Current Drug Metabolism - Volume 26, Issue 5, 2025
Volume 26, Issue 5, 2025
-
-
Advances in Controlled Release Formulations for Ocular Diseases: Improving Patient Compliance and Therapeutic Outcomes
More LessAuthors: Smita Narwal, Dushyant, Gurvirender Singh, Nisha Grewal, Vishal Chanalia and Ashwani K. DhingraA majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, in situ gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.
-
-
-
Advances in Nanomedicine: Transforming Diagnostic Imaging with Novel Contrast Agents
More LessIn recent years, the development of medical technologies leveraging nanomedicine has witnessed remarkable progress, particularly in areas such as targeted drug delivery, controlled drug release, tissue engineering, and in vitro diagnostics. This review explores the transformative impact of nanotechnology on medical imaging, focusing on developing novel contrast agents. Diagnostic imaging techniques, including Positron Emission Tomography (PET), Computed Tomography, and Magnetic Resonance Imaging, have become indispensable tools in modern healthcare. Contrast agents play an important role in enhancing the sensitivity of these imaging modalities, enabling the detection of previously undetectable anomalies. Nanotechnology offers unprecedented opportunities to revolutionize contrast agent design, leading to improved imaging modalities and diagnostic accuracy. Due to their high X-ray attenuation coefficients, metal-based inorganic nanoparticles, such as gold, bismuth, and lanthanide-based nanomaterials, exhibit significant potential as CT contrast agents. Furthermore, the pharmacokinetic properties and drug metabolism profiles of these nanomaterials are critical in ensuring their safety, efficacy, and optimal performance in clinical applications. Moreover, nanomaterials with integrated diagnostic and therapeutic capabilities are emerging as promising candidates for real-time disease detection and image-guided treatment. This review highlights the properties of nanomaterials that make them suitable for use as contrast agents. It discusses the challenges and opportunities in developing multifunctional nanomaterials for medical and diagnostic purposes. Overall, nanotechnology-enabled contrast agents have the potential to redefine the landscape of medical imaging, paving the way for more precise diagnosis and personalized treatment strategies.
-
-
-
m6A Modified-CYP1B1 Promotes HCC Cell Proliferation by Inhibiting Ferroptosis
More LessAuthors: Wenwen Huang, Haihong Hu, Sheng Cai, Xiaoli Zheng and Su ZengIntroductionCYP1B1, a crucial drug-metabolizing enzyme, metabolizes both endogenous compounds and clinical drugs. The present study investigated the effects of CYP1B1 on the proliferation, migration, apoptosis, and ferroptosis of HCC cells. It further elucidated the regulatory role of m6A modification particularly via the methyltransferase METTL14 in regulating CYP1B1 mRNA stability and translation efficiency.
MethodsCCK-8, colony formation, wound healing, and transwell assays were employed to assess the role of CYP1B1 in HCC cell proliferation and migration. Ferroptosis-related assays, Western blot analysis, RNA immunoprecipitation, and RNA stability assays were conducted to elucidate the underlying molecular mechanisms. The Hepatocellular Carcinoma Database (HCCDB) was utilized for gene expression analysis of CYP1B1 and METTL14.
ResultsUpregulated CYP1B1 in HCC inhibits ferroptosis and promotes cell proliferation by mediating GPX4, without significantly affecting HCC cell migration or apoptosis. METTL14-mediated m6A modification negatively regulates CYP1B1 expression in HCC. Specifically, METTL14 (downregulated in HCC) catalyzes m6A methylation of CYP1B1 mRNA, reducing its stability, while YTHDF3 binds to CYP1B1 mRNA to decrease its expression.
DiscussionThese findings established a functional link between drug metabolism, m6A epigenetics, and iron-dependent cell death in HCC, highlighting CYP1B1 and its upstream m6A machinery as potential targets for developing precision therapies that enhance ferroptosis sensitivity in HCC. The clinical relevance of the identified molecular mechanisms necessitates additional in-depth exploration.
ConclusionCYP1B1 promotes HCC cell proliferation by regulating GPX4-mediated ferroptosis resistance, while METTL14-mediated m6A modification serves as a key negative regulatory mechanism for CYP1B1. Targeting CYP1B1 as a therapeutic strategy holds substantial promise for future drug development in HCC.
-
-
-
Transcriptomic and Proteomics Analysis of a Lipid-Loaded HepaRG Model for Steatosis Reveals Altered Regulation in Lipid and Xenobiotic Metabolism
More LessIntroductionHepatic lipid accumulation (steatosis) is an early indicator of non-alcoholic fatty liver disease (NAFLD), preceding fibrosis and cirrhosis. Understanding its effects on drug-metabolizing enzymes (DMEs) and transporters is crucial for assessing potential alterations in drug disposition among NAFLD patients. This study aimed to replicate steatosis in an in vitro HepaRG cell model and analyze its impact on DMEs and transporters.
MethodsDifferentiated HepaRG cells were treated with a mixture of saturated (palmitate) and unsaturated (oleate) fatty acids (in a 1:2 ratio at 0.5 mM), complexed with BSA for 72 hours to induce lipid accumulation. Confirmation of steatosis was performed using Oil Red O staining and triglyceride (TG) quantification, while cell viability was assessed via the WST-1 assay. RNA sequencing and SWATH-MS proteomic analysis were employed to identify differentially expressed transcripts and proteins in lipid-loaded cells compared to controls.
ResultsLipid loading resulted in a ~6-fold increase in TG concentration without compromising cell viability. Transcriptomic analysis identified 393 differentially expressed transcripts (89 upregulated, 304 downregulated), while proteomic analysis detected 165 differentially expressed proteins (127 upregulated, 38 downregulated). Notably, key mRNA transcripts related to transcription factors (NR1I2, HNF4α), phase 1 DMEs (CYP1A2, 2B6, 2C8, 2C9, 2C19, 3A4), phase 2 DMEs (UGT1A6, 2B7, SULT2A1, 1E1), and transporters (ABCC11, ABCG5, SLCO2B1, SLC10A1) exhibited significant downregulation.
DiscussionThe observed alterations in DMEs and transporters suggest a potential shift in drug metabolism pathways under NAFLD conditions. Downregulation of transcription factors and metabolic enzymes could impact drug efficacy and toxicity, necessitating further research into the pharmacokinetic implications.
ConclusionThe in vitro hepatic steatosis model demonstrated significant changes in the expression of clinically relevant DMEs and transporters. These findings highlight the importance of considering NAFLD-induced metabolic alterations when assessing drug disposition in affected patients
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month