivastigmine, donepezil, and galantamine are US FDA-approved drugs that are still effective for managing AD. The goal of this therapy is to increase acetylcholine levels in the brain by inhibiting the enzymes that degrade acetylcholine. Therefore, this therapeutic approach is useful for treating mild-to-moderate AD. However, only symptomatic treatment is currently available, and it can lead to serious adverse effects from conventional therapy. Thus, novel therapies for AD are needed in a growing global population. This manuscript provides information on various biomarkers with possible pathogenesis mechanisms, novel treatment strategies such as microalgae, HupA, cannabinoids, and the beneficial effects of coenzyme Q10, bacterial probiotics, omega-3 fatty acids, vitamin B12, and D3 in memory impairment for managing AD. Non-pharmacological treatments such as music therapy, Electroacupuncture (EA), or manual acupuncture (MA) also play an important role in enhancing the effectiveness of conventional pharmacological treatments for AD.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855332142240830114503
2024-09-09
2025-10-23
Loading full text...

Full text loading...

/deliver/fulltext/cdth/20/6/CDTH-20-6-12.html?itemId=/content/journals/cdth/10.2174/0115748855332142240830114503&mimeType=html&fmt=ahah

References

  1. BreijyehZ. KaramanR. Comprehensive review on alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  2. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments for Alzheimer’s disease.Ther. Adv. Neurol. Disord.201361193310.1177/1756285612461679 23277790
    [Google Scholar]
  3. Alzheimer's disease facts and figures.2023Available from: https://www.alz.org/alzheimers-dementia/facts-figures (accessed 21 June 2023).
  4. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  5. PoudelP. ParkS. Recent advances in the treatment of alzheimer’s disease using nanoparticle-based drug delivery systems.Pharmaceutics202214483510.3390/pharmaceutics14040835 35456671
    [Google Scholar]
  6. CanoA. TurowskiP. EttchetoM. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: From current to future challenges.J. Nanobiotechnology202119112210.1186/s12951‑021‑00864‑x 33926475
    [Google Scholar]
  7. AgrawalM Ajazuddin TripathiDK Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease.J. Control. Release2017260617710.1016/j.jconrel.2017.05.019 28549949
    [Google Scholar]
  8. Saint-PolJ. GosseletF. Duban-DeweerS. PottiezG. KaramanosY. Targeting and crossing the blood-brain barrier with extracellular vesicles.Cells20209485110.3390/cells9040851 32244730
    [Google Scholar]
  9. KaushikA. JayantR.D. BhardwajV. NairM. Personalized nanomedicine for CNS diseases.Drug Discov. Today20182351007101510.1016/j.drudis.2017.11.010 29155026
    [Google Scholar]
  10. GoldsmithM. AbramovitzL. PeerD. Precision nanomedicine in neurodegenerative diseases.ACS Nano2014831958196510.1021/nn501292z 24660817
    [Google Scholar]
  11. VieiraD. GamarraL. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S117210 27799765
    [Google Scholar]
  12. RossC. TaylorM. FullwoodN. AllsopD. Liposome delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2018138507852210.2147/IJN.S183117 30587974
    [Google Scholar]
  13. MaheraniB. Arab-TehranyE. MozafariM.R. Liposomes: A review of manufacturing techniques and targeting strategies.Curr. Nanosci.2011743645210.2174/157341311795542453
    [Google Scholar]
  14. KhorasaniS. DanaeiM. MozafariM.R. Nanoliposome technology for the food and nutraceutical industries.Trends Food Sci. Technol.20187910611510.1016/j.tifs.2018.07.009
    [Google Scholar]
  15. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd1632 15688077
    [Google Scholar]
  16. SharmaD. AliA.A.E. TrivediL.R. An updated review on:liposomes as drug delivery system.Pharmatutor201862506010.29161/PT.v6.i2.2018.50
    [Google Scholar]
  17. PattniB.S. ChupinV.V. TorchilinV.P. New developments in liposomal drug delivery.Chem. Rev.201511519109381096610.1021/acs.chemrev.5b00046 26010257
    [Google Scholar]
  18. SharmaN. SinghA.N. Exploring biomarkers for alzheimer’s disease.J. Clin. Diagn. Res.2016107KE01KE06 27630867
    [Google Scholar]
  19. SnyderH.M. CarrilloM.C. GrodsteinF. Developing novel blood-based biomarkers for Alzheimer’s disease.Alzheimers Dement.201410110911410.1016/j.jalz.2013.10.007 24365657
    [Google Scholar]
  20. VaresiA. CarraraA. PiresV.G. Blood-based biomarkers for alzheimer’s disease diagnosis and progression: An overview.Cells2022118136710.3390/cells11081367 35456047
    [Google Scholar]
  21. PerryV.H. TeelingJ. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration.Semin. Immunopathol.201335560161210.1007/s00281‑013‑0382‑8 23732506
    [Google Scholar]
  22. FatobaO. ItokazuT. YamashitaT. Microglia as therapeutic target in central nervous system disorders.J. Pharmacol. Sci.2020144310211810.1016/j.jphs.2020.07.004 32921391
    [Google Scholar]
  23. FuH. LiuB. FrostJ.L. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia.Glia2012606993100310.1002/glia.22331 22438044
    [Google Scholar]
  24. YangY. ZhaoX. ZhuZ. ZhangL. Vascular dementia: A microglia’s perspective.Ageing Res. Rev.20228110173410.1016/j.arr.2022.101734 36113763
    [Google Scholar]
  25. MielkeM.M. BandaruV.V.R. HaugheyN.J. RabinsP.V. LyketsosC.G. CarlsonM.C. Serum sphingomyelins and ceramides are early predictors of memory impairment.Neurobiol. Aging2010311172410.1016/j.neurobiolaging.2008.03.011 18455839
    [Google Scholar]
  26. McGrathE.R. HimaliJ.J. XanthakisV. Circulating ceramide ratios and risk of vascular brain aging and dementia.Ann. Clin. Transl. Neurol.20207216016810.1002/acn3.50973 31950603
    [Google Scholar]
  27. LaskeC. Blood-based biomarkers in Alzheimer disease: Where are we now and where have we to go?JAMA Neurol.201370113310.1001/2013.jamaneurol.67 23318524
    [Google Scholar]
  28. TariotP. Editorial: Blood-based biomarkers for alzheimer’s disease: Are we there yet?J. Prev. Alzheimers Dis.20229456556610.14283/jpad.2022.88 36281659
    [Google Scholar]
  29. DaviesP. MaloneyA.J. Selective loss of central cholinergic neurons in Alzheimer’s disease.Lancet19763088000140310.1016/S0140‑6736(76)91936‑X 63862
    [Google Scholar]
  30. ChenX.Q. MobleyW.C. Exploring the pathogenesis of alzheimer disease in basal forebrain cholinergic neurons: Converging insights from alternative hypotheses.Front. Neurosci.20191344610.3389/fnins.2019.00446 31133787
    [Google Scholar]
  31. MartoranaA. EspositoZ. KochG. Beyond the cholinergic hypothesis: Do current drugs work in Alzheimer’s disease?CNS Neurosci. Ther.201016423524510.1111/j.1755‑5949.2010.00175.x 20560995
    [Google Scholar]
  32. HampelH. MesulamM.M. CuelloA.C. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease.Brain201814171917193310.1093/brain/awy132 29850777
    [Google Scholar]
  33. BartusR.T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis.Exp. Neurol.2000163249552910.1006/exnr.2000.7397 10833325
    [Google Scholar]
  34. RoganS. LippaC.F. Alzheimer’s disease and other dementias: A review.Am. J. Alzheimers Dis. Other Demen.2002171111710.1177/153331750201700106 11831415
    [Google Scholar]
  35. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of alzheimer’s disease.Curr. Neuropharmacol.202018111106112510.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  36. NordbergA BallardC BullockR. A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease.Prim Care Companion CNS Disord2013152PCC.12r0141210.4088/PCC.12r01412
    [Google Scholar]
  37. CummingsJ.L. TongG. BallardC. Treatment combinations for alzheimer’s disease: Current and future pharmacotherapy options.J. Alzheimers Dis.201967377979410.3233/JAD‑180766 30689575
    [Google Scholar]
  38. WeinstockM. Selectivity of cholinesterase inhibition.CNS Drugs199912430732310.2165/00023210‑199912040‑00005
    [Google Scholar]
  39. NguyenK. HoffmanH. ChakkamparambilB. GrossbergG.T. Evaluation of rivastigmine in Alzheimer’s disease.Neurodegener. Dis. Manag.2021111354810.2217/nmt‑2020‑0052 33198569
    [Google Scholar]
  40. Corey BloomJ. AnandR. VeachJ. ENA 713 B352 study a randomised trial evaluating the efficacy and safety of ENA 713 (Rivastigmine Tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderate severe alzheimer’s disease.Int J Ger Psychopharmacol199815565
    [Google Scholar]
  41. RöslerM. AnandR. Cicin-SainA. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial Commentary: Another piece of the Alzheimer’s jigsaw.BMJ1999318718463364010.1136/bmj.318.7184.633 10066203
    [Google Scholar]
  42. WinbladB. CummingsJ. AndreasenN. A six‐month double‐blind, randomized, placebo‐controlled study of a transdermal patch in Alzheimer’s disease-rivastigmine patch versus capsule.Int. J. Geriatr. Psychiatry200722545646710.1002/gps.1788 17380489
    [Google Scholar]
  43. BirksJ.S. ChongL.Y. Grimley EvansJ. Rivastigmine for Alzheimer’s disease.Cochrane Database Syst. Rev.201599CD001191 26393402
    [Google Scholar]
  44. FarlowM.R. SmallG.W. QuargP. KrauseA. Efficacy of rivastigmine in Alzheimer’s disease patients with rapid disease progression: Results of a meta-analysis.Dement. Geriatr. Cogn. Disord.2005202-319219710.1159/000087301 16088144
    [Google Scholar]
  45. SuJ. LiuY. LiuY. RenL. Long-term effectiveness of rivastigmine patch or capsule for mild-to-severe Alzheimer’s disease: A meta-analysis.Expert Rev. Neurother.20151591093110310.1586/14737175.2015.1068120 26289489
    [Google Scholar]
  46. PotkinS.G. AnandR. FlemingK. Brain metabolic and clinical effects of rivastigmine in Alzheimer’s disease.Int. J. Neuropsychopharmacol.20014322323010.1017/S1461145701002528 11602028
    [Google Scholar]
  47. GiacobiniE. SpiegelR. EnzA. VeroffA.E. CutlerN.R. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: Correlation with cognitive benefit.J. Neural Transm.20021097-81053106510.1007/s007020200089 12111443
    [Google Scholar]
  48. Darreh-ShoriT. AlmkvistO. GuanZ.Z. Sustained cholinesterase inhibition in AD patients receiving rivastigmine for 12 months.Neurology200259456357210.1212/WNL.59.4.563 12196650
    [Google Scholar]
  49. PictonT.W. The P300 wave of the human event-related potential.J. Clin. Neurophysiol.19929445647910.1097/00004691‑199210000‑00002 1464675
    [Google Scholar]
  50. DierksT. FrölichL. IhlR. MaurerK. Event-related potentials and psychopharmacology. Cholinergic modulation of P300.Pharmacopsychiatry1994272727410.1055/s‑2007‑1014282 7913237
    [Google Scholar]
  51. HalgrenE. MarinkovicK. ChauvelP. Generators of the late cognitive potentials in auditory and visual oddball tasks.Electroencephalogr. Clin. Neurophysiol.1998106215616410.1016/S0013‑4694(97)00119‑3 9741777
    [Google Scholar]
  52. ZhangN. GordonM.L. Clinical efficacy and safety of donepezil in the treatment of Alzheimer’s disease in Chinese patients.Clin. Interv. Aging2018131963197010.2147/CIA.S159920 30349215
    [Google Scholar]
  53. ChangY.S. ChenH.L. HsuC.Y. TangS.H. LiuC.K. Parallel improvement of cognitive functions and P300 latency following donepezil treatment in patients with Alzheimer’s disease: A case-control study.J. Clin. Neurophysiol.2014311818510.1097/01.wnp.0000436899.48243.5e 24492450
    [Google Scholar]
  54. GovindN. Donepezil for dementia due to Alzheimer’s disease.Br. J. Community Nurs.202025314814910.12968/bjcn.2020.25.3.148 32160022
    [Google Scholar]
  55. GuoJ. WangZ. LiuR. HuangY. ZhangN. ZhangR. Memantine, donepezil, or combination therapy—what is the best therapy for alzheimer’s disease? A network meta‐analysis.Brain Behav.20201011e0183110.1002/brb3.1831 32914577
    [Google Scholar]
  56. KawashiriT. ShimizuS. ShigematsuN. KobayashiD. ShimazoeT. Donepezil ameliorates oxaliplatin-induced peripheral neuropathy via a neuroprotective effect.J. Pharmacol. Sci.2019140329129410.1016/j.jphs.2019.05.009 31377017
    [Google Scholar]
  57. ZhangX. LianS. ZhangY. ZhaoQ. Efficacy and safety of donepezil for mild cognitive impairment: A systematic review and meta-analysis.Clin. Neurol. Neurosurg.202221310713410.1016/j.clineuro.2022.107134 35078087
    [Google Scholar]
  58. ThomasA. IaconoD. BonanniL. D’AndreamatteoG. OnofrjM. Donepezil, rivastigmine, and vitamin E in Alzheimer disease: A combined P300 event-related potentials/neuropsychologic evaluation over 6 months.Clin. Neuropharmacol.2001241314210.1097/00002826‑200101000‑00007 11290880
    [Google Scholar]
  59. WerberE.A. Gandelman-MartonR. KleinC. RabeyJ.M. The clinical use of P300 event related potentials for the evaluation of cholinesterase inhibitors treatment in demented patients.J. Neural Transm.2003110665966910.1007/s00702‑003‑0817‑9 12768361
    [Google Scholar]
  60. Yu-SanC. Shu-HuiT. Wei-JenC. Effects of donepezil on the cognitive function in patients with alzheimer’s disease.Taiwanese J Psychiatry200519161163
    [Google Scholar]
  61. BurnsA. BernabeiR. BullockR. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): A randomised, placebo-controlled, double-blind trial.Lancet Neurol.200981394710.1016/S1474‑4422(08)70261‑8 19042161
    [Google Scholar]
  62. KoolaM.M. Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond.Psychiatry Res.202029311340910.1016/j.psychres.2020.113409 32829072
    [Google Scholar]
  63. RaskindM.A. PeskindE.R. WesselT. YuanW. Galantamine in AD.Neurology200054122261226810.1212/WNL.54.12.2261 10881250
    [Google Scholar]
  64. NaguyA. HusainK. AlamiriB. Galantamine beyond Alzheimer’s disease—a fact or artefact?CNS Spectr.202227326827110.1017/S1092852920002229 33308343
    [Google Scholar]
  65. TariotP.N. SolomonP.R. MorrisJ.C. KershawP. LilienfeldS. DingC. A 5-month, randomized, placebo-controlled trial of galantamine in AD.Neurology200054122269227610.1212/WNL.54.12.2269 10881251
    [Google Scholar]
  66. WilkinsonD.G. HockC. FarlowM. Van BaelenB. SchwalenS. Galantamine provides broad benefits in patients with ‘advanced moderate’ Alzheimer’s disease (MMSE < or = 12) for up to six months.Int. J. Clin. Pract.200256750951410.1111/j.1742‑1241.2002.tb11310.x 12296613
    [Google Scholar]
  67. BlesaR. DavidsonM. KurzA. ReichmanW. van BaelenB. SchwalenS. Galantamine provides sustained benefits in patients with ‘advanced moderate’ Alzheimer’s disease for at least 12 months.Dement. Geriatr. Cogn. Disord.2003152798710.1159/000067974 12566596
    [Google Scholar]
  68. de Jesus RaposoM.F. de MoraisR.M.S.C. de MoraisA.M.M.B. Health applications of bioactive compounds from marine microalgae.Life Sci.2013931547948610.1016/j.lfs.2013.08.002 23994664
    [Google Scholar]
  69. OlasehindeT. OlaniranA. OkohA. Therapeutic potentials of microalgae in the treatment of alzheimer’s disease.Molecules201722348010.3390/molecules22030480 28335462
    [Google Scholar]
  70. RahmanK. Studies on free radicals, antioxidants, and co-factors.Clin. Interv. Aging200722219236 18044138
    [Google Scholar]
  71. ObohG. NwannaE.E. OyeleyeS.I. OlasehindeT.A. OgunsuyiO.B. BoligonA.A. In vitro neuroprotective potentials of aqueous and methanol extracts from Heinsia crinita leaves.Food Sci. Hum. Wellness2016529510210.1016/j.fshw.2016.03.001
    [Google Scholar]
  72. CustódioL. JustoT. SilvestreL. Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities.Food Chem.2012131113414010.1016/j.foodchem.2011.08.047 26434272
    [Google Scholar]
  73. YunH. KimI. KwonS.H. KangJ-S. OmA-S. Protective effect of chlorella vulgaris against lead-induced oxidative stress in rat brains.J. Health Sci.201157324525410.1248/jhs.57.245
    [Google Scholar]
  74. GoirisK. MuylaertK. FraeyeI. FoubertI. De BrabanterJ. De CoomanL. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content.J. Appl. Phycol.20122461477148610.1007/s10811‑012‑9804‑6
    [Google Scholar]
  75. HamedS.M. SelimS. KlöckG. AbdElgawad H. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.Ecotoxicol. Environ. Saf.2017144192510.1016/j.ecoenv.2017.05.048 28599127
    [Google Scholar]
  76. Darreh-ShoriT. SoininenH. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: A review of recent clinical studies.Curr. Alzheimer Res.201071677310.2174/156720510790274455 20205672
    [Google Scholar]
  77. SchmatzR. MazzantiC.M. SpanevelloR. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats.Eur. J. Pharmacol.20096101-3424810.1016/j.ejphar.2009.03.032 19303406
    [Google Scholar]
  78. ZhouD.D. LuoM. HuangS.Y. Effects and mechanisms of resveratrol on aging and age-related diseases.Oxid. Med. Cell. Longev.2021202111510.1155/2021/9932218 34336123
    [Google Scholar]
  79. ParameswariR.P. LakshmiT. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases.J. Biotechnol.202235812813910.1016/j.jbiotec.2022.09.009 36122597
    [Google Scholar]
  80. OrhanI. KartalM. NazQ. Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species.Food Chem.200710341247125410.1016/j.foodchem.2006.10.030
    [Google Scholar]
  81. LauritzenI. BlondeauN. HeurteauxC. WidmannC. RomeyG. LazdunskiM. Polyunsaturated fatty acids are potent neuroprotectors.EMBO J.20001981784179310.1093/emboj/19.8.1784 10775263
    [Google Scholar]
  82. LesaG.M. PalfreymanM. HallD.H. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans.J. Cell Sci.2003116244965497510.1242/jcs.00918 14625390
    [Google Scholar]
  83. ButterfieldD.A. Boyd-KimballD. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of alzheimer’s disease.J. Alzheimers Dis.20186231345136710.3233/JAD‑170543 29562527
    [Google Scholar]
  84. LaiY.J. Omega-3 fatty acid obtained from Nannochloropsis oceanica cultures grown under low urea protect against Abeta-induced neural damage.J. Food Sci. Technol.20155252982298910.1007/s13197‑014‑1329‑3 25892799
    [Google Scholar]
  85. TengE. TaylorK. BilousovaT. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization.Neurobiol. Dis.20158255256010.1016/j.nbd.2015.09.002 26369878
    [Google Scholar]
  86. YounK. ParkJ.H. LeeJ. JeongW.S. HoC.T. JunM. The identification of biochanin a as a potent and selective β-site app-cleaving enzyme 1 (Bace1) inhibitor.Nutrients201681063710.3390/nu8100637 27754406
    [Google Scholar]
  87. TanJ. KimM. Neuroprotective effects of biochanin a against β-amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway.Molecules201621554810.3390/molecules21050548 27120593
    [Google Scholar]
  88. XiangS. LiuF. LinJ. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments.J. Agric. Food Chem.201765204092410210.1021/acs.jafc.7b00805 28478680
    [Google Scholar]
  89. Giménez-LlortL. BlázquezG. CañeteT. Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: A role for intraneuronal amyloid.Neurosci. Biobehav. Rev.200731112514710.1016/j.neubiorev.2006.07.007 17055579
    [Google Scholar]
  90. QuM. JiangZ. LiaoY. SongZ. NanX. Lycopene prevents amyloid [Beta]-induced mitochondrial oxidative stress and dysfunctions in cultured rat cortical neurons.Neurochem. Res.20164161354136410.1007/s11064‑016‑1837‑9 26816095
    [Google Scholar]
  91. WangR. ZhangH.Y. TangX.C. Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by β-amyloid protein-(1–40) in rat.Eur. J. Pharmacol.2001421314915610.1016/S0014‑2999(01)01030‑5 11516430
    [Google Scholar]
  92. RussoP. FrustaciA. Del BufaloA. FiniM. CesarioA. Multitarget drugs of plants origin acting on Alzheimer’s disease.Curr. Med. Chem.201320131686169310.2174/0929867311320130008 23410167
    [Google Scholar]
  93. Giménez-LlortL. RatiaM. PérezB. AVCRI104P3, a novel multitarget compound with cognition-enhancing and anxiolytic activities: Studies in cognitively poor middle-aged mice.Behav. Brain Res.20152869710310.1016/j.bbr.2015.02.042 25732954
    [Google Scholar]
  94. WangR. YanH. TangX. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine1.Acta Pharmacol. Sin.200627112610.1111/j.1745‑7254.2006.00255.x 16364207
    [Google Scholar]
  95. FriedliM.J. InestrosaN.C. Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer’s Disease.Molecules20212621653110.3390/molecules26216531 34770940
    [Google Scholar]
  96. LiangY.Q. TangX.C. Comparative effects of huperzine A, donepezil and rivastigmine on cortical acetylcholine level and acetylcholinesterase activity in rats.Neurosci. Lett.20043611-3565910.1016/j.neulet.2003.12.071 15135892
    [Google Scholar]
  97. VillegasC. PerezR. PetizL.L. GlaserT. UlrichH. PazC. Ginkgolides and Huperzine A for complementary treatment of Alzheimer’s disease.IUBMB Life202274876377910.1002/iub.2613 35384262
    [Google Scholar]
  98. OguraH. KosasaT. KuriyaY. YamanishiY. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro.Methods Find. Exp. Clin. Pharmacol.200022860961310.1358/mf.2000.22.8.701373 11256231
    [Google Scholar]
  99. LiX. LiW. TianP. TanT. Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer’s disease.Biotechnol. Adv.20226010802610.1016/j.biotechadv.2022.108026 35914626
    [Google Scholar]
  100. LaganiéreS. CoreyJ. TangX.C. WülfertE. HaninI. Acute and chronic studies with the anticholinesterase huperzine a: Effect on central nervous system cholinergic parameters.Neuropharmacology199130776376810.1016/0028‑3908(91)90184‑D 1922687
    [Google Scholar]
  101. AsoE. FerrerI. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic.Front. Pharmacol.201453710.3389/fphar.2014.00037 24634659
    [Google Scholar]
  102. KoppelJ. DaviesP. Targeting the endocannabinoid system in Alzheimer’s disease.J. Alzheimers Dis.200815349550410.3233/JAD‑2008‑15315 18997302
    [Google Scholar]
  103. PiomelliD. The molecular logic of endocannabinoid signalling.Nat. Rev. Neurosci.200341187388410.1038/nrn1247 14595399
    [Google Scholar]
  104. WilsonR.I. NicollR.A. Endocannabinoid signaling in the brain.Science2002296556867868210.1126/science.1063545 11976437
    [Google Scholar]
  105. CristinoL. BisognoT. Di MarzoV. Cannabinoids and the expanded endocannabinoid system in neurological disorders.Nat. Rev. Neurol.202016192910.1038/s41582‑019‑0284‑z 31831863
    [Google Scholar]
  106. BisognoT. Di MarzoV. The role of the endocannabinoid system in Alzheimer’s disease: Facts and hypotheses.Curr. Pharm. Des.200814232299230510.2174/138161208785740027 18781980
    [Google Scholar]
  107. SolasM. FrancisP.T. FrancoR. RamirezM.J. CB2 receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients.Neurobiol. Aging201334380580810.1016/j.neurobiolaging.2012.06.005 22763024
    [Google Scholar]
  108. RamírezB.G. BlázquezC. del PulgarT.G. GuzmánM. de CeballosM.L. Prevention of Alzheimer’s disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation.J. Neurosci.20052581904191310.1523/JNEUROSCI.4540‑04.2005 15728830
    [Google Scholar]
  109. LeeJ.H. AgacinskiG. WilliamsJ.H. Intact cannabinoid CB1 receptors in the Alzheimer’s disease cortex.Neurochem. Int.201057898598910.1016/j.neuint.2010.10.010 21034788
    [Google Scholar]
  110. MulderJ. ZilberterM. PasquaréS.J. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease.Brain201113441041106010.1093/brain/awr046 21459826
    [Google Scholar]
  111. AhmadR. GoffinK. Van den StockJ. In vivo type 1 cannabinoid receptor availability in Alzheimer’s disease.Eur. Neuropsychopharmacol.201424224225010.1016/j.euroneuro.2013.10.002 24189376
    [Google Scholar]
  112. EhrhartJ. ObregonD. MoriT. Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation.J. Neuroinflammation200521294110.1186/1742‑2094‑2‑29 16343349
    [Google Scholar]
  113. MiltonN.G.N. Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide.Neurosci. Lett.2002332212713010.1016/S0304‑3940(02)00936‑9 12384227
    [Google Scholar]
  114. Ahmadi-SoleimaniS.M. GhasemiS. RahmaniM.A. Oral administration of coenzyme Q10 ameliorates memory impairment induced by nicotine-ethanol abstinence through restoration of biochemical changes in male rat hippocampal tissues.Sci. Rep.20241411141310.1038/s41598‑024‑61932‑4
    [Google Scholar]
  115. SeddighiN.S. BeheshtiF. MasoudiM. Oral administration of bacterial probiotics improves Helicobacter pylori-induced memory impairment in rats: Insights from behavioral and biochemical investigations.Behav. Brain Res.202446311490311490310.1016/j.bbr.2024.114903 38341103
    [Google Scholar]
  116. HaidaryM. Ahmadi-SoleimaniS.M. GhofraninezadM. Azhdari-ZarmehriH. BeheshtiF. Omega‐3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses.Int. J. Dev. Neurosci.2024845423433Epub ahead of print10.1002/jdn.10336 38803108
    [Google Scholar]
  117. AkbariE. HossainiD. AmiryG.Y. Vitamin B12 administration prevents ethanol-induced learning and memory impairment through re-establishment of the brain oxidant/antioxidant balance, enhancement of BDNF and suppression of GFAP.Behav. Brain Res.202343811415611415610.1016/j.bbr.2022.114156 36243244
    [Google Scholar]
  118. Bakhtiari-DovvombaygiH. IzadiS. ZareM. Vitamin D3 administration prevents memory deficit and alteration of biochemical parameters induced by unpredictable chronic mild stress in rats.Sci. Rep.20211111627110.1038/s41598‑021‑95850‑6
    [Google Scholar]
  119. Onieva-ZafraM. Hernández-GarciaL. Gonzalez-del-ValleM. Music intervention with reminiscence therapy and reality orientation for elderly people with Alzheimer disease living in a nursing home.Holistic Nurs. Pract.2018321435010.1097/HNP.0000000000000247
    [Google Scholar]
  120. MachadoS. Physical exercise as stabilizer for Alzheimer’s disease cognitive decline: Current status.Clin. Pract. Epidemiol. Ment. Health201713181184
    [Google Scholar]
  121. ParkS. Effects of acupuncture on Alzheimer’s disease in animal-based research.Evid. Based Complement. Alternat. Med.20176512520
    [Google Scholar]
  122. TatulianS.A. Challenges and hopes for Alzheimer’s disease.Drug Discov. Today20222741027104310.1016/j.drudis.2022.01.016 35121174
    [Google Scholar]
  123. PasseriE. ElkhouryK. MorsinkM. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.2022232213954
    [Google Scholar]
  124. De la RosaA. Olaso-GonzalezG. Arc-ChagnaudC. Physical exercise in the prevention and treatment of Alzheimer’s disease.J. Sport Health Sci.20209539440410.1016/j.jshs.2020.01.004 32780691
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855332142240830114503
Loading
/content/journals/cdth/10.2174/0115748855332142240830114503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test