Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Peptic ulcers, which damage the gastrointestinal tract lining, are a significant global health issue. The traditional approaches to treating peptic ulcers have poor bioavailability, unstable formulations, and undesirable side effects. Natural alkaloids have garnered increased interest as potential therapeutic agents in recent years due to their diverse pharmacological actions and decreased toxicity profiles. This manuscript summarizes recent progress in natural alkaloids for peptic ulcer treatment, highlighting new drug delivery methods. Natural alkaloids, originating from different plants, have anti-inflammatory, antioxidant, and antibacterial properties, potentially accelerating the healing of peptic ulcers. Moreover, medicines don't always function properly because they degrade too fast, don't dissolve well, and have other problems, such as insufficient bioavailability. Creative liposome delivery systems, microspheres, nanocarriers, and other customized delivery strategies have shown promise in overcoming these barriers. By distributing the medication gradually and precisely, these innovative techniques improve the medication and effectiveness at the ulcer site. As a result, natural ingredients work better and provide better treatment results.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855312609240628110440
2024-07-19
2025-12-03
Loading full text...

Full text loading...

References

  1. QiuC. ZhangJ.Z. WuB. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines.J. Nanobiotechnology202321145610.1186/s12951‑023‑02165‑x 38017573
    [Google Scholar]
  2. Lakshmi SrinivasT. Mohana LakshmiS. Neelufar ShamaS. Koteswara ReddyG. PrasannaK.R. Medicinal Plants as Anti-Ulcer Agents.J. Pharmacogn. Phytochem.2013249197
    [Google Scholar]
  3. PraveenV. Review on Novel Herbal Drug Delivery System.Int Adv Res Sci Commun Technol20238124025110.48175/IJARSCT‑7973
    [Google Scholar]
  4. WelzA.N. Emberger-KleinA. MenradK. Why people use herbal medicine: Insights from a focus-group study in Germany.BMC Complement. Altern. Med.20181819210.1186/s12906‑018‑2160‑6 29544493
    [Google Scholar]
  5. GuptaS. KaushikR. Peritonitis - The Eastern experience.World J. Emerg. Surg.20061116
    [Google Scholar]
  6. Do NascimentoR. De SalesI. De Oliveira FormigaR. Activity of alkaloids on peptic ulcer: what’s new?Molecules201520192995010.3390/molecules20010929 25580688
    [Google Scholar]
  7. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  8. PawarR.S. PatilU.K. GadekarR. SingourP.K. ChaurasiyaP.K. A potential of some medicinal plants as an antiulcer agents.Pharmacogn. Rev.20104813614610.4103/0973‑7847.70906 22228953
    [Google Scholar]
  9. PanS.Y. LitscherG. GaoS.H. ZhouS.F. YuZ.L. ChenH.Q. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources.Evidence-based Complement Altern Med2014
    [Google Scholar]
  10. HerdianaY. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment.Polymers (Basel)20231516348510.3390/polym15163485 37631542
    [Google Scholar]
  11. KunaL. JakabJ. SmolicR. Raguz-LucicN. VcevA. SmolicM. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options.J. Clin. Med.20198217910.3390/jcm8020179 30717467
    [Google Scholar]
  12. Roszczenko-JasińskaP. WojtyśM.I. Jagusztyn-KrynickaE.K. Helicobacter pylori treatment in the post-antibiotics era—searching for new drug targets.Appl. Microbiol. Biotechnol.2020104239891990510.1007/s00253‑020‑10945‑w 33052519
    [Google Scholar]
  13. PatelA.K. PatelV.M.A. Gastroretentive drug delivery systems and its rational in peptic ulcer treatment.J Pharm Sci Biosci Res201224179188
    [Google Scholar]
  14. HaniU. OsmaniR.A.M. YasminS. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy.Pharmaceutics2022148157610.3390/pharmaceutics14081576 36015202
    [Google Scholar]
  15. StrasserM NoriegaP LöbenbergR Bou-ChacraN BacchiEM Antiulcerogenic potential activity of free and nanoencapsulated Passiflora serratodigitata L. extracts.Biomed Res Int20142014
    [Google Scholar]
  16. JenningsD. Peptic Ulcer.Lancet194123861492310.1016/S0140‑6736(00)71371‑7
    [Google Scholar]
  17. GliseH. Epidemiology in peptic ulcer disease. Current status and future aspects.Scand J Gastroenterol199025sup17513810.3109/00365529009093122 2237275
    [Google Scholar]
  18. QuanC. TalleyN.J. Management of peptic ulcer disease not related to Helicobacter pylori or NSAIDs.Am. J. Gastroenterol.200297122950296110.1111/j.1572‑0241.2002.07068.x 12492176
    [Google Scholar]
  19. RootS. The effect of antiulcer activity on Rauwolfia Serpentine (ROOT).Indo Am J Pharm Sci20210810164174
    [Google Scholar]
  20. AsnaashariS. DastmalchiS. JavadzadehY. Gastroprotective effects of herbal medicines (roots).Int. J. Food Prop.201821190292010.1080/10942912.2018.1473876
    [Google Scholar]
  21. FatehM.V. KumarV. ChaudharyR. UjjwalV. Gastro-retentive drug delivery system for treatment of Ulcer.Int J Agric Inv20193220321010.46492/IJAI/2018.3.2.18
    [Google Scholar]
  22. LinY.H. LinJ.H. ChouS.C. Berberine-loaded targeted nanoparticles as specific Helicobacter pylori eradication therapy: in vitro and in vivo study.Nanomedicine (Lond)2015101577110.2217/nnm.14.76 25177920
    [Google Scholar]
  23. MengX WangYF WangZP MazumderJ In vitro and in vivo antitumor efficacy of berberine-solid lipid nanoparticles against H22 Tumor.Icaset20163205
    [Google Scholar]
  24. SenS. ChakrabortyR. DeB. MazumderJ. Plants and phytochemicals for peptic ulcer: An overview.Pharmacogn. Rev.200936270279
    [Google Scholar]
  25. ChanF.K.L. LeungW.K. Peptic-ulcer disease.Lancet2002360933793394110.1016/S0140‑6736(02)11030‑0
    [Google Scholar]
  26. De Sousa FalcãoH. LeiteJ.A. Barbosa-FilhoJ.M. Gastric and duodenal antiulcer activity of alkaloids: a review.Molecules200813123198322310.3390/molecules13123198 19104486
    [Google Scholar]
  27. SunF.P. SongY.G. QinH.R. Alterations of gastrin, somatostatin, G and D cells in rat gastric ulcer.World Chin. J. Digestology200412236336610.11569/wcjd.v12.i2.363
    [Google Scholar]
  28. JainuM. DeviC.S.S. Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: Possible mechanism for the inhibition of acid formation.J. Ethnopharmacol.20061041-215616310.1016/j.jep.2005.08.064 16202548
    [Google Scholar]
  29. AroraS. SinghB. KumarS. KumarA. SinghA. SinghC. Piperine loaded drug delivery systems for improved biomedical applications: Current status and future directions.Health Sci. Rep.20239November10013810.1016/j.hsr.2023.100138
    [Google Scholar]
  30. AryalB. RautB.K. BhattaraiS. BhandariS. TandanP. GyawaliK. Potential therapeutic applications of plant-derived alkaloids against inflammatory and neurodegenerative diseases.Evidence-based Complement Altern Med202210.1155/2022/7299778
    [Google Scholar]
  31. JayaramS. ThamotharanG. SenthilkumarN. Gastroprotective effect of Phyllanthus reticulatus Poir. against pylorus ligation-, ethanol-induced, and stress-induced ulcer models in Wistar rats.Thaiphesatchasan202246216116610.56808/3027‑7922.2556
    [Google Scholar]
  32. LiW.F. HaoD.J. FanT. HuangH.M. YaoH. NiuX.F. Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice.Chem. Biol. Interact.20142081182710.1016/j.cbi.2013.11.011 24300194
    [Google Scholar]
  33. FengJ.H. ChenK. ShenS.Y. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo.Biomed. Pharmacother.202316811551110.1016/j.biopha.2023.115511
    [Google Scholar]
  34. AkaberiT. ShourgashtiK. EmamiS.A. AkaberiM. Phytochemistry and pharmacology of alkaloids from Glaucium spp.Phytochemistry2021191August11292310.1016/j.phytochem.2021.112923 34454171
    [Google Scholar]
  35. HaoD.C. GuX.J. XiaoP.G. Chemical and biological studies of Aconitum pharmaceutical resources.In: Medicinal Plants20152539210.1016/B978‑0‑08‑100085‑4.00007‑4
    [Google Scholar]
  36. ShataratA. AbuhamdahS. Al-EssaM.K. MohammedF. Al-OlimatS. Pharmacological Effects of Peganum Harmala L. Root Extract on Isolated Rat small Intestine.Pharmacogn. Commun.201443566110.5530/pc.2014.3.6
    [Google Scholar]
  37. Venkata NarasimhajiC. KumarV. ShanumugamM. Justicia adhatoda L. vasicin and vasicinone as bioactive phytochemical compounds: Isolation, characterization, and computational studies.Resultsin Chemistry20236June10112710.1016/j.rechem.2023.101127
    [Google Scholar]
  38. AwaadA.S. El-MeligyR.M. SolimanG.A. Natural products in treatment of ulcerative colitis and peptic ulcer.J. Saudi Chem. Soc.201317110112410.1016/j.jscs.2012.03.002
    [Google Scholar]
  39. LiC. HuangP. WongK. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process.J. Enzyme Inhib. Med. Chem.20183311362137510.1080/14756366.2018.1501044 30191728
    [Google Scholar]
  40. LiN. WangM. LyuZ. Medicinal plant-based drug delivery system for inflammatory bowel disease.Front. Pharmacol.202314March115894510.3389/fphar.2023.1158945 37033644
    [Google Scholar]
  41. LiW. LiH. MuQ. Protective effect of sanguinarine on LPS-induced endotoxic shock in mice and its effect on LPS-induced COX-2 expression and COX-2 associated PGE2 release from peritoneal macrophages.Int. Immunopharmacol.201422231131710.1016/j.intimp.2014.07.017 25063710
    [Google Scholar]
  42. CuiY-L. WangQ-S. JiangH.L. ZhuX-N. WangG-F. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats.Drug Des. Devel. Ther.201596151616510.2147/DDDT.S96056 26640368
    [Google Scholar]
  43. BangunH AriantoA RehngenanaE Anti-ulcer effect of gastroretentive drug delivery system of alginate beads containing turmeric extract solid dispersion.Open Access Maced J Med Sci20219A192710.3889/oamjms.2021.5475
    [Google Scholar]
  44. ChesterK. ZahiruddinS. AhmadA. KhanW. PaliwalS. AhmadS. Bioautography-based Identification of Antioxidant Metabolites of Solanum nigrum L. and Exploration Its Hepatoprotective Potential against D-Galactosamine-induced Hepatic Fibrosis in Rats.Pharmacogn. Mag.201713Suppl. 62179188
    [Google Scholar]
  45. AeAA MarkiA GasparR FalkayG EltayebAE IbrahimKE In vitro and in silico pharmacological investigations of natural β2-Adrenoceptors agonists.2011
    [Google Scholar]
  46. García Del ValleI. Alvarez-LorenzoC. Atropine in topical formulations for the management of anterior and posterior segment ocular diseases.Expert Opin. Drug Deliv.20211891245126010.1080/17425247.2021.1909568 33787441
    [Google Scholar]
  47. LiZ. XuX. WangY. KongL. HanC. Carrier-free nanoplatforms from natural plants for enhanced bioactivity.J. Adv. Res.20235015917610.1016/j.jare.2022.09.013 36208834
    [Google Scholar]
  48. MajumderK.K. KumarM. PahwaR. Formulation and characterization of floating tablet dosage form of dual delivery of drug curcumin and berberine hydrochloride using simultaneous estimation by uv spectroscopy.International Journal of Applied Pharmaceutics202113530631010.22159/ijap.2021v13i5.42098
    [Google Scholar]
  49. LuM. CaoY. HoC.T. HuangQ. Development of organogel-derived capsaicin nanoemulsion with improved bioaccessibility and reduced gastric mucosa irritation.J. Agric. Food Chem.201664234735474110.1021/acs.jafc.6b01095 27170269
    [Google Scholar]
  50. MehtaS. KadianV. DalalS. A Fresh Look on Bergenin: Vision of Its Novel Drug Delivery Systems and Pharmacological Activities.Future Pharmacol.202221649110.3390/futurepharmacol2010006
    [Google Scholar]
  51. ZhangM. MerlinD. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis.Inflamm. Bowel Dis.20182471401141510.1093/ibd/izy123 29788186
    [Google Scholar]
  52. HeiligtagF.J. NiederbergerM. The fascinating world of nanoparticle research.Mater. Today2013167-826227110.1016/j.mattod.2013.07.004
    [Google Scholar]
  53. AcostaE. Bioavailability of nanoparticles in nutrient and nutraceutical delivery.Curr. Opin. Colloid Interface Sci.200914131510.1016/j.cocis.2008.01.002
    [Google Scholar]
  54. LehrC.M. BouwstraJ.A. SchachtE.H. JungingerH.E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers.Int. J. Pharm.1992781-3434810.1016/0378‑5173(92)90353‑4
    [Google Scholar]
  55. GiudicessiJ.R. AckermanM.J. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes.Transl. Res.20131611114
    [Google Scholar]
  56. Pinto ReisC. NeufeldR.J. RibeiroA.J. VeigaF. NanoencapsulationI.I. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine Nanotechnology.Biol Med2006225365
    [Google Scholar]
  57. HallA.J. TrippM. HowellT. DarlandG. BlandJ.S. BabishJ.G. Gastric mucosal cell model for estimating relative gastrointestinal toxicity of non-steroidal anti-inflammatory drugs.Prostaglandins Leukot. Essent. Fatty Acids200675191710.1016/j.plefa.2006.04.006 16806870
    [Google Scholar]
  58. ChungM.K. CampbellJ. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations.Pharmaceuticals (Basel)2016946610.3390/ph9040066 27809268
    [Google Scholar]
  59. AboalnajaK.O. YaghmoorS. KumosaniT.A. McClementsD.J. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.Expert Opin. Drug Deliv.20161391327133610.1517/17425247.2016.1162154 26984045
    [Google Scholar]
  60. VyawahareN.S. DeshmukhV.V. GadkariM.R. KagatharaV.G. Review article plants with antiulcer activity.Phcog Rev200935118125
    [Google Scholar]
  61. ZhuY. WangM. ZhangJ. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats.Arch. Pharm. Res.201538451252110.1007/s12272‑014‑0481‑7 25231341
    [Google Scholar]
  62. WakaskarR.R. General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes.J. Drug Target.201826431131810.1080/1061186X.2017.1367006 28797169
    [Google Scholar]
  63. ZhuY. PengW. ZhangJ. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: Preparation, in vitro and in vivo evaluation.J. Funct. Foods20148135836610.1016/j.jff.2014.04.001
    [Google Scholar]
  64. BeilW. KilianP. EPs® 7630, an extract from Pelargonium sidoides roots inhibits adherence of Helicobacter pylori to gastric epithelial cells.Phytomedicine200714Suppl. 65810.1016/j.phymed.2006.11.024 17188478
    [Google Scholar]
  65. ChungJ.G. WuL.T. ChangS.H. Inhibitory actions of berberine on growth and arylamine N- acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients.Int. J. Toxicol.1999181354010.1080/109158199225783
    [Google Scholar]
  66. Toro-UribeS. IbáñezE. DeckerE.A. Design, Fabrication, Characterization, and In vitro Digestion of Alkaloid-, Catechin-, and Cocoa Extract-Loaded Liposomes.J. Agric. Food Chem.20186645120511206510.1021/acs.jafc.8b04735 30353733
    [Google Scholar]
  67. KelmM.A. HammerstoneJ.F. BeecherG. Concentrations of proanthocyanidins in common foods and estimations of normal consumption.J. Nutr.2004134361361710.1093/jn/134.3.613 14988456
    [Google Scholar]
  68. BrezováV. ŠlebodováA. StaškoA. Coffee as a source of antioxidants: An EPR study.Food Chem.2009114385986810.1016/j.foodchem.2008.10.025
    [Google Scholar]
  69. AltinG. Gültekin-ÖzgüvenM. OzcelikB. Chitosan coated liposome dispersions loaded with cacao hull waste extract: Effect of spray drying on physico-chemical stability and in vitro bioaccessibility.J. Food Eng.2018223919810.1016/j.jfoodeng.2017.12.005
    [Google Scholar]
  70. YadavN. KhatakS. Singh SaraU.V. Solid lipid nanoparticles- A review.Int J Appl Pharm201352818
    [Google Scholar]
  71. Harivardhan ReddyL. MurthyR.S.R. Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation.AAPS PharmSciTech200562E158E16610.1208/pt060224 16353973
    [Google Scholar]
  72. HasgulR. UysalS. HaltasH. Protective effects of Ankaferd blood stopper on aspirin-induced oxidative mucosal damage in a rat model of gastric injury.Toxicol. Ind. Health2014301088889510.1177/0748233712466134 23114375
    [Google Scholar]
  73. ChaturvediM.M. KumarA. DarnayB.G. ChainyG.B.N. AgarwalS. AggarwalB.B. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation.J. Biol. Chem.199727248301293013410.1074/jbc.272.48.30129 9374492
    [Google Scholar]
  74. PetersD.D. Materials and methods.J. Endod.199319842042110.1016/S0099‑2399(06)81513‑X 7903349
    [Google Scholar]
  75. PaarakhP.M. Nigella sativa Linn.- A comprehensive review.Indian J. Nat. Prod. Resour.201014409429
    [Google Scholar]
  76. RaniR. DahiyaS. DhingraD. DilbaghiN. KimK.H. KumarS. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes.Chem. Biol. Interact.2018295May11913210.1016/j.cbi.2018.02.006 29421519
    [Google Scholar]
  77. AbdelwahabS.I. SheikhB.I. TahaM.M.E. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration.Int. J. Nanomedicine201382163217210.2147/IJN.S44108 23818776
    [Google Scholar]
  78. VermaD. ThakurP.S. PadhiS. KhurooT. TalegaonkarS. IqbalZ. Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: Optimization, in vitro characterization and stability assessment.J. Mol. Liq.201724238239410.1016/j.molliq.2017.07.002
    [Google Scholar]
  79. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  80. ShidhayeS. VaidyaR. SutarS. PatwardhanA. KadamV. Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers.Curr. Drug Deliv.20085432433110.2174/156720108785915087 18855604
    [Google Scholar]
  81. SeetapanN. BejraphaP. SrinuanchaiW. RuktanonchaiU.R. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs).Micron2010411515810.1016/j.micron.2009.08.003 19726202
    [Google Scholar]
  82. AlamS. MustafaG. KhanZ.I. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study.Int. J. Nanomedicine201275705571810.2147/IJN.S35329 23180965
    [Google Scholar]
  83. MariodA.A. IbrahimR.M. IsmailM. IsmailN. Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake.Food Chem.2009116130631210.1016/j.foodchem.2009.02.051
    [Google Scholar]
  84. HowC.W. RasedeeA. AbbasalipourkabirR. AbbasalipourkabirR. Characterization and cytotoxicity of nanostructured lipid carriers formulated with olive oil, hydrogenated palm oil, and polysorbate 80.IEEE Trans. Nanobiosci.2013122727810.1109/TNB.2012.2232937 23268387
    [Google Scholar]
  85. CamposE. BranquinhoJ. CarreiraA.S. CarvalhoA. FerreiraP. GilM.H. Present address: Instituto de Tecnologia Química e Biológica, Universidade Nova de.Eur. Polym. J.201310.1016/j.eurpolymj.2013.04.033
    [Google Scholar]
  86. NidhiR.M. RashidM. KaurV. HallanS.S. SharmaS. MishraN. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review.Saudi Pharm. J.201624445847210.1016/j.jsps.2014.10.001 27330377
    [Google Scholar]
  87. PereiraL.A. ReisL da S. MendesA.N. FernandesH de B. ArcanjoD.D.R. Antiulcerogenic and Antibacterial Effects of Chitosan Derivatives on Experimental Gastric Ulcers in Rats.Evidence-based Complement Altern Med2022
    [Google Scholar]
  88. MouraA. Antibiotic Free Nano / Microparticles to Fight Helicobacter pyloriThesis, Faculdade de Engenharia da Universidade do Porto 2018
    [Google Scholar]
  89. BagheriL. MadadlouA. YarmandM. MousaviM.E. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles.Food Res. Int.2014621113111910.1016/j.foodres.2014.05.040
    [Google Scholar]
  90. WichchukitS. OztopM.H. McCarthyM.J. McCarthyK.L. Whey protein/alginate beads as carriers of a bioactive component.Food Hydrocoll.2013331667310.1016/j.foodhyd.2013.02.013
    [Google Scholar]
  91. RaoC.V. OjhaS.K. RadhakrishnanK. Antiulcer activity of Utleria salicifolia rhizome extract.J. Ethnopharmacol.2004912-324324910.1016/j.jep.2003.12.020 15120446
    [Google Scholar]
  92. KwiecieńS. BrzozowskiT. KonturekS.J. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury.J. Physiol. Pharmacol.20025313950 11939718
    [Google Scholar]
  93. SharmaS.K. VijA.S. SharmaM. Mechanisms and clinical uses of capsaicin.Eur. J. Pharmacol.20137201-3556210.1016/j.ejphar.2013.10.053 24211679
    [Google Scholar]
  94. RaoJ. McClementsD.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil.Food Hydrocoll.20112561413142310.1016/j.foodhyd.2011.02.004
    [Google Scholar]
  95. PathakotiK. ManuboluM. HwangH.M. Nanostructures: Current uses and future applications in food science. J Food Drug Anal201725224525310.1016/j.jfda.2017.02.004 28911665
    [Google Scholar]
  96. NigamK. GabraniR. DangS. Nano-emulsion from Capsaicin: Formulation and characterization.Mater. Today Proc.20191886987810.1016/j.matpr.2019.06.517
    [Google Scholar]
  97. PandeyR.K. JainP. ShuklaS.S. GidwaniB. JainA. Ethnomedicinal value of medicinal plants found in Chhattisgarh: Recent scenario and advancement.Curr. Tradit. Med.202419
    [Google Scholar]
  98. JainA. JainP. BajajS. MajumdarA. SoniP. Chemoprofiling and antioxidant activity of edible curcuma species.Food and Humanity202311027103910.1016/j.foohum.2023.08.023
    [Google Scholar]
  99. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and Characterization of Silver Nanoparticles of Different Species of Curcuma in the Treatment of Cancer Using Human Colon Cancer Cell Line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  100. JainP. SatapathyT. PandeyR.K. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae).Vet. Parasitol.2021298May10949010.1016/j.vetpar.2021.109490 34271319
    [Google Scholar]
  101. JainA. JainP. PariharD.K. Comparative study of in-vitro antidiabetic and antibacterial activity of non-conventional Curcuma species.J Biol Active Prod Nature20199645746410.1080/22311866.2019.1710253
    [Google Scholar]
  102. KumarV. RathoreK. JainP. AhmedZ. Biological activity of Bauhinia racemosa against diabetes and interlinked disorders like obesity and hyperlipidemia.Clinical Phytoscience201731710.1186/s40816‑017‑0044‑9
    [Google Scholar]
  103. RaoS.P. JainP. RathoreP. SinghV.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector.Indian J. Nat. Prod. Resour.201673256260
    [Google Scholar]
  104. ShuklaS.S. SharwanG. JainP. PandeyR. Toxicity and safety profiles of methanolic extract of Pistacia integerrima J. L. stewart ex brandis (pi) for wistar rats.J. Pharmacopuncture201619325325810.3831/KPI.2016.19.027 27695635
    [Google Scholar]
  105. KumarV. JainP. RathoreK. AhmedZ. Biological Evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo.Scientifica (Cairo)201620161910.1155/2016/1062430 26942038
    [Google Scholar]
  106. SinghP. JainP. PandeyR. ShuklaS.S. Phytotherapeutic review on diabetes.Spatula DD201654110.5455/spatula.20160414081621
    [Google Scholar]
  107. JainP. PandeyR. ShuklaS.S. Reproductive and developmental toxicity study of Talisadya churna: an ancient polyherbal formulation.IAJPR20166556415653
    [Google Scholar]
  108. JainP. Secondary metabolites for antiulcer activity.Nat. Prod. Res.2015117 25920371
    [Google Scholar]
  109. JainP. PandeyR. ShuklaS.S. Acute and subacute toxicity studies of polyherbal formulation talisadya churna in experimental animal model.MJPMS201511710
    [Google Scholar]
  110. SharwanG. JainP. PandeyR. ShuklaS.S. Toxicity profile of traditional herbal medicine.Int J Ayurvedic Herb Med201513819010.31254/jahm.2015.1306
    [Google Scholar]
  111. RaoS.P. AmritI. SinghV. JainP. Antiulcer activity of natural compounds: A review.J. Pharmacogn. Phytochem.20157212413010.5958/0975‑4385.2015.00021.7
    [Google Scholar]
  112. RaoS.P. AmritI. JainP. SinghV. Antiulcer Activity of Agnimukha Churna.Int. J. Ayurveda Pharma Res.2014224046
    [Google Scholar]
  113. JainP. RaoS.P. SinghV. PandeyR. ShuklaS.S. Acute and sub-acute toxicity studies of an ancient ayurvedic formulation: Agnimukha churna.Columbia J Pharm Sci201411822
    [Google Scholar]
  114. RathoreP. RaoSP RoyA SatapathyT SinghV. JainP Hepatoprotective activity of isolated herbal compounds. Research. J Pharm Technol201472
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855312609240628110440
Loading
/content/journals/cdth/10.2174/0115748855312609240628110440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): alkaloids; drug delivery; gastrointestinal; herbs; mucosa; Peptic ulcer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test