Skip to content
2000
image of A Review on Nanoparticle-mediated Drug Delivery for Targeted Cancer Therapy: Impact of Lyophilization on Formulation Stability

Abstract

Cancer is a leading cause of death worldwide. Despite continuous efforts made to improve the shortcomings of the conventional approach, it remains formidable with high mortality. Contrary to the traditional approach, targeted therapies have emerged as a solution to fight against cancer. Nanoparticles containing targeted moiety have emerged as a cornerstone in cancer therapy. However, nano-cargo-based targeted therapy mainly involves biological molecules, such as nucleic acids, proteins, and immunomodulators, which target the mechanism involved in deranging cancer. Therefore, these biologically active molecules and their drug products require long-term stability inside and outside the body that can be enhanced using lyophilization and molecular recognition techniques. The paper attempts to provide a general overview of medication administration via nanoparticles for targeted cancer treatment and the effect of lyophilization on the stability of the formulation. This comprehensive review explores cutting-edge advancements in the fabrication of nanoparticles with an extensive range of methods and updated insights into lyophilization to improve the physicochemical characteristics of nanoparticles. The lyophilized process' development, scaling up, and transfer necessitate a number of NP formulation considerations as well as an optimized freeze-drying procedure to provide a high-quality cancer product. The review highlights the critical findings of and studies that have shown a strong and significant impact of lyophilization on the stability of nanoparticles, resulting in long shelf-life and potential biological response in cancer treatment. In summary, drug delivery using nanoparticles is a revolutionary strategy for treating cancer that requires stability and endurance for improved therapeutic results. The convergence of freeze drying in nano-based oncology can enhance the stability with a strong impact on cellular uptake by maintaining the intact concentration with less aggregation. This technique can have high potential for hybrid nanoparticles conjugated with biomolecules and improve the function of macromolecules, like proteins, antibodies, and nucleic acids, for cancer treatment.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855317233250121064331
2025-02-11
2025-10-04
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Patel A. Panjwani D. Mishra D. Patel S. Patel V. Dharamsi A. A perspective on EGFR and proteasome-based targeted therapy for cancer. Curr. Drug Targets 2022 23 15 1406 1417 10.2174/1389450123666220908095121 36089785
    [Google Scholar]
  3. Jemal A. Siegel R. Ward E. Murray T. Xu J. Thun M.J. Cancer statistics, 2007. CA Cancer J. Clin. 2007 57 1 43 66 10.3322/canjclin.57.1.43 17237035
    [Google Scholar]
  4. Jemal A. Siegel R. Ward E. Cancer statistics, 2008. CA Cancer J. Clin. 2008 58 2 71 96 10.3322/CA.2007.0010 18287387
    [Google Scholar]
  5. Zhang L. Gu F.X. Chan J.M. Wang A.Z. Langer R.S. Farokhzad O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008 83 5 761 769 10.1038/sj.clpt.6100400 17957183
    [Google Scholar]
  6. Bogart L.K. Pourroy G. Murphy C.J. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014 8 4 3107 3122 10.1021/nn500962q 24641589
    [Google Scholar]
  7. Zhu Z. Flash nanoprecipitation: Prediction and enhancement of particle stability via drug structure. Mol. Pharm. 2014 11 3 776 786 10.1021/mp500025e 24484077
    [Google Scholar]
  8. Fonte P. Reis S. Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Control. Release 2016 225 75 86 10.1016/j.jconrel.2016.01.034 26805517
    [Google Scholar]
  9. Jhunjhunwala S. Editorial: Immunoengineering—from biologics to biomaterials. J. Indian Inst. Sci. 2018 98 1 3 4 10.1007/s41745‑018‑0065‑5
    [Google Scholar]
  10. Gatto M.S. Najahi-Missaoui W. Lyophilization of nanoparticles, does it really work? Overview of the current status and challenges. Int. J. Mol. Sci. 2023 24 18 14041 10.3390/ijms241814041 37762348
    [Google Scholar]
  11. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  12. Goldberg A.L. Akopian T.N. Kisselev A.F. Lee D.H. Rohrwild M. New insights into the mechanisms and importance of the proteasome in intracellular protein degradation. Biol. Chem. 1997 378 3-4 131 140 9165063
    [Google Scholar]
  13. Dou Q. Zonder J. Overview of proteasome inhibitor-based anti-cancer therapies: Perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr. Cancer Drug Targets 2014 14 6 517 536 10.2174/1568009614666140804154511 25092212
    [Google Scholar]
  14. Yao Y. Zhou Y. Liu L. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  15. Swain S. Sahu P. Beg S. Babu S. Nanoparticles for cancer targeting: Current and future directions. Curr. Drug Deliv. 2016 13 8 1290 1302 10.2174/1567201813666160713121122 27411485
    [Google Scholar]
  16. Priya L. Mehta S. Gevariya D. Quantum dot-based bio-conjugates as an emerging bioimaging tool for cancer theranostic- A review. Curr. Drug Targets 2024 25 4 241 260 10.2174/0113894501283669240123105250 38288834
    [Google Scholar]
  17. Gevariya D. Priya L. Mehta S. Bio-functional mesoporous silica nanoparticles as nano-structured carriers in cancer theranostic review on recent advancements. Curr. Drug Targets 2023 24 12 934 944 10.2174/1389450124666230817103122 37592775
    [Google Scholar]
  18. Ge P. Liu Y. Chen Q. Transferrin receptors/magnetic resonance dual-targeted nanoplatform for precise chemo-photodynamic synergistic cancer therapy. Nanomedicine (Lond.) 2022 39 102467 10.1016/j.nano.2021.102467 34610478
    [Google Scholar]
  19. Niloofer G.O. Asoodeh A. Mohammadi M. Fabrication, characterization and in vitro cell exposure study of zein-chitosan nanoparticles for co-delivery of curcumin and berberine. Int. J. Biol. Macromol. 2022 204 576 586 10.1016/j.ijbiomac.2022.02.041 35157902
    [Google Scholar]
  20. Fatemian T. Moghimi H.R. Chowdhury E.H. Intracellular delivery of siRNAs targeting AKT and ERBB2 genes enhances chemosensitization of breast cancer cells in a culture and animal model. Pharmaceutics 2019 11 9 458 10.3390/pharmaceutics11090458 31484456
    [Google Scholar]
  21. Taheri-Ledari R. Zolfaghari E. Zarei-Shokat S. Kashtiaray A. Maleki A. A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH)2 and taxotere in ovarian cancer cells. Commun. Biol. 2022 5 1 995 10.1038/s42003‑022‑03966‑w 36130999
    [Google Scholar]
  22. Ravichandran R. Nanoparticles in drug delivery: Potential green nanobiomedicine applications. Int. J. Green Nanotechnol. Biomed. 2009 1 2 B108 B130
    [Google Scholar]
  23. Kumari P. Ghosh B. Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016 24 3 179 191 10.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  24. Singh S. Dash A.K. Physical properties, their determination, and importance in pharmaceutics. Pharmaceutics. Elsevier 2024
    [Google Scholar]
  25. Rao R.P. Liposomal drug delivery for solubility and bioavailability enhancement of efavirenz. Indian J. Pharm. Sci. 2018 80 6
    [Google Scholar]
  26. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  27. Sitia L. Sevieri M. Signati L. HER-2-targeted nanoparticles for breast cancer diagnosis and treatment. Cancers (Basel) 2022 14 10 2424 10.3390/cancers14102424 35626028
    [Google Scholar]
  28. Gullotti E. Yeo Y. Extracellularly activated nanocarriers: A new paradigm of tumor targeted drug delivery. Mol. Pharm. 2009 6 4 1041 1051 10.1021/mp900090z 19366234
    [Google Scholar]
  29. Patel S. Patel V. Yadav M. Development of surface conjugated block co polymeric micelles as targeted therapeutics: Characterization and in-vitro cell viability. J. Polym. Res. 2023 30 1 14 10.1007/s10965‑022‑03362‑2
    [Google Scholar]
  30. Keating G.M. Afatinib: A review in advanced non-small cell lung cancer. Target. Oncol. 2016 11 6 825 835 10.1007/s11523‑016‑0465‑2 27873136
    [Google Scholar]
  31. Yamaoka T. Kusumoto S. Ando K. Ohba M. Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 2018 19 11 3491 10.3390/ijms19113491 30404198
    [Google Scholar]
  32. Sun Z. Huang G. Ma Z. Synthesis of theranostic Anti-EGFR ligand conjugate iron oxide nanoparticles for magnetic resonance imaging for treatment of liver cancer. J. Drug Deliv. Sci. Technol. 2020 55 101367 10.1016/j.jddst.2019.101367
    [Google Scholar]
  33. Lewinski N. Colvin V. Drezek R. Cytotoxicity of nanoparticles. Small 2008 4 1 26 49 10.1002/smll.200700595 18165959
    [Google Scholar]
  34. Najahi-Missaoui W. Arnold R.D. Cummings B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci. 2020 22 1 385 10.3390/ijms22010385 33396561
    [Google Scholar]
  35. Maurer-Jones M.A. Bantz K.C. Love S.A. Marquis B.J. Haynes C.L. Toxicity of therapeutic nanoparticles. Nanomedicine (Lond.) 2009 4 2 219 241 10.2217/17435889.4.2.219 19193187
    [Google Scholar]
  36. He X. Xiang N. Zhang J. Encapsulation of teniposide into albumin nanoparticles with greatly lowered toxicity and enhanced antitumor activity. Int. J. Pharm. 2015 487 1-2 250 259 10.1016/j.ijpharm.2015.04.047 25899285
    [Google Scholar]
  37. Kunal A. Lyophilization/freeze drying-A review. World J. Pharm. Res. 2015 4 8 516 543
    [Google Scholar]
  38. Abdelwahed W. Degobert G. Stainmesse S. Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006 58 15 1688 1713 10.1016/j.addr.2006.09.017 17118485
    [Google Scholar]
  39. Shrutika S. Lyophilization of parenteral dosage form. Int J Pharmaceut Res Appl 2022 7 3 758 764
    [Google Scholar]
  40. Mehmood Y. Farooq U. Excipients use in parenteral and lyophilized formulation development. Open Sci J Pharm Pharmacol 2015 3 3 19 27
    [Google Scholar]
  41. Franks F. Freeze-drying: From empiricism to predictability. The significance of glass transitions. Dev. Biol. Stand. 1992 74 9 18 1592188
    [Google Scholar]
  42. Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 1998 45 3 221 229 10.1016/S0939‑6411(98)00004‑6 9653626
    [Google Scholar]
  43. Chang B.S. Patro S.Y. Freeze-drying process development for protein pharmaceuticals. American Association of Pharmaceutical Scientists 2004 113 138
    [Google Scholar]
  44. Pikal M.J. Rambhatla S. Ramot R. The impact of the freezing stage in lyophilization: Effects of the ice nucleation temperature on process design and product quality. Am. Pharm. Rev. 2002 5 48 53
    [Google Scholar]
  45. Pikal M. Shah S. Roy M. Putman R. The secondary drying stage of freeze drying: Drying kinetics as a function of temperature and chamber pressure☆. Int. J. Pharm. 1990 60 3 203 207 10.1016/0378‑5173(90)90074‑E
    [Google Scholar]
  46. Assegehegn G. Brito-de la Fuente E. Franco J.M. Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J. Pharm. Sci. 2019 108 4 1378 1395 10.1016/j.xphs.2018.11.039 30529167
    [Google Scholar]
  47. Goldman J.M. More H.T. Yee O. Optimization of primary drying in lyophilization during early-phase drug development using a definitive screening design with formulation and process factors. J. Pharm. Sci. 2018 107 10 2592 2600 10.1016/j.xphs.2018.06.001 29890172
    [Google Scholar]
  48. Kodama T. Sawada H. Hosomi H. Optimization of primary drying condition for pharmaceutical lyophilization using a novel simulation program with a predictive model for dry layer resistance. Chem. Pharm. Bull. (Tokyo) 2014 62 2 153 159 10.1248/cpb.c13‑00674 24492585
    [Google Scholar]
  49. Pisano R. Fissore D. Barresi A.A. Rastelli M. Quality by design: Scale-up of freeze-drying cycles in pharmaceutical industry. AAPS PharmSciTech 2013 14 3 1137 1149 10.1208/s12249‑013‑0003‑9 23884856
    [Google Scholar]
  50. Fissore D. Barresi A.A. Scale-up and process transfer of freeze-drying recipes. Dry. Technol. 2011 29 14 1673 1684 10.1080/07373937.2011.597059
    [Google Scholar]
  51. Kawasaki H. Shimanouchi T. Kimura Y. Recent development of optimization of lyophilization process. 2019 Available from: https://okayama.elsevierpure.com/en/publications/recent-development-of-optimization-of-lyophilization-process (accessed on 18-11-2024).
    [Google Scholar]
  52. Williams N.A. Polli G.P. The lyophilization of pharmaceuticals: a literature review. J. Parenter. Sci. Technol. 1984 38 2 48 59 6374086
    [Google Scholar]
  53. Patel S.M. Doen T. Pikal M.J. Determination of end point of primary drying in freeze-drying process control. AAPS PharmSciTech 2010 11 1 73 84 10.1208/s12249‑009‑9362‑7 20058107
    [Google Scholar]
  54. Arakawa T. Prestrelski S.J. Kenney W.C. Carpenter J.F. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001 46 1-3 307 326 10.1016/S0169‑409X(00)00144‑7 11259845
    [Google Scholar]
  55. Degobert G. Aydin D. Lyophilization of Nanocapsules: Instability Sources, Formulation and Process Parameters. Pharmaceutics 2021 13 8 1112 10.3390/pharmaceutics13081112 34452072
    [Google Scholar]
  56. Sheetal R. Polymeric nanoparticles for small-molecule drugs: Biodegradation of polymers and fabrication of nanoparticles. Drug Delivery Nanoparticles Formulation and Characterization 2009 191 16 34
    [Google Scholar]
  57. Kasper J.C. Winter G. Friess W. Recent advances and further challenges in lyophilization. Eur. J. Pharm. Biopharm. 2013 85 2 162 169 10.1016/j.ejpb.2013.05.019 23751601
    [Google Scholar]
  58. Zheng Z. Wu Y. Ahmad A. Lyophilizable Polymer–Lipid Hybrid Nanoparticles with High Paclitaxel Loading. ACS Appl. Nano Mater. 2024 7 16 19194 19210 10.1021/acsanm.4c03107
    [Google Scholar]
  59. Qu H. Zhang M. Chen Y. Yu T. Yan X. Wang Y. Freeze-drying of liposomal nanohybrid cerasomes with cryoprotectants: In vitro and in vivo evaluation. Dry. Technol. 2018 36 9 1041 1048 10.1080/07373937.2017.1369097
    [Google Scholar]
  60. Lee E.H. Lee M.K. Lim S.J. Enhanced Stability of Indocyanine Green by Encapsulation in Zein-Phosphatidylcholine Hybrid Nanoparticles for Use in the Phototherapy of Cancer. Pharmaceutics 2021 13 3 305 10.3390/pharmaceutics13030305 33652884
    [Google Scholar]
  61. Li Q. Fu D. Zhang J. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf. B Biointerfaces 2021 200 111586 10.1016/j.colsurfb.2021.111586 33529927
    [Google Scholar]
  62. Kammari R. Das N.G. Das S.K. Nanoparticulate systems for therapeutic and diagnostic applications. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier 2017 105 144 10.1016/B978‑0‑323‑42978‑8.00006‑1
    [Google Scholar]
  63. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  64. Fonte P. Araújo F. Seabra V. Reis S. van de Weert M. Sarmento B. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Int. J. Pharm. 2015 496 2 850 862 10.1016/j.ijpharm.2015.10.032 26474964
    [Google Scholar]
  65. Optimization of lyophilization parameters of polymeric nanoparti-cles for delivery of therapeutic proteins. Available from: https://repositorio-aberto.up.pt/bitstream/10216/96110/2/125581.pdf (ac-cessed on 18-11-2024)
  66. Tsinontides S.C. Rajniak P. Pham D. Hunke W.A. Placek J. Reynolds S.D. Freeze drying—principles and practice for successful scale-up to manufacturing. Int. J. Pharm. 2004 280 1-2 1 16 10.1016/j.ijpharm.2004.04.018 15265542
    [Google Scholar]
  67. Mirasol F. Lyophilization presents complex challenges. Biopharm Int. 2020 33 1
    [Google Scholar]
  68. Amis T.M. Renukuntla J. Bolla P.K. Clark B.A. Selection of cryoprotectant in lyophilization of progesterone-loaded stearic acid solid lipid nanoparticles. Pharmaceutics 2020 12 9 892 10.3390/pharmaceutics12090892 32961738
    [Google Scholar]
  69. Trenkenschuh E. Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur. J. Pharm. Biopharm. 2021 165 345 360 10.1016/j.ejpb.2021.05.024 34052428
    [Google Scholar]
  70. Patel A. Patel A. Patel R. Dharamsi A. Application of failure mode effect analysis in wurster-based pelletization technology: A technical note. AAPS PharmSciTech 2019 20 8 324 10.1208/s12249‑019‑1516‑7 31654266
    [Google Scholar]
  71. Pikal M.J. Bogner R. Mudhivarthi V. Sharma P. Sane P. Freeze-drying process development and scale-up: Scale-up of edge vial versus center vial heat transfer coefficients, K v. J. Pharm. Sci. 2016 105 11 3333 3343 10.1016/j.xphs.2016.07.027 27666376
    [Google Scholar]
  72. Hottot A. Andrieu J. Hoang V. Shalaev E.Y. Gatlin L.A. Ricketts S. Experimental study and modeling of freeze-drying in syringe configuration. Part II: Mass and heat transfer parameters and sublimation end-points. Dry. Technol. 2009 27 1 49 58 10.1080/07373930802565814
    [Google Scholar]
  73. Pikal M.J. Roy M.L. Shah S. Mass and heat transfer in vial freeze-drying of pharmaceuticals: Role of the vial. J. Pharm. Sci. 1984 73 9 1224 1237 10.1002/jps.2600730910 6491939
    [Google Scholar]
  74. Kawasaki H. Shimanouchi T. Yamamoto M. Takahashi K. Kimura Y. Scale-up procedure for primary drying process in lyophilizer by using the vial heat transfer and the drying resistance. Chem. Pharm. Bull. (Tokyo) 2018 66 11 1048 1056 10.1248/cpb.c18‑00516 30381657
    [Google Scholar]
  75. Searles J.A. Carpenter J.F. Randolph T.W. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature‐controlled shelf. J. Pharm. Sci. 2001 90 7 860 871 10.1002/jps.1039 11458335
    [Google Scholar]
  76. Geidobler R. Winter G. Controlled ice nucleation in the field of freeze-drying: Fundamentals and technology review. Eur. J. Pharm. Biopharm. 2013 85 2 214 222 10.1016/j.ejpb.2013.04.014 23643793
    [Google Scholar]
  77. Juckers A. Knerr P. Harms F. Strube J. Advanced process analytical technology in combination with process modeling for endpoint and model parameter determination in lyophilization process design and optimization. Processes (Basel) 2021 9 9 1600 10.3390/pr9091600
    [Google Scholar]
  78. Juckers A. Knerr P. Harms F. Strube J. Emerging PAT for freeze-drying processes for advanced process control. Processes (Basel) 2022 10 10 2059 10.3390/pr10102059
    [Google Scholar]
  79. Juckers A. Knerr P. Harms F. Strube J. Model-based product temperature and endpoint determination in primary drying of lyophilization processes. Pharmaceutics 2022 14 4 809 10.3390/pharmaceutics14040809 35456643
    [Google Scholar]
  80. Guidance for industry PAT — A framework for innovative pharma-ceutical development, manufacturing, and quality assurance. 2011. Available from https://www.fda.gov/media/71012/download (ac-cessed on 18-11-2024).
  81. Fissore D Pisano R Velardi S Barresi A Galan M. PAT tools for the optimization of the freeze-drying process.
    [Google Scholar]
  82. Willemer H. Measurements of temperatures, ice evaporation rates and residual moisture contents in freeze-drying. Dev. Biol. Stand. 1992 74 123 134 1592163
    [Google Scholar]
  83. Schneid S. Gieseler H. Evaluation of a new wireless Temperature Remote Interrogation System (TEMPRIS) to measure product temperature during freeze drying. AAPS PharmSciTech 2008 9 3 729 739 10.1208/s12249‑008‑9099‑8 18561030
    [Google Scholar]
  84. Brülls M. Folestad S. Sparén A. Rasmuson A. In-situ near-infrared spectroscopy monitoring of the lyophilization process. Pharm. Res. 2003 20 3 494 499 10.1023/A:1022680810474 12669974
    [Google Scholar]
  85. De Beer T.R.M. Vercruysse P. Burggraeve A. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. J. Pharm. Sci. 2009 98 9 3430 3446 10.1002/jps.21633 19130604
    [Google Scholar]
  86. Kauppinen A. Raman and near-infrared spectroscopic methods for in-line monitoring of freeze-drying process. Publicat Uni Eastern Finland 2015 78 1 952 1717
    [Google Scholar]
  87. Fissore D. Pisano R. Barresi A.A. Process analytical technology for monitoring pharmaceuticals freeze-drying – A comprehensive review. Dry. Technol. 2018 36 15 1839 1865 10.1080/07373937.2018.1440590
    [Google Scholar]
  88. Read E.K. Shah R.B. Riley B.S. Park J.T. Brorson K.A. Rathore A.S. Process analytical technology (PAT) for biopharmaceutical prod- ucts: Part II. Concepts and applications. Biotechnol. Bioeng. 2010 105 2 285 295 10.1002/bit.22529 19731253
    [Google Scholar]
  89. Patel S.M. Pikal M. Process Analytical Technologies (PAT) in freeze-drying of parenteral products. Pharm. Dev. Technol. 2009 14 6 567 587 10.3109/10837450903295116 19883247
    [Google Scholar]
  90. Gieseler H. Kessler W.J. Finson M. Evaluation of tunable diode laser absorption spectroscopy for in‐process water vapor mass flux measurements during freeze drying. J. Pharm. Sci. 2007 96 7 1776 1793 10.1002/jps.20827 17221854
    [Google Scholar]
  91. Gieseler H. Kramer T. Pikal M.J. Use of manometric temperature measurement (MTM) and SMART™ freeze dryer technology for development of an optimized freeze‐drying cycle. J. Pharm. Sci. 2007 96 12 3402 3418 10.1002/jps.20982 17853427
    [Google Scholar]
  92. Tang X.C. Nail S.L. Pikal M.J. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: Heat and mass transfer measurement. AAPS PharmSciTech 2006 7 4 E105 E111 10.1208/pt070497 17285746
    [Google Scholar]
  93. Tang X.C. Nail S.L. Pikal M.J. Freeze-drying process design by manometric temperature measurement: Design of a smart freeze-dryer. Pharm. Res. 2005 22 4 685 700 10.1007/s11095‑005‑2501‑2 15889467
    [Google Scholar]
  94. Connelly J.P. Welch J.V. Monitor lyophilization with mass spectrometer gas analysis. J. Parenter. Sci. Technol. 1993 47 2 70 75 8515347
    [Google Scholar]
  95. Nail S.L. Johnson W. Methodology for in-process determination of residual water in freeze-dried products. Dev. Biol. Stand. 1992 74 137 150 1592164
    [Google Scholar]
  96. Liu J. Physical characterization of pharmaceutical formulations in frozen and freeze-dried solid states: Techniques and applications in freeze-drying development. Pharm. Dev. Technol. 2006 11 1 3 28 10.1080/10837450500463729 16544906
    [Google Scholar]
  97. Tattini V. Jr Parra D.F. Polakiewicz B. Pitombo R.N.M. Effect of lyophilization on the structure and phase changes of PEGylated-bovine serum albumin. Int. J. Pharm. 2005 304 1-2 124 134 10.1016/j.ijpharm.2005.08.006 16188407
    [Google Scholar]
  98. Mosharraf M. Malmberg M. Fransson J. Formulation, lyophilization and solid-state properties of a pegylated protein. Int. J. Pharm. 2007 336 2 215 232 10.1016/j.ijpharm.2006.11.064 17207591
    [Google Scholar]
  99. Cui Y. Cui P. Chen B. Li S. Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev. Ind. Pharm. 2017 43 4 519 530 10.1080/03639045.2017.1278768 28049357
    [Google Scholar]
  100. Awotwe-Otoo D. Agarabi C. Read E.K. Impact of controlled ice nucleation on process performance and quality attributes of a lyophilized monoclonal antibody. Int. J. Pharm. 2013 450 1-2 70 78 10.1016/j.ijpharm.2013.04.041 23618961
    [Google Scholar]
  101. Haeuser C. Goldbach P. Huwyler J. Friess W. Allmendinger A. Ex- cipients for room temperature stable freeze-dried monoclonal anti- body formulations. J. Pharm. Sci. 2020 109 1 807 817 10.1016/j.xphs.2019.10.016 31622600
    [Google Scholar]
  102. Park J. Nagapudi K. Vergara C. Ramachander R. Laurence J.S. Krishnan S. Effect of pH and excipients on structure, dynamics, and long-term stability of a model IgG1 monoclonal antibody upon freeze-drying. Pharm. Res. 2013 30 4 968 984 10.1007/s11095‑012‑0933‑z 23184227
    [Google Scholar]
  103. Jain S. Batra H. Yadav P. Chand S. COVID-19 vaccines currently under preclinical and clinical studies, and associated antiviral immune response. Vaccines (Basel) 2020 8 4 649 10.3390/vaccines8040649 33153096
    [Google Scholar]
  104. Gary E.N. Weiner D.B. DNA vaccines: Prime time is now. Curr. Opin. Immunol. 2020 65 21 27 10.1016/j.coi.2020.01.006 32259744
    [Google Scholar]
  105. Hansen L.J.J. Daoussi R. Vervaet C. Remon J.P. De Beer T.R.M. Freeze-drying of live virus vaccines: A review. Vaccine 2015 33 42 5507 5519 10.1016/j.vaccine.2015.08.085 26364685
    [Google Scholar]
  106. Chen C. Han D. Cai C. Tang X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010 142 3 299 311 10.1016/j.jconrel.2009.10.024 19874861
    [Google Scholar]
  107. Lanza F. Seghatchian J. An overview of current position on cell therapy in transfusion science and medicine: From fictional promises to factual and perspectives from red cell substitution to stem cell therapy. Transfus. Apheresis Sci. 2020 59 5 102940 10.1016/j.transci.2020.102940 32950375
    [Google Scholar]
  108. Gebeyehu A. Kommineni N. Meckes D.G. Jr Sachdeva M.S. Role of exosomes for delivery of chemotherapeutic drugs. Crit. Rev. Ther. Drug Carrier Syst. 2021 38 5 53 97 10.1615/CritRevTherDrugCarrierSyst.2021036301 34375513
    [Google Scholar]
  109. Merivaara A. Zini J. Koivunotko E. Preservation of biomateri- als and cells by freeze-drying: Change of paradigm. J. Control. Release 2021 336 480 498 10.1016/j.jconrel.2021.06.042 34214597
    [Google Scholar]
  110. Rockinger U. Funk M. Winter G. Current approaches of preservation of cells during (freeze-) drying. J. Pharm. Sci. 2021 110 8 2873 2893 10.1016/j.xphs.2021.04.018 33933434
    [Google Scholar]
  111. Zhang M. Li G. Wang Y. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep. 2017 7 1 10255 10.1038/s41598‑017‑10925‑7 28860576
    [Google Scholar]
  112. Ashrafizadeh M. Dai J. Torabian P. Circular RNAs in EMT-driven metastasis regulation: Modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell. Mol. Life Sci. 2024 81 1 214 10.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  113. Mahdavi K. Zinatloo-Ajabshir S. Yousif Q.A. Salavati-Niasari M. Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach. Ultrason. Sonochem. 2022 82 105892 10.1016/j.ultsonch.2021.105892 34959201
    [Google Scholar]
  114. Khojasteh H. Salavati-Niasari M. Safajou H. Safardoust-Hojaghan H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond Related Materials 2017 79 133 144 10.1016/j.diamond.2017.09.011
    [Google Scholar]
  115. Karami M. Ghanbari M. Amiri O. Salavati-Niasari M. Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Separ. Purif. Tech. 2020 253 117526 10.1016/j.seppur.2020.117526
    [Google Scholar]
  116. Dai J. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov. Today 2024 29 7 103981 10.1016/j.drudis.2024.103981 38614161
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855317233250121064331
Loading
/content/journals/cdth/10.2174/0115748855317233250121064331
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immunomodulators ; cornerstone ; nanoparticles ; Cancer ; lyophilization ; NP formulation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test