Skip to content
2000
image of Exploring Microspheres: Innovative Approaches in Drug Delivery and Medication Administration

Abstract

Introduction

This review explores the advancements in drug delivery systems using microspheres, developed to overcome the limitations of traditional drug administration methods. Microspheres are engineered to deliver therapeutic agents to specific sites with controlled release, thereby improving treatment efficacy and reducing systemic side effects.

Methodology

A comprehensive literature search was conducted using PubMed, Science Direct, Google Scholar, Bentham Science, Elsevier, Springer Nature, ResearchGate, Wikipedia, Frontiers, and Scribd. The search included English-language articles published between 2010 and 2025 using keywords such as “microspheres,” “drug delivery,” “controlled release,” “biodegradable polymers,” “encapsulation,” “targeted delivery,” “vildagliptin microspheres,” and “fenugreek extract delivery.” A total of 119 articles were screened, and studies were selected based on their relevance to microsphere formulation techniques, polymer characteristics, drug release mechanisms, and their applications.

Results

Microspheres are being utilised as vehicles for transporting medicinal substances to particular locations in controlled release systems. They are made up of synthetic polymers or proteins that degrade naturally. By combining the advantages of floating and high adhesiveness, microspheres can enhance the absorption into the bloodstream and regulate the release of medications, limiting dose regularity and improving conformity among patients. Using microspheres as a depot mechanism allows parenteral formulations to be administered under controlled conditions.

Discussion

The utilisation of microspheres represents a significant advancement in drug delivery technology. Their ability to improve drug stability, bioavailability, and patient compliance has been well-documented. However, challenges such as manufacturing scalability and consistency remain key obstacles to widespread clinical adoption.

Conclusion

Microspheres have sparked great curiosity about their ability to target various diseases. In the future, microspheres will be crucial for innovative medicine delivery by merging several methods, particularly in the domains of genetic data and mutations, pathological cell categorisation, diagnosis, reliable, effective, and targeted delivery, and additives that serve as microscopic models of the human body's damaged tissues and organs.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855392804251009112435
2025-10-28
2025-12-22
Loading full text...

Full text loading...

References

  1. Keraliya R.A. Patel C. Patel P. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012 2012 1 9 10.5402/2012/528079 22852100
    [Google Scholar]
  2. Swarnalatha K.M. Iswariya V.T. Akash B. Bhandari S. Shirisha R. Ramarao T. A comprehensive review of controlled drug release delivery systems: Current status and future directions. Int J Pharm Phytopharmacol Res 2024 14 2 24 30 10.51847/d6pncGCouf
    [Google Scholar]
  3. Singh M. Thakur V. Kumar V. Silver nanoparticles and its mechanistic insight for chronic wound healing: Review on recent progress. Molecules 2022 27 17 5587 10.3390/molecules27175587 36080353
    [Google Scholar]
  4. Pandey J. Shankar R. Kumar M. Shukla K. Kumari B. Development of nasal mucoadhesive microspheres of granisetron: A potential drug. Drug Res. 2020 70 8 367 10.1055/a‑1193‑4781 32559774
    [Google Scholar]
  5. Grizić D. Lamprecht A. Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles. Int. J. Pharm. 2020 586 119601 10.1016/j.ijpharm.2020.119601 32622807
    [Google Scholar]
  6. Kožák J. Rabišková M. Lamprecht A. In-vitro drug release testing of parenteral formulations via an agarose gel envelope to closer mimic tissue firmness. Int. J. Pharm. 2021 594 120142 10.1016/j.ijpharm.2020.120142 33326826
    [Google Scholar]
  7. Bhatt T. Patel M.M. Drug delivery devices and therapeutic systems. Amsterdam Elsevier 2021 10.1016/C2018‑0‑04221‑8
    [Google Scholar]
  8. Park H. Otte A. Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release 2022 342 53 65 10.1016/j.jconrel.2021.12.030 34971694
    [Google Scholar]
  9. Martin R.F. Wound healing. Surg. Clin. North Am. 2020 100 4 ix xi 10.1016/j.suc.2020.05.012 32681879
    [Google Scholar]
  10. Zindle J.K. Wolinsky E. Bogie K.M. A review of animal models from 2015 to 2020 for preclinical chronic wounds relevant to human health. J. Tissue Viability 2021 30 3 291 300 10.1016/j.jtv.2021.05.006 34103213
    [Google Scholar]
  11. Prasanthi R. Haarika B. Selvamuthukumar S. Design, formulation and in vitro evaluation of gastroretentive microspheres of selegiline hydrochloride for Parkinson’s disease by Design Expert. Indian J Pharm Educ Res 2024 58 1s s289 s297 10.5530/ijper.58.1s.31
    [Google Scholar]
  12. Gautam D. Talwan P. A review on microspheres: Types, methods and evaluation. INDIAN DRUGS 2024 61 6 7 20 10.53879/id.61.06.14156
    [Google Scholar]
  13. Dhadde G.S. Mali H.S. Raut I.D. Nitalikar M.M. Bhutkar M.A. A review on microspheres: Types, method of preparation, characterization and application. Asian J Pharm Technol 2021 11 2 149 155 10.52711/2231‑5713.2021.00025
    [Google Scholar]
  14. Kakkar V. Wani S.U.D. Gautam S.P. Qadrie Z.L. Role of microspheres in novel drug delivery systems: Preparation methods and applications. Int. J. Curr. Pharm. Res. 2020 12 3 10 15 10.22159/ijcpr.2020v12i3.38326
    [Google Scholar]
  15. Kadam N.R. Microsphere: A brief review. Asian J Biomed Pharm Sci 2015 5 47 13 19 10.15272/ajbps.v5i47.713
    [Google Scholar]
  16. Vasir J.K. Tambwekar K. Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int. J. Pharm. 2003 255 1-2 13 32 10.1016/S0378‑5173(03)00087‑5 12672598
    [Google Scholar]
  17. Vasave V.S. A review on: Floating drug delivery system. World J. Pharm. Res. 2023 12 2 641 669 10.30574/wjbphs.2024.18.2.0249
    [Google Scholar]
  18. Mohd S. Qazi M.A. Haq A. Khan N. Siraj S. Formulation, optimization and evaluation of drotaverine HCl mini tablet. Asian J Pharm Technol 2022 12 1 6 12 10.52711/2231‑5713.2022.00002
    [Google Scholar]
  19. Geczy R. Agnoletti M. Hansen M.F. Kutter J.P. Saatchi K. Häfeli U.O. Microfluidic approaches for the production of monodisperse, superparamagnetic microspheres in the low micrometer size range. J. Magn. Magn. Mater. 2019 471 286 293 10.1016/j.jmmm.2018.09.091
    [Google Scholar]
  20. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  21. Kakar S. Jain A. Magnetic microspheres. Asian Pac J Health Sci 2019 6 1 81 89 10.21276/apjhs.2019.6.1.12
    [Google Scholar]
  22. Sangwan S. Yadav N. Kumar R. A score years’ update in the synthesis and biological evaluation of medicinally important 2-pyridones. Eur. J. Med. Chem. 2022 232 114199 10.1016/j.ejmech.2022.114199 35219150
    [Google Scholar]
  23. Berkland C. King M. Cox A. Kim K.K. Pack D.W. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release 2002 82 1 137 147 10.1016/S0168‑3659(02)00136‑0 12106984
    [Google Scholar]
  24. Jin F. Li Q. He Y. Luo Q. Pu W. Experimental study on enhanced oil recovery method in Tahe high-temperature and high-salinity channel sand reservoir: Combination of profile control and chemical flooding. ACS Omega 2020 5 11 5657 5665 10.1021/acsomega.9b03306 32226842
    [Google Scholar]
  25. Yang H. Zhang H. Zheng W. Effect of hydrophobic group content on the properties of betaine-type binary amphiphilic polymer. J. Mol. Liq. 2020 311 113358 10.1016/j.molliq.2020.113358
    [Google Scholar]
  26. You Q. Wen Q. Fang J. Guo M. Zhang Q. Dai C. Experimental study on lateral flooding for enhanced oil recovery in bottom-water reservoir with high water cut. J. Petrol. Sci. Eng. 2019 174 747 756 10.1016/j.petrol.2018.11.053
    [Google Scholar]
  27. You Q. Wang H. Zhang Y. Liu Y. Fang J. Dai C. Experimental study on spontaneous imbibition of recycled fracturing flow-back fluid to enhance oil recovery in low permeability sandstone reservoirs. J. Petrol. Sci. Eng. 2018 166 375 380 10.1016/j.petrol.2018.03.058
    [Google Scholar]
  28. Yin X. Kang W. Song S. Huang Z. Hou X. Yang H. Stabilization mechanism of CO 2 foam reinforced by regenerated cellulose. Colloids Surf. A Physicochem. Eng. Asp. 2018 555 754 764 10.1016/j.colsurfa.2018.07.042
    [Google Scholar]
  29. Foroutan R. Peighambardoust S.J. Hosseini S.S. Akbari A. Ramavandi B. Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd 2+ removal from shipbuilding wastewater. J. Hazard. Mater. 2021 413 125428 10.1016/j.jhazmat.2021.125428 33618268
    [Google Scholar]
  30. Esvandi Z. Foroutan R. Peighambardoust S.J. Akbari A. Ramavandi B. Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe 2 O 4 magnetic nanocomposite. Surf. Interfaces 2020 21 100754 10.1016/j.surfin.2020.100754
    [Google Scholar]
  31. Yang Y. Liu Y. Chen S. Cheong K.L. Teng B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr. Polym. 2020 246 116617 10.1016/j.carbpol.2020.116617 32747257
    [Google Scholar]
  32. Almeida A. Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007 59 6 478 490 10.1016/j.addr.2007.04.007 17543416
    [Google Scholar]
  33. Lakshmi P.U. Tejaswini K. Hemalatha B. Padmalatha K. Microspheres: A comprehensive review. Asian J Res Pharm Sci 2023 13 4 235 240 10.52711/2231‑5659.2023.00041
    [Google Scholar]
  34. Chen Q.H. Zheng J. Xu Y.T. Yin S.W. Liu F. Tang C.H. Surface modification improves fabrication of pickering high internal phase emulsions stabilized by cellulose nanocrystals. Food Hydrocoll. 2018 75 125 130 10.1016/j.foodhyd.2017.09.005
    [Google Scholar]
  35. Laishevkina S. Iakobson O. Saprykina N. Hydrophilic polyelectrolyte microspheres as a template for poly(3,4-ethylenedioxythiophene) synthesis. Soft Matter 2023 19 22 4144 4154 10.1039/D3SM00372H 37249322
    [Google Scholar]
  36. Patil S. Sawant K. Mucoadhesive microspheres: A promising tool in drug delivery. Curr. Drug Deliv. 2008 5 4 312 318 10.2174/156720108785914970 18855602
    [Google Scholar]
  37. Pawar M.A. Vora L.K. Kompella P. Pokuri V.K. Vavia P.R. Long-acting microspheres of Human Chorionic Gonadotropin hormone: In-vitro and in-vivo evaluation. Int. J. Pharm. 2022 611 121312 10.1016/j.ijpharm.2021.121312 34822964
    [Google Scholar]
  38. Dahal R. Srivastava R. Prasad Bastakoti B. Selective electrochemical conversion of CO 2 into methane on Ag‐decorated copper microsphere. ChemistryOpen 2025 14 1 e202400173 10.1002/open.202400173 39446654
    [Google Scholar]
  39. Galande P. Yadav V. Borkar S. A review on microspheres: Preparation, characterization and applications. Asian J Pharm Res Dev 2022 10 6 128 133 10.22270/ajprd.v10i6.1204
    [Google Scholar]
  40. Mahapatra B.K. Shah S.K. Mohanto S. Mantry S. Preparation, design, and in-vitro evaluation of sustained release microsphere of ropinirole hydrochloride by emulsion solvent evaporation technique. Int J Innov Pharm Sci Res 2019 7 5 48 60 10.22159/ijpps.2018v10i6.26070
    [Google Scholar]
  41. Zhao W. Liu Z. Sun Z. Superparamagnetic enhancement of thermoelectric performance. Nature 2017 549 7671 247 251 10.1038/nature23667 28905895
    [Google Scholar]
  42. Beikzadeh S. Khezerlou A. Jafari S.M. Pilevar Z. Mortazavian A.M. Seed mucilages as the functional ingredients for biodegradable films and edible coatings in the food industry. Adv. Colloid Interface Sci. 2020 280 102164 10.1016/j.cis.2020.102164 32335381
    [Google Scholar]
  43. Zhao T. Jiang L. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals. Colloids Surf. B Biointerfaces 2017 159 1 8 10.1016/j.colsurfb.2017.10.056 29096377
    [Google Scholar]
  44. Ferraris S. Cazzola M. Peretti V. Stella B. Spriano S. Zeta potential measurements on solid surfaces for in vitro biomaterials testing: Surface charge, reactivity upon contact with fluids and protein absorption. Front. Bioeng. Biotechnol. 2018 6 60 10.3389/fbioe.2018.00060 29868575
    [Google Scholar]
  45. Verma R. Verma S. Kumar S. Microsphere—A novel drug delivery system. Res Chron Health Sci 2019 5 1 5 14 10.32318/IJPT/0975‑766X/12(1).31955‑31973
    [Google Scholar]
  46. Sun K. Zeng J. Liu Y. Microfluidic precision manufacture of high-performance liquid chromatographic microspheres. Angew. Chem. Int. Ed. 2025 64 5 202418642 10.1002/anie.202418642
    [Google Scholar]
  47. Hasnain M.S. Nayak A.K. Nanocomposites for improved orthopedic and bone tissue engineering applications. Applications of Nanocomposite Materials in Orthopedics. WoodHead Publishing 2019 145 177 10.1016/B978‑0‑12‑813740‑6.00008‑9
    [Google Scholar]
  48. Wang Y. Siebzehnrubl D. Weller M. Weiss T. Siebzehnrubl F.A. Newland B. Vortioxetine: A potential drug for repurposing for glioblastoma treatment via a microsphere local delivery system. ACS Biomater. Sci. Eng. 2025 11 4 2203 2215 10.1021/acsbiomaterials.5c00068 40167528
    [Google Scholar]
  49. Solanki N. Microspheres an innovative approach in drug delivery system. MOJ Bioequiv Bioavailab 2018 5 1 56 58 10.15406/mojbb.2018.05.00083
    [Google Scholar]
  50. van der Kooij R.S. Steendam R. Frijlink H.W. Hinrichs W.L.J. An overview of the production methods for core–shell microspheres for parenteral controlled drug delivery. Eur. J. Pharm. Biopharm. 2022 170 24 42 10.1016/j.ejpb.2021.11.007 34861359
    [Google Scholar]
  51. Sánchez A. Mejía S.P. Orozco J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules 2020 25 16 3760 10.3390/molecules25163760 32824757
    [Google Scholar]
  52. Kırımlıoğlu G.Y. Drug loading methods and drug release mechanisms of PLGA nanoparticles. Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery. Elsevier 2023 55 86 10.1016/B978‑0‑323‑91215‑0.00005‑4
    [Google Scholar]
  53. Luan H. Geczy P. Lai H. Challenges and future directions of big data and artificial intelligence in education. Front. Psychol. 2020 11 580820 10.3389/fpsyg.2020.580820 33192896
    [Google Scholar]
  54. Ganesan K. Marimuthu G.S. Hansda S. Ramesh V.K. Mani S. Thangapandi B. Fatigue crack growth rate behaviour of aluminium matrix composites reinforced with hollow glass microsphere. Int. J. Fatigue 2025 190 108628 10.1016/j.ijfatigue.2024.108628
    [Google Scholar]
  55. Das M.K. Ahmed A.B. Saha D. Microsphere a drug delivery system – A review. Int. J. Curr. Pharm. Res. 2019 11 4 34 41 10.22159/ijcpr.2019v11i4.34941
    [Google Scholar]
  56. Hadke J. Khan S. Preparation of sterculia foetida-pullulan-based semi-interpenetrating polymer network gastroretentive system. Int J Appl Pharm 2021 13 3 199 206 10.22159/ijap.2021v13i3.41001
    [Google Scholar]
  57. Singh S. Devi A. Sharma S. Sabharwal S. Sharma S. Dhiman S. A review on microspheres and its role in different drug delivery system as a novel approach. Int. J. Pharma Sci. 2024 2 6 1112 1126 10.5281/zenodo.12507394
    [Google Scholar]
  58. Mahor S. Chandra P. Prasad N. Design and in vitro evaluation of float-adhesive famotidine microspheres using natural polymers for gastroretentive properties. Indian J Pharm Educ Res 2021 55 2 407 417 10.5530/ijper.55.2.78
    [Google Scholar]
  59. Singh B. Dahiya M. Saharan V. Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part II: Retrospect and prospects. Crit. Rev. Ther. Drug Carrier Syst. 2005 22 3 215 294 10.1615/CritRevTherDrugCarrierSyst.v22.i3.10 15896189
    [Google Scholar]
  60. Gaber D. Abdoun S. Alfuraihy A. Altasan B. Alsubaiyel A. Superhydrophobic surface for enhancing bioavailability of salbutamol sulfate from crosslinked microspheres: Formulation, characterization, and in vivo evaluation. Drug Des. Devel. Ther. 2021 15 2869 2884 10.2147/DDDT.S309078 34239296
    [Google Scholar]
  61. Kharb M. Tanwar Y.S. Development and statistical optimization of gastroretentive floating microspheres of pregabalin prepared by w/o/o multiple emulsion method. Int J Appl Pharm 2021 13 3 199 206 10.22159/ijap.2021v13i3.41001
    [Google Scholar]
  62. Kumar S. Goyal N. Formulation and characterization of chitosan microparticulate system using central composite design for lafutidine. Indian J Pharm Educ Res 2021 55 2 354 362 10.5530/ijper.55.2.73
    [Google Scholar]
  63. Kumar S. Tiwari A. Goyal N. Floating microspheres of lafutidine: Formulation, optimization, characterization, in vitro and in vivo floatability studies using Eudragit grades. Indian J Pharm Educ Res 2022 56 3 681 688 10.5530/ijper.56.3.116
    [Google Scholar]
  64. Neelam S. Meenakshi B. Formulation and evaluation of polymeric microspheres using Box-Behnken design. Asian J. Pharm. Clin. Res. 2022 15 10 47 55 10.22159/ajpcr.2022.v15i10.45250
    [Google Scholar]
  65. Xia C. Hu Z. Wang F. Wang Z. Wang Y. Thermal diffusion mediated nucleation of vapor bubbles on metal microspheres. Int. J. Mech. Sci. 2025 290 110099 10.1016/j.ijmecsci.2025.110099
    [Google Scholar]
  66. Souza S.D. Dos Santos H.F. Bonfim L.F. Impact of cationic and neutral clay minerals’ incorporation in chitosan and chitosan/PVA microsphere properties. ACS Appl. Mater. Interfaces 2025 17 14 21189 21205 10.1021/acsami.4c22323
    [Google Scholar]
  67. Prakash S. Nano-based drug delivery system for therapeutics: A comprehensive review. Biomed. Phys. Eng. Express 2023 9 5 052002 10.1088/2057‑1976/acedb2 37549657
    [Google Scholar]
  68. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  69. Pandya T. Bhatt P. Misra A. Development and evaluation of exenatide loaded PLGA nanoparticles for intranasal delivery in the treatment of obesity. Drug Deliv. Lett. 2022 12 2 149 162 10.2174/2210303112666220318155445
    [Google Scholar]
  70. Singh S.S. Dadabhau D. Singh K. Review on sustained release dosage form: A novel approach and its evaluation. J Surv Fish Sci 2022 8 3 10.53555/sfs.v8i3.2684
    [Google Scholar]
  71. Xu C. Xiong X. Du Y. Dual‐coupling networks engineering of self‐assembled ferromagnetic microspheres with enhanced interfacial polarization and magnetic interaction for microwave absorption. InfoMat 2025 7 4 e12645 10.1002/inf2.12645
    [Google Scholar]
  72. Schilling A.L. Kulahci Y. Moore J. Wang E.W. Lee S.E. Little S.R. A thermoresponsive hydrogel system for long-acting corticosteroid delivery into the paranasal sinuses. J. Control. Release 2021 330 889 897 10.1016/j.jconrel.2020.10.062 33157189
    [Google Scholar]
  73. Beg S. Rahman M. Panda S.K. Nasal mucoadhesive microspheres of lercanidipine with improved systemic bioavailability and antihypertensive activity. J. Pharm. Innov. 2021 16 2 237 246 10.1007/s12247‑020‑09441‑5
    [Google Scholar]
  74. Bansal R. Kaushik D. Jain S. Development and evaluation of mucoadhesive microspheres of hydrocortisone sodium succinate in the treatment of chronic sinusitis. Asian J. Pharm. Clin. Res. 2022 ••• 6 11 10.22159/ajpcr.2023.v16i1.46250
    [Google Scholar]
  75. Molavi F. Barzegar-Jalali M. Hamishehkar H. Changing the daily injection of glatiramer acetate to a monthly long acting product through designing polyester-based polymeric microspheres. Bioimpacts 2022 12 6 501 513 10.34172/bi.2022.23733 36644544
    [Google Scholar]
  76. Satapathy S.R. Sahoo R.N. Satapathy B. Immani R. Panigrahi L. Mallick S. Development and characterization of leuprolide acetate encapsulated PLGA microspheres for parenteral controlled release depot injection. Indian J Pharm Educ Res 2021 55 1 107 116 10.5530/ijper.55.1.14
    [Google Scholar]
  77. Kozak J. Rabiskova M. Lamprecht A. Muscle tissue as a surrogate for in vitro drug release testing of parenteral depot microspheres. AAPS PharmSciTech 2021 22 3 119 10.1208/s12249‑021‑01965‑4 33782794
    [Google Scholar]
  78. S Samanta M Gautam D, Chandel MW, Sawant G, Sharma K. A review on microspheres as a novel controlled drug delivery system. Asian J. Pharm. Clin. Res. 2021 14 4 3 11 [Internet 10.22159/ajpcr.2021.v14i4.40634
    [Google Scholar]
  79. Choudhury D. Jala A. Murty U.S. Borkar R.M. Banerjee S. In vitro and in vivo evaluations of berberine-loaded microparticles filled in-house 3D printed hollow capsular device for improved oral bioavailability. AAPS PharmSciTech 2022 23 4 89 10.1208/s12249‑022‑02241‑9 35296955
    [Google Scholar]
  80. Zhou W. Duan Z. Zhao J. Fu R. Zhu C. Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact. Mater. 2022 17 1 17 10.1016/j.bioactmat.2022.01.004 35386439
    [Google Scholar]
  81. Kass L.E. Nguyen J. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 e1756 10.1002/wnan.1756 34532989
    [Google Scholar]
  82. Su P. Pei W. Wang X. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem. Int. Ed. 2021 60 29 16044 16050 10.1002/anie.202103557 33960092
    [Google Scholar]
  83. Welling M.M. Duszenko N. van Meerbeek M.P. Microspheres as a carrier system for therapeutic embolization procedures: Achievements and advances. J. Clin. Med. 2023 12 3 918 10.3390/jcm12030918 36769566
    [Google Scholar]
  84. Pund S. Kharat N. Khalil S.S.S. Shaikh S.Z. Pulate C. Tare H. Nanomedicine in treatment of typhoid fever: A review. J. Pharm. Res. Int. 2022 ••• 16 28 10.9734/jpri/2022/v34i24A35931
    [Google Scholar]
  85. Alkan C. Aksoy S.A. Anayurt R.A. Synthesis of poly(methyl methacrylate-co-acrylic acid)/n -eicosane microcapsules for thermal comfort in textiles. Text. Res. J. 2015 85 19 2051 2058 10.1177/0040517514548751
    [Google Scholar]
  86. Chen H.J. Huang L.H. An investigation of the design potential of thermochromic home textiles used with electric heating techniques. Math. Probl. Eng. 2015 2015 1 5 10.1155/2015/151573
    [Google Scholar]
  87. Chandra D.A. Formulation and evaluation of multiple unit floating beads of antiulcer drug. Asian J. Pharm. 2018 12 2 10.22377/ajp.v12i02.2416
    [Google Scholar]
  88. Joshi A.S. Patil C.C. Shiralashetti S.S. Kalyane N.V. Design, characterization and evaluation of Eudragit microspheres containing glipizide. Drug Invent. Today 2013 5 3 229 234 10.1016/j.dit.2013.06.009
    [Google Scholar]
  89. Pawar K.S. Sonawane M.P. Rathod A. Nikam V. An updated review on floating microspheres for gastro-retentive drug delivery system. Asian J Pharm Technol 2025 15 2 205 4 10.52711/2231‑5713.2025.00032
    [Google Scholar]
  90. Maddiboyina B. Hanumanaik M. Nakkala R.K. Formulation and evaluation of gastro-retentive floating bilayer tablet for the treatment of hypertension. Heliyon 2020 6 11 e05459 10.1016/j.heliyon.2020.e05459 33241144
    [Google Scholar]
  91. Malipeddi V.R. Awasthi R. Dua K. Formulation and evaluation of controlled release ethylcellulose and polyethylene glycol microspheres containing metoprolol tartrate. Interv. Med. Appl. Sci. 2016 8 2 60 67 10.1556/1646.8.2016.2.6 28386461
    [Google Scholar]
  92. Goudanavar Prakash Shashikanth R. Development and in vitro characterization of esomeprazole floating gastro retentive microspheres. J. Appl. Pharm. Sci. 2013 3 71 77 10.7324/JAPS.2013.30314
    [Google Scholar]
  93. Singh B. Kim K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control. Release 2000 63 3 235 259 10.1016/S0168‑3659(99)00204‑7 10601721
    [Google Scholar]
  94. Shagymgereyeva S. Sarsenbekuly B. Kang W. Yang H. Turtabayev S. Advances of polymer microspheres and its applications for enhanced oil recovery. Colloids Surf. B Biointerfaces 2024 233 113622 10.1016/j.colsurfb.2023.113622 37931531
    [Google Scholar]
  95. Dhaval M. Vaghela P. Patel K. Lipid-based emulsion drug delivery systems — A comprehensive review. Drug Deliv. Transl. Res. 2022 12 7 1616 1639 10.1007/s13346‑021‑01071‑9 34609731
    [Google Scholar]
  96. Chen Z. Lv Z. Zhang Z. Advanced microfluidic devices for fabricating multi‐structural hydrogel microsphere. Exploration 2021 1 3 20210036 10.1002/EXP.20210036 37323691
    [Google Scholar]
  97. Ren Z Wang Y Wu H Cong H Yu B Shen Y Preparation and application of hemostatic microspheres containing biological mac-romolecules and others Int. J. Biol. Macromol. 2024 257 Pt 1 128299 10.1016/j.ijbiomac.2023.128299 38008144
    [Google Scholar]
  98. Whitlow J. Pacelli S. Paul A. Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions. J. Control. Release 2017 261 62 86 10.1016/j.jconrel.2017.05.033 28596105
    [Google Scholar]
  99. Mane S. Vinchurkar K. Khan M.A. Sainy J. Effect of formulation variables on the characteristics of vildagliptin microspheres. IP Int J Compr Adv Pharmacol 2022 7 3 134 140 10.18231/j.ijcaap.2022.028
    [Google Scholar]
  100. Ahmad W. Quazi J. Khan R. Ahmad N. Ansari N. A comprehensive review on microspheres. Asian J Pharm Technol 2022 12 2 136 140 10.52711/2231‑5713.2022.00023
    [Google Scholar]
  101. Kim D. Jang D. Lee H. Lim J. Kim C. Two-dimensional non-close-packed arrays of polystyrene microspheres prepared by controlling the size of polystyrene microspheres. Polymer (Guildf.) 2019 185 121938 10.1016/j.polymer.2019.121938
    [Google Scholar]
  102. Ma C. Wang Z. Hu Z. Wang Y. Zhao Y. Shi J. Preparation of submicron monodisperse melamine resin microspheres and nitrogen-doped carbon microspheres derived from them. Carbon 2021 171 981 10.1016/j.carbon.2020.05.096
    [Google Scholar]
  103. Lin C.Y. Hsu S. Fabrication of biodegradable polyurethane microspheres by a facile and green process. J. Biomed. Mater. Res. B Appl. Biomater. 2014 102 3 508 518 10.1002/jbm.b.33266 25164115
    [Google Scholar]
  104. Mei S. Han P. Wu H. Shi J. Tang L. Jiang Z. One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. J. Biotechnol. 2018 266 1 8 10.1016/j.jbiotec.2017.11.015 29199127
    [Google Scholar]
  105. Ruan L. Su M. Qin X. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater. Today Bio 2022 16 100394 10.1016/j.mtbio.2022.100394 36042853
    [Google Scholar]
  106. Gandhi S. Dadi S. Ramesh J. Kalyani V. Nagamma I. Floating microspheres: A prevailing trend in the development of gastro retentive drug delivery system. Asian J. Pharm. 2018 12 4 235 241 10.52711/2231‑5713.2025.00032
    [Google Scholar]
  107. Kyatanwar A. Nagarsenker M. Prabhakar B. Biodegradable polymer-based microspheres for depot injection-industry perception. Recent Adv. Drug Deliv. Formul. 2023 17 1 13 30 10.2174/2667387817666230119103126 36655532
    [Google Scholar]
  108. Abouelmagd S.A. Hyun H. Yeo Y. Extracellularly activatable nanocarriers for drug delivery to tumors. Expert Opin. Drug Deliv. 2014 11 10 1601 1618 10.1517/17425247.2014.930434 24950343
    [Google Scholar]
  109. Uyen N.T.T. Hamid Z.A.A. Tram N.X.T. Ahmad N. Fabrication of alginate microspheres for drug delivery: A review. Int. J. Biol. Macromol. 2020 153 1035 1046 10.1016/j.ijbiomac.2019.10.233 31794824
    [Google Scholar]
  110. Lagreca E. Onesto V. Di Natale C. La Manna S. Netti P.A. Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020 9 4 153 174 10.1007/s40204‑020‑00139‑y 33058072
    [Google Scholar]
  111. Chumakova O.V. Liopo A.V. Andreev V.G. Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett. 2008 261 2 215 225 10.1016/j.canlet.2007.11.023 18164806
    [Google Scholar]
  112. MacLaughlin F.C. Mumper R.J. Wang J. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release 1998 56 1-3 259 272 10.1016/S0168‑3659(98)00097‑2 9801449
    [Google Scholar]
  113. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  114. Leal J. Smyth H.D.C. Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017 532 1 555 572 10.1016/j.ijpharm.2017.09.018 28917986
    [Google Scholar]
  115. Malachowski T. Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. Eng Reg 2020 1 35 50 10.1016/j.engreg.2020.06.001
    [Google Scholar]
  116. Attarian F. Hatamian G. Nosrati S. Role of liposomes in chemoimmunotherapy of breast cancer. J. Drug Target. 2025 33 6 887 915 10.1080/1061186X.2025.2467139 39967479
    [Google Scholar]
  117. Tarin M. Oryani M.A. Javid H. Karimi-Shahri M. Exosomal PD-L1 in non-small cell lung Cancer: Implications for immune evasion and resistance to immunotherapy. Int. Immunopharmacol. 2025 155 114519 10.1016/j.intimp.2025.114519 40199140
    [Google Scholar]
  118. Akbari Oryani M. Tarin M. Rahnama Araghi L. Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy. J. Drug Target. 2025 33 4 473 491 10.1080/1061186X.2024.2433551 39618308
    [Google Scholar]
  119. Rastin F. Javid H. Oryani M.A. Rezagholinejad N. Afshari A.R. Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int. Immunopharmacol. 2024 126 111055 10.1016/j.intimp.2023.111055 37992445
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855392804251009112435
Loading
/content/journals/cdth/10.2174/0115748855392804251009112435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test