Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Introduction

Hepatic lipid accumulation (steatosis) is an early indicator of non-alcoholic fatty liver disease (NAFLD), preceding fibrosis and cirrhosis. Understanding its effects on drug-metabolizing enzymes (DMEs) and transporters is crucial for assessing potential alterations in drug disposition among NAFLD patients. This study aimed to replicate steatosis in an HepaRG cell model and analyze its impact on DMEs and transporters.

Methods

Differentiated HepaRG cells were treated with a mixture of saturated (palmitate) and unsaturated (oleate) fatty acids (in a 1:2 ratio at 0.5 mM), complexed with BSA for 72 hours to induce lipid accumulation. Confirmation of steatosis was performed using Oil Red O staining and triglyceride (TG) quantification, while cell viability was assessed the WST-1 assay. RNA sequencing and SWATH-MS proteomic analysis were employed to identify differentially expressed transcripts and proteins in lipid-loaded cells compared to controls.

Results

Lipid loading resulted in a ~6-fold increase in TG concentration without compromising cell viability. Transcriptomic analysis identified 393 differentially expressed transcripts (89 upregulated, 304 downregulated), while proteomic analysis detected 165 differentially expressed proteins (127 upregulated, 38 downregulated). Notably, key mRNA transcripts related to transcription factors (NR1I2, HNF4α), phase 1 DMEs (CYP1A2, 2B6, 2C8, 2C9, 2C19, 3A4), phase 2 DMEs (UGT1A6, 2B7, SULT2A1, 1E1), and transporters (ABCC11, ABCG5, SLCO2B1, SLC10A1) exhibited significant downregulation.

Discussion

The observed alterations in DMEs and transporters suggest a potential shift in drug metabolism pathways under NAFLD conditions. Downregulation of transcription factors and metabolic enzymes could impact drug efficacy and toxicity, necessitating further research into the pharmacokinetic implications.

Conclusion

The hepatic steatosis model demonstrated significant changes in the expression of clinically relevant DMEs and transporters. These findings highlight the importance of considering NAFLD-induced metabolic alterations when assessing drug disposition in affected patients

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002381234250727004847
2025-09-09
2026-02-02
Loading full text...

Full text loading...

References

  1. BellentaniS. The epidemiology of non‐alcoholic fatty liver disease.Liver Int.201737S1818410.1111/liv.13299 28052624
    [Google Scholar]
  2. VeteläinenR. van VlietA. GoumaD.J. van GulikT.M. Steatosis as a risk factor in liver surgery.Ann. Surg.20072451203010.1097/01.sla.0000225113.88433.cf 17197961
    [Google Scholar]
  3. KooS.H. Nonalcoholic fatty liver disease: Molecular mechanisms for the hepatic steatosis.Clin. Mol. Hepatol.201319321021510.3350/cmh.2013.19.3.210 24133660
    [Google Scholar]
  4. CobbinaE. AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) – pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.Drug Metab. Rev.201749219721110.1080/03602532.2017.1293683 28303724
    [Google Scholar]
  5. OhataK. HamasakiK. ToriyamaK. MatsumotoK. SaekiA. YanagiK. AbiruS. NakagawaY. ShigenoM. MiyazoeS. IchikawaT. IshikawaH. NakaoK. EguchiK. Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection.Cancer200397123036304310.1002/cncr.11427 12784339
    [Google Scholar]
  6. CaldwellS. ArgoC. The natural history of non-alcoholic fatty liver disease.Dig. Dis.201028116216810.1159/000282081 20460906
    [Google Scholar]
  7. CohenJ.C. HortonJ.D. HobbsH.H. Human fatty liver disease: Old questions and new insights.Science201133260371519152310.1126/science.1204265 21700865
    [Google Scholar]
  8. NoureddinM. ZhangA. LoombaR. Promising therapies for treatment of nonalcoholic steatohepatitis.Expert Opin. Emerg. Drugs201621334335710.1080/14728214.2016.1220533 27501374
    [Google Scholar]
  9. BrodosiL. MarchignoliF. PetroniM.L. MarchesiniG. NASH: A glance at the landscape of pharmacological treatment.Ann. Hepatol.2016155673681 27493105
    [Google Scholar]
  10. BruntE.M. TiniakosD.G. Histopathology of nonalcoholic fatty liver disease.World J. Gastroenterol.201016425286529610.3748/wjg.v16.i42.5286 21072891
    [Google Scholar]
  11. JamwalR. de la MonteS.M. OgasawaraK. AdusumalliS. BarlockB.B. AkhlaghiF. Nonalcoholic fatty liver disease and diabetes are associated with decreased cyp3a4 protein expression and activity in human liver.Mol. Pharm.20181572621263210.1021/acs.molpharmaceut.8b00159 29792708
    [Google Scholar]
  12. FarrowS.C. FacchiniP.J. Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy.J. Biol. Chem.201328840289972901210.1074/jbc.M113.488585 23928311
    [Google Scholar]
  13. GanL. ChitturiS. FarrellG.C. Mechanisms and implications of age-related changes in the liver: Nonalcoholic Fatty liver disease in the elderly.Curr. Gerontol. Geriatr. Res.2011201111210.1155/2011/831536 21918648
    [Google Scholar]
  14. GordenD.L. MyersD.S. IvanovaP.T. FahyE. MauryaM.R. GuptaS. MinJ. SpannN.J. McDonaldJ.G. KellyS.L. DuanJ. SullardsM.C. LeikerT.J. BarkleyR.M. QuehenbergerO. ArmandoA.M. MilneS.B. MathewsT.P. ArmstrongM.D. LiC. MelvinW.V. ClementsR.H. WashingtonM.K. MendonsaA.M. WitztumJ.L. GuanZ. GlassC.K. MurphyR.C. DennisE.A. MerrillA.H. RussellD.W. SubramaniamS. BrownH.A. Biomarkers of NAFLD progression: A lipidomics approach to an epidemic.J. Lipid Res.201556372273610.1194/jlr.P056002 25598080
    [Google Scholar]
  15. Gómez-LechónM. JoverR. DonatoM. Cytochrome P450 and Steatosis.Curr. Drug Metab.200910769269910.2174/138920009789895543 19702532
    [Google Scholar]
  16. MerrellM.D. CherringtonN.J. Drug metabolism alterations in nonalcoholic fatty liver disease.Drug Metab. Rev.201143331733410.3109/03602532.2011.577781 21612324
    [Google Scholar]
  17. TakahashiY. SoejimaY. FukusatoT. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.World J. Gastroenterol.201218192300230810.3748/wjg.v18.i19.2300 22654421
    [Google Scholar]
  18. LarterC.Z. YehM.M. Animal models of NASH: Getting both pathology and metabolic context right.J. Gastroenterol. Hepatol.200823111635164810.1111/j.1440‑1746.2008.05543.x 18752564
    [Google Scholar]
  19. CydyloM.A. DavisA.T. KavanaghK. Fatty liver promotes fibrosis in monkeys consuming high fructose.Obesity201725229029310.1002/oby.21720 28124507
    [Google Scholar]
  20. PrueksaritanontT. Use of in vivo animal models to assess pharmacokinetic drug-drug interactions.Pharm. Res.20212791772178710.1007/s11095‑010‑0157‑z
    [Google Scholar]
  21. MartignoniM. GroothuisG.M.M. de KanterR. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction.Expert Opin. Drug Metab. Toxicol.20062687589410.1517/17425255.2.6.875 17125407
    [Google Scholar]
  22. LeCluyseE.L. AlexandreE. Isolation and culture of primary hepatocytes from resected human liver tissue.Methods Mol. Biol.2010640578210.1007/978‑1‑60761‑688‑7_3 20645046
    [Google Scholar]
  23. DonatoM.T. LahozA. JiménezN. PérezG. SerraltaA. MirJ. CastellJ.V. Gómez-LechónM.J. Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts.Drug Metab. Dispos.20063491556156210.1124/dmd.106.009670 16763015
    [Google Scholar]
  24. KostrzewskiT. CornforthT. SnowS.A. Ouro-GnaoL. RoweC. LargeE.M. HughesD.J. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease.World J. Gastroenterol.201723220421510.3748/wjg.v23.i2.204 28127194
    [Google Scholar]
  25. BulutogluB. Rey-BedónC. KangY.B.A. MertS. YarmushM.L. UstaO.B. A microfluidic patterned model of non-alcoholic fatty liver disease: Applications to disease progression and zonation.Lab Chip201919183022303110.1039/C9LC00354A 31465069
    [Google Scholar]
  26. GeretsH.H.J. TilmantK. GerinB. ChanteuxH. DepelchinB.O. DhalluinS. AtienzarF.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins.Cell Biol. Toxicol.2012282698710.1007/s10565‑011‑9208‑4 22258563
    [Google Scholar]
  27. GuillouzoA. CorluA. AninatC. GlaiseD. MorelF. Guguen-GuillouzoC. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics.Chem. Biol. Interact.20071681667310.1016/j.cbi.2006.12.003 17241619
    [Google Scholar]
  28. AninatC. PitonA. GlaiseD. Le CharpentierT. LangouëtS. MorelF. Guguen-GuillouzoC. GuillouzoA. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma heparg cells.Drug Metab. Dispos.2006341758310.1124/dmd.105.006759 16204462
    [Google Scholar]
  29. BrownM.V. ComptonS.A. MilburnM.V. LawtonK.A. CheathamB. Metabolomic signatures in lipid‐loaded HepaRGs reveal pathways involved in steatotic progression.Obesity20132112E561E57010.1002/oby.20440 23512965
    [Google Scholar]
  30. ZhaoS. XiL. QuanJ. XiH. ZhangY. von SchackD. VincentM. ZhangB. QuickRNASeq lifts large-scale RNA-seq data analyses to the next level of automation and interactive visualization.BMC Genomics20161713910.1186/s12864‑015‑2356‑9 26747388
    [Google Scholar]
  31. JamwalR. BarlockB.J. AdusumalliS. OgasawaraK. SimonsB.L. AkhlaghiF. Multiplex and label-free relative quantification approach for studying protein abundance of drug metabolizing enzymes in human liver microsomes using swath-ms.J. Proteome Res.201716114134414310.1021/acs.jproteome.7b00505 28944677
    [Google Scholar]
  32. DostalekM. MacwanJ.S. ChitnisS.D. IonitaI.A. AkhlaghiF. Development and validation of a rapid and sensitive assay for simultaneous quantification of midazolam, 1′-hydroxymidazolam, and 4-hydroxymidazolam by liquid chromatography coupled to tandem mass-spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2010878191629163310.1016/j.jchromb.2010.04.001 20434409
    [Google Scholar]
  33. StarmannJ. FälthM. SpindelböckW. LanzK.L. LacknerC. ZatloukalK. TraunerM. SültmannH. Gene expression profiling unravels cancer-related hepatic molecular signatures in steatohepatitis but not in steatosis.PLoS One20127104658410.1371/journal.pone.0046584 23071592
    [Google Scholar]
  34. StepanovaM. HossainN. AfendyA. PerryK. GoodmanZ.D. BaranovaA. YounossiZ. Hepatic gene expression of Caucasian and African-American patients with obesity-related non-alcoholic fatty liver disease.Obes. Surg.201020564065010.1007/s11695‑010‑0078‑2 20119733
    [Google Scholar]
  35. YounossiZ.M. GorretaF. OngJ.P. SchlauchK. Del GiaccoL. ElarinyH. Van MeterA. YounoszaiA. GoodmanZ. BaranovaA. ChristensenA. GrantG. ChandhokeV. Hepatic gene expression in patients with obesity‐related non‐alcoholic steatohepatitis.Liver Int.200525476077110.1111/j.1478‑3231.2005.01117.x 15998427
    [Google Scholar]
  36. SaravanakumarA. SadighiA. RyuR. AkhlaghiF. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: A systematic review of the top 200 most prescribed drugs vs. the fda-approved drugs between 2005 and 2016.Clin. Pharmacokinet.201958101281129410.1007/s40262‑019‑00750‑8 30972694
    [Google Scholar]
  37. AljomahG. BakerS.S. LiuW. KozielskiR. OluwoleJ. LupuB. BakerR.D. ZhuL. Induction of CYP2E1 in non-alcoholic fatty liver diseases.Exp. Mol. Pathol.201599367768110.1016/j.yexmp.2015.11.008 26551085
    [Google Scholar]
  38. RubinK. JanefeldtA. AnderssonL. BerkeZ. GrimeK. AnderssonT.B. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes.Drug Metab. Dispos.201543111912510.1124/dmd.114.059246 25371393
    [Google Scholar]
  39. ParafatiM. KirbyR.J. KhorasanizadehS. RastinejadF. MalanyS. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis.Dis. Model. Mech.2018119dmm03353010.1242/dmm.033530 30254132
    [Google Scholar]
  40. AnthérieuS. RogueA. FromentyB. GuillouzoA. RobinM.A. Induction of vesicular steatosis by amiodarone and tetracycline is associated with up-regulation of lipogenic genes in heparg cells.Hepatology20115361895190510.1002/hep.24290 21391224
    [Google Scholar]
  41. RogueA. AnthérieuS. VluggensA. UmbdenstockT. ClaudeN. de la Moureyre-SpireC. WeaverR.J. GuillouzoA. PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells.Toxicol. Appl. Pharmacol.20142761738110.1016/j.taap.2014.02.001 24534255
    [Google Scholar]
  42. DaveT. TillesA.W. VemulaM. A cell-based assay to investigate hypolipidemic effects of nonalcoholic fatty liver disease therapeutics.SLAS Discov.201823327428210.1177/2472555217741077 29132235
    [Google Scholar]
  43. Chavez-TapiaN.C. RossoN. TiribelliC. Effect of intracellular lipid accumulation in a new model of non-alcoholic fatty liver disease.BMC Gastroenterol.20121212010.1186/1471‑230X‑12‑20 22380754
    [Google Scholar]
  44. ArayaJ. RodrigoR. VidelaL.A. ThielemannL. OrellanaM. PettinelliP. PoniachikJ. Increase in long-chain polyunsaturated fatty acid n−6/n−3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease.Clin. Sci.2004106663564310.1042/CS20030326 14720121
    [Google Scholar]
  45. MontellE. TuriniM. MarottaM. RobertsM. NoéV. CiudadC.J. MacéK. Gómez-FoixA.M. DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells.Am. J. Physiol. Endocrinol. Metab.20012802E229E23710.1152/ajpendo.2001.280.2.E229 11158925
    [Google Scholar]
  46. WeiY. WangD. PagliassottiM.J. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells.Mol. Cell. Biochem.20073031-210511310.1007/s11010‑007‑9461‑2 17426927
    [Google Scholar]
  47. LakeA.D. NovakP. FisherC.D. JacksonJ.P. HardwickR.N. BillheimerD.D. KlimeckiW.T. CherringtonN.J. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease.Drug Metab. Dispos.201139101954196010.1124/dmd.111.040592 21737566
    [Google Scholar]
  48. FisherC.D. LickteigA.J. AugustineL.M. Ranger-MooreJ. JacksonJ.P. FergusonS.S. CherringtonN.J. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease.Drug Metab. Dispos.200937102087209410.1124/dmd.109.027466 19651758
    [Google Scholar]
  49. HardwickR.N. FerreiraD.W. MoreV.R. LakeA.D. LuZ. ManautouJ.E. SlittA.L. CherringtonN.J. Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease.Drug Metab. Dispos.201341355456110.1124/dmd.112.048439 23223517
    [Google Scholar]
  50. WangK. ChenX. WardS.C. LiuY. OuedraogoY. XuC. CederbaumA.I. LuY. CYP2A6 is associated with obesity: Studies in human samples and a high fat diet mouse model.Int. J. Obes.201943347548610.1038/s41366‑018‑0037‑x 29568101
    [Google Scholar]
  51. LelouëtH. BechtelY.C. PaintaudG. BrientiniM.P. MiguetJ.P. BechtelP.R. Caffeine metabolism in a group of 67 patients with primary biliary cirrhosis.Int. J. Clin. Pharmacol. Ther.2001391253210.5414/CPP39025 11204934
    [Google Scholar]
  52. RaunioH. JuvonenR. PasanenM. PelkonenO. PääkköP. SoiniY. Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma.Hepatology199827242743210.1002/hep.510270217 9462641
    [Google Scholar]
  53. KusunokiY. IkarashiN. HayakawaY. IshiiM. KonR. OchiaiW. MachidaY. SugiyamaK. Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis.Eur. J. Pharm. Sci.201454172710.1016/j.ejps.2013.12.019 24413062
    [Google Scholar]
  54. WoolseyS.J. MansellS.E. KimR.B. TironaR.G. BeatonM.D. CYP3A activity and expression in nonalcoholic fatty liver disease.Drug Metab. Dispos.201543101484149010.1124/dmd.115.065979 26231377
    [Google Scholar]
  55. TannerN. KubikL. LuckertC. ThomasM. HofmannU. ZangerU.M. BöhmertL. LampenA. BraeuningA. Regulation of drug metabolism by the interplay of inflammatory signaling, steatosis, and xeno-sensing receptors in HepaRG cells.Drug Metab. Dispos.201846432633510.1124/dmd.117.078675 29330220
    [Google Scholar]
  56. DiraisonF. MoulinP. BeylotM. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease.Diabetes Metab.200329547848510.1016/S1262‑3636(07)70061‑7 14631324
    [Google Scholar]
  57. BitterA. RümmeleP. KleinK. KandelB.A. RiegerJ.K. NüsslerA.K. ZangerU.M. TraunerM. SchwabM. BurkO. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.Arch. Toxicol.201589112089210310.1007/s00204‑014‑1348‑x 25182422
    [Google Scholar]
  58. McManamanJ.L. BalesE.S. OrlickyD.J. JackmanM. MacLeanP.S. CainS. CrunkA.E. MansurA. GrahamC.E. BowmanT.A. GreenbergA.S. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease.J. Lipid Res.20135451346135910.1194/jlr.M035063 23402988
    [Google Scholar]
  59. Fierbinteanu-BraticeviciC. BaicusC. TribusL. PapacoceaR. Predictive factors for nonalcoholic steatohepatitis (NASH) in patients with nonalcoholic fatty liver disease (NAFLD).J. Gastrointestin. Liver Dis.2011202153159 21725512
    [Google Scholar]
  60. JadahoS.B. YangR.Z. LinQ. HuH. AnaniaF.A. ShuldinerA.R. GongD.W. Murine alanine aminotransferase: CDNA cloning, functional expression, and differential gene regulation in mouse fatty liver.Hepatology20043951297130210.1002/hep.20182 15122758
    [Google Scholar]
  61. JoverR. MoyaM. Gómez-LechónM. Transcriptional regulation of cytochrome p450 genes by the nuclear receptor hepatocyte nuclear factor 4-alpha.Curr. Drug Metab.200910550851910.2174/138920009788898000 19689247
    [Google Scholar]
  62. HayhurstG.P. LeeY.H. LambertG. WardJ.M. GonzalezF.J. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis.Mol. Cell. Biol.20012141393140310.1128/MCB.21.4.1393‑1403.2001 11158324
    [Google Scholar]
  63. SuppliM.P. RigboltK.T.G. VeidalS.S. HeebøllS. EriksenP.L. DemantM. BaggerJ.I. NielsenJ.C. OróD. ThraneS.W. LundA. StrandbergC. KønigM.J. VilsbøllT. VrangN. ThomsenK.L. GrønbækH. JelsingJ. HansenH.H. KnopF.K. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals.Am. J. Physiol. Gastrointest. Liver Physiol.20193164G462G47210.1152/ajpgi.00358.2018 30653341
    [Google Scholar]
  64. KakinoS. OhkiT. NakayamaH. YuanX. OtabeS. HashinagaT. WadaN. KuritaY. TanakaK. HaraK. SoejimaE. TajiriY. YamadaK. Pivotal role of TNF-α in the development and progression of nonalcoholic fatty liver disease in a murine model.Horm. Metab. Res.2018501808710.1055/s‑0043‑118666 28922680
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002381234250727004847
Loading
/content/journals/cdm/10.2174/0113892002381234250727004847
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test