Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Introduction

CYP1B1, a crucial drug-metabolizing enzyme, metabolizes both endogenous compounds and clinical drugs. The present study investigated the effects of CYP1B1 on the proliferation, migration, apoptosis, and ferroptosis of HCC cells. It further elucidated the regulatory role of m6A modification particularly the methyltransferase METTL14 in regulating CYP1B1 mRNA stability and translation efficiency.

Methods

CCK-8, colony formation, wound healing, and transwell assays were employed to assess the role of CYP1B1 in HCC cell proliferation and migration. Ferroptosis-related assays, Western blot analysis, RNA immunoprecipitation, and RNA stability assays were conducted to elucidate the underlying molecular mechanisms. The Hepatocellular Carcinoma Database (HCCDB) was utilized for gene expression analysis of CYP1B1 and METTL14.

Results

Upregulated CYP1B1 in HCC inhibits ferroptosis and promotes cell proliferation by mediating GPX4, without significantly affecting HCC cell migration or apoptosis. METTL14-mediated m6A modification negatively regulates CYP1B1 expression in HCC. Specifically, METTL14 (downregulated in HCC) catalyzes m6A methylation of CYP1B1 mRNA, reducing its stability, while YTHDF3 binds to CYP1B1 mRNA to decrease its expression.

Discussion

These findings established a functional link between drug metabolism, m6A epigenetics, and iron-dependent cell death in HCC, highlighting CYP1B1 and its upstream m6A machinery as potential targets for developing precision therapies that enhance ferroptosis sensitivity in HCC. The clinical relevance of the identified molecular mechanisms necessitates additional in-depth exploration.

Conclusion

CYP1B1 promotes HCC cell proliferation by regulating GPX4-mediated ferroptosis resistance, while METTL14-mediated m6A modification serves as a key negative regulatory mechanism for CYP1B1. Targeting CYP1B1 as a therapeutic strategy holds substantial promise for future drug development in HCC.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002387502250714112923
2025-08-13
2026-02-02
Loading full text...

Full text loading...

References

  1. HuangD.Q. SingalA.G. KanwalF. LamperticoP. ButiM. SirlinC.B. NguyenM.H. LoombaR. Hepatocellular carcinoma surveillance — utilization, barriers and the impact of changing aetiology.Nat. Rev. Gastroenterol. Hepatol.2023201279780910.1038/s41575‑023‑00818‑8 37537332
    [Google Scholar]
  2. HuiS. BellS. LeS. DevA. Hepatocellular carcinoma surveillance in Australia: Current and future perspectives.Med. J. Aust2023219943243810.5694/mja2.52124 37803907
    [Google Scholar]
  3. SingalA.G. KanwalF. LlovetJ.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy.Nat. Rev. Clin. Oncol.2023201286488410.1038/s41571‑023‑00825‑3 37884736
    [Google Scholar]
  4. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  5. LiF. ZhuW. GonzalezF.J. Potential role of CYP1B1 in the development and treatment of metabolic diseases.Pharmacol. Ther.2017178183010.1016/j.pharmthera.2017.03.007 28322972
    [Google Scholar]
  6. D’UvaG. BaciD. AlbiniA. NoonanD.M. Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment.Cancer Treat. Rev.20186311810.1016/j.ctrv.2017.10.013 29197745
    [Google Scholar]
  7. LarsenM.C. AngusW.G. BrakeP.B. EltomS.E. SukowK.A. JefcoateC.R. Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial cells: role of the aryl hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism.Cancer Res.1998581123662374 9622076
    [Google Scholar]
  8. GibsonP. GillJ.H. KhanP.A. SeargentJ.M. MartinS.W. BatmanP.A. GriffithJ. BradleyC. DoubleJ.A. BibbyM.C. LoadmanP.M. Cytochrome P450 1B1 (CYP1B1) is overexpressed in human colon adenocarcinomas relative to normal colon: implications for drug development.Mol. Cancer Ther.200326527534 12813131
    [Google Scholar]
  9. TokizaneT. ShiinaH. IgawaM. EnokidaH. UrakamiS. KawakamiT. OgishimaT. OkinoS.T. LiL.C. TanakaY. NonomuraN. OkuyamaA. DahiyaR. Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer.Clin. Cancer Res.200511165793580110.1158/1078‑0432.CCR‑04‑2545 16115918
    [Google Scholar]
  10. KwonY.J. BaekH.S. YeD.J. ShinS. KimD. ChunY.J. CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of WNT/beta-catenin signaling via SP1 upregulation.PLoS One2016113e015159810.1371/journal.pone.0151598 26981862
    [Google Scholar]
  11. KwonY.J. KwonT.U. ShinS. LeeB. LeeH. ParkH. KimD. MoonA. ChunY.J. Enhancing the invasive traits of breast cancers by CYP1B1 via regulation of p53 to promote uPAR expression.Biochim. Biophys. Acta Mol. Basis Dis.20241870116686810.1016/j.bbadis.2023.166868 37661069
    [Google Scholar]
  12. StockwellB.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications.Cell.2022185142401242110.1016/j.cell.2022.06.003 35803244
    [Google Scholar]
  13. XuQ. RenL. RenN. YangY. PanJ. ZhengY. WangG. Ferroptosis: A new promising target for hepatocellular carcinoma therapy.Mol. Cell. Biochem.2024479102615263610.1007/s11010‑023‑04893‑y 38051404
    [Google Scholar]
  14. ShenY. LiX. ZhaoB. XueY. WangS. ChenX. YangJ. LvH. ShangP. Iron metabolism gene expression and prognostic features of hepatocellular carcinoma.J. Cell. Biochem.2018119119178920410.1002/jcb.27184 30076742
    [Google Scholar]
  15. LiangJ. WangD. LinH. ChenX. YangH. ZhengY. LiY. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma.Int. J. Biol. Sci.202016132430244110.7150/ijbs.45050 32760210
    [Google Scholar]
  16. TangB. ZhuJ. LiJ. FanK. GaoY. ChengS. KongC. ZhengL. WuF. WengQ. LuC. JiJ. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma.Cell. Commun. Signal.202018117410.1186/s12964‑020‑00663‑1 33115468
    [Google Scholar]
  17. LiuZ. WangL. LiuL. LuT. JiaoD. SunY. HanX. The identification and validation of two heterogenous subtypes and a risk signature based on ferroptosis in hepatocellular carcinoma.Front. Oncol.20211161924210.3389/fonc.2021.619242 33738257
    [Google Scholar]
  18. MoY. ZouZ. ChenE. Targeting ferroptosis in hepatocellular carcinoma.Hepatol. Int.2024181324910.1007/s12072‑023‑10593‑y 37880567
    [Google Scholar]
  19. SongY.S. ZaitounI.S. WangS. DarjatmokoS.R. SorensonC.M. SheibaniN. Cytochrome P450 1B1 expression regulates intracellular iron levels and oxidative stress in the retinal endothelium.Int. J. Mol. Sci.2023243242010.3390/ijms24032420 36768740
    [Google Scholar]
  20. ChenC. YangY. GuoY. HeJ. ChenZ. QiuS. ZhangY. DingH. PanJ. PanY. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer.Cell. Death Dis.202314427110.1038/s41419‑023‑05803‑2 37059712
    [Google Scholar]
  21. BoccalettoP. StefaniakF. RayA. CappanniniA. MukherjeeS. PurtaE. KurkowskaM. ShirvanizadehN. DestefanisE. GrozaP. AvşarG. RomitelliA. PirP. DassiE. ConticelloS.G. AguiloF. BujnickiJ.M. MODOMICS: A database of RNA modification pathways. 2021 update.Nucleic Acids Res.202250D1D231D23510.1093/nar/gkab1083 34893873
    [Google Scholar]
  22. ZhuZ.M. HuoF.C. ZhangJ. ShanH.J. PeiD.S. Crosstalk between m 6 A modification and alternative splicing during cancer progression.Clin. Transl. Med.20231310e146010.1002/ctm2.1460 37850412
    [Google Scholar]
  23. TangQ. LiL. WangY. WuP. HouX. OuyangJ. FanC. LiZ. WangF. GuoC. ZhouM. LiaoQ. WangH. XiangB. JiangW. LiG. ZengZ. XiongW. RNA modifications in cancer.Br. J. Cancer2023129220422110.1038/s41416‑023‑02275‑1 37095185
    [Google Scholar]
  24. LiY. QiuY. LiM. ShenM. ZhangF. ShaoJ. XuX. ZhangZ. ZhengS. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma.Acta. Pharmacol. Sin20244561130114110.1038/s41401‑023‑01214‑3 38195693
    [Google Scholar]
  25. MaJ. YangF. ZhouC. LiuF. YuanJ. WangF. WangT. XuQ. ZhouW. SunS. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N 6 ‐methyladenosine‐dependent primary MicroRNA processing.Hepatology201765252954310.1002/hep.28885 27774652
    [Google Scholar]
  26. SunT. WuZ. WangX. WangY. HuX. QinW. LuS. XuD. WuY. ChenQ. DingX. GuoH. LiY. WangY. FuB. YaoW. WeiM. WuH. LNC942 promoting METTL14-mediated m 6 A methylation in breast cancer cell proliferation and progression.Oncogene202039315358537210.1038/s41388‑020‑1338‑9 32576970
    [Google Scholar]
  27. XieQ. LiZ. LuoX. WangD. ZhouY. ZhaoJ. GaoS. YangY. FuW. KongL. SunT. piRNA-14633 promotes cervical cancer cell malignancy in a METTL14-dependent m 6 A RNA methylation manner.J. Transl. Med.20222015110.1186/s12967‑022‑03257‑2 35093098
    [Google Scholar]
  28. LiJ. LiZ. BaiX. ChenX. WangM. WuY. WuH. LncRNA UCA1 promotes the progression of AML by upregulating the expression of CXCR4 and CYP1B1 by affecting the stability of METTL14.J. Oncol.2022202211310.1155/2022/2756986 35178087
    [Google Scholar]
  29. LeeJ. RohJ.L. SLC7A11 as a gateway of metabolic perturbation and ferroptosis vulnerability in cancer.Antioxidants20221112244410.3390/antiox11122444 36552652
    [Google Scholar]
  30. DingK. LiuC. LiL. YangM. JiangN. LuoS. SunL. Acyl-CoA synthase ACSL4: An essential target in ferroptosis and fatty acid metabolism.Chin. Med. J.2023136212521253710.1097/CM9.0000000000002533 37442770
    [Google Scholar]
  31. ZengL. HuangX. ZhangJ. LinD. ZhengJ. Roles and implications of mRNA N 6‐methyladenosine in cancer.Cancer Commun202343772974810.1002/cac2.12458 37350762
    [Google Scholar]
  32. Ramesh-KumarD. GuilS. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer.Semin. Cancer Biol.202286Pt 3183110.1016/j.semcancer.2022.05.009 35643219
    [Google Scholar]
  33. SikorskiV. SelbergS. LalowskiM. KarelsonM. KankuriE. The structure and function of YTHDF epitranscriptomic m 6 A readers.Trends Pharmacol. Sci.202344633535310.1016/j.tips.2023.03.004 37069041
    [Google Scholar]
  34. YuanB. LiuG. DaiZ. WangL. LinB. ZhangJ. CYP1B1: A novel molecular biomarker predicts molecular subtype, tumor microenvironment, and immune response in 33 cancers.Cancers20221422564110.3390/cancers14225641 36428734
    [Google Scholar]
  35. XieY. KangR. KlionskyD.J. TangD. GPX4 in cell death, autophagy, and disease.Autophagy202319102621263810.1080/15548627.2023.2218764 37272058
    [Google Scholar]
  36. LiX. QuanP. SiY. LiuF. FanY. DingF. SunL. LiuH. HuangS. SunL. YangF. YaoL. The microRNA-211-5p/P2RX7/ERK/GPX4 axis regulates epilepsy-associated neuronal ferroptosis and oxidative stress.J. Neuroinflammation20242111310.1186/s12974‑023‑03009‑z 38191407
    [Google Scholar]
  37. HeG.N. BaoN.R. WangS. XiM. ZhangT.H. ChenF.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4.Drug Des. Devel. Ther.2021153965397810.2147/DDDT.S332847 34566408
    [Google Scholar]
  38. YueS.W. LiuH.L. SuH.F. LuoC. LiangH.F. ZhangB.X. ZhangW. m 6 A-regulated tumor glycolysis: New advances in epigenetics and metabolism.Mol. Cancer202322113710.1186/s12943‑023‑01841‑8 37582735
    [Google Scholar]
  39. GuanQ. LinH. MiaoL. GuoH. ChenY. ZhuoZ. HeJ. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer.J. Hematol. Oncol.20221511310.1186/s13045‑022‑01231‑5 35115038
    [Google Scholar]
  40. PolyzosS.A. ChrysavgisL. VachliotisI.D. ChartampilasE. CholongitasE. Nonalcoholic fatty liver disease and hepatocellular carcinoma: Insights in epidemiology, pathogenesis, imaging, prevention and therapy.Semin. Cancer Biol.202393203510.1016/j.semcancer.2023.04.010 37149203
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002387502250714112923
Loading
/content/journals/cdm/10.2174/0113892002387502250714112923
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CYP1B1; drug-metabolizing; ferroptosis; HCC; m6A; machinery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test