Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

A majority of the global population suffers from eye diseases, but few effective treatment options are available with ophthalmic drug therapies. The reasons that have been identified are (1) lack of awareness about the options for treatments, drugs, polymeric science, or physiological barriers, (2) limitations in bringing drug therapies to the posterior segment of the eye due to physiological or anatomical limitations, and (3) regulatory and production difficulties of ocular drug products. Innovative ocular medication delivery and therapies are covered in this study, including hydrogels, nano micelles, implants, nanoparticles, microparticles, liposomes, gels, and microneedles. Moreover, due to their potential to capture both hydrophilic and lipophilic medications, increase ocular permeability, prolong the period of residence, enhance drug stability, and increase bioavailability, this review includes nanotechnology-based carriers. The research encompassed various eye disorders, obstacles to ocular delivery, multiple ocular administration routes, a range of nanostructured platforms, characterization approaches, methods to improve ocular delivery, and emerging technologies. This review aims to provide information on the anatomy of the eye, various ocular conditions, and obstacles to ocular delivery. The benefits and drawbacks of various ocular dose forms or delivery techniques are also evaluated. Finally, it describes methods for increasing ocular bioavailability.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002384586250731104453
2025-08-25
2026-02-02
Loading full text...

Full text loading...

References

  1. AhmedS. AminM.M. SayedS. Ocular drug delivery: A comprehensive review.AAPS PharmSciTech20232426610.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  2. PengC. KuangL. ZhaoJ. RossA.E. WangZ. CiolinoJ.B. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020.J. Control. Release202234562564510.1016/j.jconrel.2022.03.031 35321827
    [Google Scholar]
  3. ZhangX. WeiD. XuY. ZhuQ. Hyaluronic acid in ocular drug delivery.Carbohydr. Polym.202126411800610.1016/j.carbpol.2021.118006 33910737
    [Google Scholar]
  4. AllynM.M. LuoR.H. HellwarthE.B. Swindle-ReillyK.E. Considerations for polymers used in ocular drug delivery.Front. Med.2022878764410.3389/fmed.2021.787644 35155469
    [Google Scholar]
  5. MandalS. ShivaK. KumarK.P. GoelS. PatelR.K. SharmaS. ChaudharyR. BhatiA. PalN. DixitA.K. Ocular drug delivery system (ODDS): Exploration the challenges and approaches to improve ODDS.J. Pharma Biolog Sci.202192889410.18231/j.jpbs.2021.012
    [Google Scholar]
  6. WangQ. ZhangA. ZhuL. YangX. FangG. TangB. Cyclodextrin-based ocular drug delivery systems: A comprehensive review.Coord. Chem. Rev.202347621491910.1016/j.ccr.2022.214919
    [Google Scholar]
  7. TiwariR. SethiyaN.K. GulbakeA.S. MehraN.K. MurtyU.S.N. GulbakeA. A review on albumin as a biomaterial for ocular drug delivery.Int. J. Biol. Macromol.202119159159910.1016/j.ijbiomac.2021.09.112 34562538
    [Google Scholar]
  8. ChandraN.S. GorantlaS. PriyaS. SinghviG. Insight on updates in polysaccharides for ocular drug delivery.Carbohydr. Polym.202229712001410.1016/j.carbpol.2022.120014 36184137
    [Google Scholar]
  9. TsungT.H. ChenY.H. LuD.W. Updates on biodegradable formulations for ocular drug delivery.Pharmaceutics202315373410.3390/pharmaceutics15030734 36986595
    [Google Scholar]
  10. TundisiL.L. MostaçoG.B. CarricondoP.C. PetriD.F.S. Hydroxypropyl methylcellulose: Physicochemical properties and ocular drug delivery formulations.Eur. J. Pharm. Sci.202115910573610.1016/j.ejps.2021.105736 33516807
    [Google Scholar]
  11. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age‐related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.201620161316473410.1155/2016/3164734 26881021
    [Google Scholar]
  12. YangY. LockwoodA. Topical ocular drug delivery systems: Innovations for an unmet need.Exp. Eye Res.202221810900610.1016/j.exer.2022.109006 35248559
    [Google Scholar]
  13. BoccuniI. FairlessR. Retinal glutamate neurotransmission: From physiology to pathophysiological mechanisms of retinal ganglion cell degeneration.Life202212563810.3390/life12050638 35629305
    [Google Scholar]
  14. KannanR.M. PithaI. ParikhK.S. A new era in posterior segment ocular drug delivery: Translation of systemic, cell-targeted, dendrimer-based therapies.Adv. Drug Deliv. Rev.202320011500510.1016/j.addr.2023.115005 37419213
    [Google Scholar]
  15. HuangD. ChenY.S. RupenthalI.D. Overcoming ocular drug delivery barriers through the use of physical forces.Adv. Drug Deliv. Rev.20181269611210.1016/j.addr.2017.09.008 28916492
    [Google Scholar]
  16. AbdelmohsenH.A.M. CopelandN.A. HardyJ.G. Light-responsive biomaterials for ocular drug delivery.Drug Deliv. Transl. Res.20231382159218210.1007/s13346‑022‑01196‑5 35751001
    [Google Scholar]
  17. BisenA.C. SrivastavaS. MishraA. SanapS.N. BiswasA. ChoudhuryA.D. DubeyA. GuptaN.M. YadavK.S. MugaleM.N. BhattaR.S. Pharmaceutical emulsions: A viable approach for ocular drug delivery.J. Ocul. Pharmacol. Ther.202440526128010.1089/jop.2023.0166 38654153
    [Google Scholar]
  18. Casey-PowerS. RyanR. BehlG. McLoughlinP. ByrneM.E. FitzhenryL. Hyaluronic acid: Its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes.Pharmaceutics2022147147910.3390/pharmaceutics14071479 35890371
    [Google Scholar]
  19. LiS. ChenL. FuY. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects.J. Nanobiotechnol202321123210.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  20. FormicaM.L. Awde AlfonsoH.G. PalmaS.D. Biological drug therapy for ocular angiogenesis: Anti‐VEGF agents and novel strategies based on nanotechnology.Pharmacol. Res. Perspect.2021920072310.1002/prp2.723 33694304
    [Google Scholar]
  21. ForresterJ.V. KuffovaL. DelibegovicM. The role of inflammation in diabetic retinopathy.Front. Immunol.20201158368710.3389/fimmu.2020.583687 33240272
    [Google Scholar]
  22. WuY. LiX. FuX. HuangX. ZhangS. ZhaoN. MaX. SaidingQ. YangM. TaoW. ZhouX. HuangJ. Innovative nanotechnology in drug delivery systems for advanced treatment of posterior segment ocular diseases.Adv. Sci.20241132240339910.1002/advs.202403399 39031809
    [Google Scholar]
  23. ChenX. ShiC. HeM. XiongS. XiaX. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets.Signal Transduct. Target. Ther.20238135210.1038/s41392‑023‑01570‑w 37709773
    [Google Scholar]
  24. KaurS. SohnenP. SwamynathanS. DuY. EspanaE.M. SwamynathanS.K. Molecular nature of ocular surface barrier function, diseases that affect it, and its relevance for ocular drug delivery.Ocul. Surf.20233031310.1016/j.jtos.2023.08.001 37543173
    [Google Scholar]
  25. SrivastavaV. SinghV. Kumar KhatriD. Kumar MehraN. Recent trends and updates on ultradeformable and elastic vesicles in ocular drug delivery.Drug Discov. Today202328810364710.1016/j.drudis.2023.103647 37263389
    [Google Scholar]
  26. ZhangY. XiaoZ. LiQ. KeY. GuX. PanK. LongQ. GuoY. YuX. TengX. LiuL. HeL. HouD. A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects.Int. J. Pharm.202567012515010.1016/j.ijpharm.2024.125150 39746582
    [Google Scholar]
  27. ClippingerA.J. RaabeH.A. AllenD.G. ChoksiN.Y. van der ZalmA.J. KleinstreuerN.C. BarrosoJ. LowitA.B. Human-relevant approaches to assess eye corrosion/irritation potential of agrochemical formulations.Cutan. Ocul. Toxicol.202140214516710.1080/15569527.2021.1910291 33830843
    [Google Scholar]
  28. LiangZ. ZhangZ. LuP. YangJ. HanL. LiuS. ZhouT. LiJ. ZhangJ. The effect of charges on the corneal penetration of solid lipid nanoparticles loaded Econazole after topical administration in rabbits.Eur. J. Pharm. Sci.202318710649410.1016/j.ejps.2023.106494 37315870
    [Google Scholar]
  29. DoctorM.B. BasuS. Lacrimal gland insufficiency in aqueous deficiency dry eye disease: Recent advances in pathogenesis, diagnosis, and treatment.Semin. Ophthalmol.2022377-880181210.1080/08820538.2022.2075706 35587465
    [Google Scholar]
  30. ChandelA. KandavG. Insights into ocular therapeutics: A comprehensive review of anatomy, barriers, diseases and nanoscale formulations for targeted drug delivery.J. Drug Deliv. Sci. Technol.20249710578510.1016/j.jddst.2024.105785
    [Google Scholar]
  31. ChenK. JinL. WenY. YangQ. LiX. ZhangL. WangL. XiaY. ChenZ. XieC. TongJ. ShenY. Blue light impairs cornea and corneal wound healing by downregulating VCAM1 partly.iScience2023261210844810.1016/j.isci.2023.108448 38034364
    [Google Scholar]
  32. BertschP. BergfreundJ. WindhabE.J. FischerP. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense.Acta Biomater.2021130325310.1016/j.actbio.2021.05.051 34077806
    [Google Scholar]
  33. SantanaC.P. MatterB.A. PatilM.A. Silva-CunhaA. KompellaU.B. Corneal permeability and uptake of twenty-five drugs: Species comparison and quantitative structure–permeability relationships.Pharmaceutics2023156164610.3390/pharmaceutics15061646 37376094
    [Google Scholar]
  34. SeethamrajuS.M. NoriL.P. Obstruction and approaches to cross the drug molecules through blood retinal barrier: An overview.Pharmacophore2024154203210.51847/TBlH98sXcQ
    [Google Scholar]
  35. KhizerZ. SadiaA. SharmaR. FarhajS. NirwanJ.S. KakadiaP.G. HussainT. YousafA.M. ShahzadY. ConwayB.R. GhoriM.U. Drug delivery approaches for managing overactive bladder (OAB).A systematic review. Pharmaceuticals202114540910.3390/ph14050409 33925860
    [Google Scholar]
  36. NagymihályR. NemeshY. ArdanT. MotlikJ. EidetJR MoeMC BergersenLH LytvynchukL. Petrovski, G Chapter Four - The retinal pigment epithelium: At the forefront of the blood-retinal barrier in physiology and disease.In: Tissue Barriers in Disease, Injury and Regeneration. GorbunovNV Amsterdam, NetherlandsElsevier202111514610.1016/B978‑0‑12‑818561‑2.00003‑5
    [Google Scholar]
  37. YangC. YangJ. LuA. GongJ. YangY. LinX. LiM. XuH. Nanoparticles in ocular applications and their potential toxicity.Front. Mol. Biosci.2022993175910.3389/fmolb.2022.931759 35911959
    [Google Scholar]
  38. Casey-PowerS. RyanR. BehlG. McLoughlinP. ByrneM.E. FitzhenryL. Hyaluronic acid: Its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes.Pharmaceutics2022147147910.3390/pharmaceutics14071479 35890371
    [Google Scholar]
  39. AllynM.M. LuoR.H. HellwarthE.B. Swindle-ReillyK.E. Considerations for polymers used in ocular drug delivery.Front. Med.2022878764410.3389/fmed.2021.787644 35155469
    [Google Scholar]
  40. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials202111117310.3390/nano11010173 33445545
    [Google Scholar]
  41. KalamM.A. IqbalM. AlshememryA. AlkholiefM. AlshamsanA. Development and evaluation of chitosan nanoparticles for ocular delivery of tedizolid phosphate.Molecules2022277232610.3390/molecules27072326 35408724
    [Google Scholar]
  42. KaviarasiB. RajanaN. PoojaY.S. RajalakshmiA.N. SinghS.B. MehraN.K. Investigating the effectiveness of Difluprednate-Loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery.Int. J. Pharm.202364012300610.1016/j.ijpharm.2023.123006 37137420
    [Google Scholar]
  43. JacobS. NairA.B. ShahJ. GuptaS. BodduS.H.S. SreeharshaN. JosephA. ShinuP. MorsyM.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances.Pharmaceutics202214353310.3390/pharmaceutics14030533 35335909
    [Google Scholar]
  44. Galindo-CamachoR.M. HaroI. GómaraM.J. EspinaM. FonsecaJ. Martins-GomesC. CaminsA. SilvaA.M. GarcíaM.L. SoutoE.B. Cell penetrating peptides-functionalized Licochalcone-A-loaded PLGA nanoparticles for ocular inflammatory diseases: Evaluation of in vitro anti-proliferative effects, stabilization by freeze-drying and characterization of an in-situ forming gel.Int. J. Pharm.202363912298210.1016/j.ijpharm.2023.122982 37116598
    [Google Scholar]
  45. López-CanoJ.J. González-Cela-CasamayorM.A. Andrés-GuerreroV. Herrero-VanrellR. Molina-MartínezI.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection.Expert Opin. Drug Deliv.202118781984710.1080/17425247.2021.1872542 33412914
    [Google Scholar]
  46. MoiseevR.V. KaldybekovD.B. FilippovS.K. RadulescuA. KhutoryanskiyV.V. Maleimide-decorated PEGylated mucoadhesive liposomes for ocular drug delivery.Langmuir20223845138701387910.1021/acs.langmuir.2c02086 36327096
    [Google Scholar]
  47. TasharrofiN. NouroziM. MarzbanA. How liposomes pave the way for ocular drug delivery after topical administration.J. Drug Deliv. Sci. Technol.20226710304510.1016/j.jddst.2021.103045
    [Google Scholar]
  48. QiaoH. XuZ. SunM. FuS. ZhaoF. WangD. HeZ. ZhaiY. SunJ. Rebamipide liposome as an effective ocular delivery system for the management of dry eye disease.J. Drug Deliv. Sci. Technol.20227510365410.1016/j.jddst.2022.103654
    [Google Scholar]
  49. BoseA. MajumdarS. HalderA. Liposomal drug delivery for glaucoma: Recent advancement in ocular therapy.Res. J. Pharma Tech.20241741741174710.52711/0974‑360X.2024.00276
    [Google Scholar]
  50. SoniP.K. SainiT.R. Formulation design and optimization of cationic-charged liposomes of brimonidine tartrate for effective ocular drug delivery by design of experiment (DoE) approach.Drug Dev. Ind. Pharm.202147111847186610.1080/03639045.2022.2070198 35484943
    [Google Scholar]
  51. LuP. LiangZ. ZhangZ. YangJ. SongF. ZhouT. LiJ. ZhangJ. Novel nanomicelle butenafine formulation for ocular drug delivery against fungal keratitis: In vitro and In vivo study.Eur. J. Pharm. Sci.202419210662910.1016/j.ejps.2023.106629 37918544
    [Google Scholar]
  52. KulkarniM.B. VelmuruganK. NirmalJ. GoelS. Development of dexamethasone loaded nanomicelles using a 3D printed microfluidic device for ocular drug delivery applications.Sens. Actuators A Phys.202335711438510.1016/j.sna.2023.114385
    [Google Scholar]
  53. MehraN. AqilM. SultanaY. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study.Eur. J. Pharm. Sci.202115910573510.1016/j.ejps.2021.105735 33516808
    [Google Scholar]
  54. TerreniE. ZucchettiE. TampucciS. BurgalassiS. MontiD. ChetoniP. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (ODDS) for cyclosporine-A.Pharmaceutics202113219210.3390/pharmaceutics13020192 33535607
    [Google Scholar]
  55. CaiR. ZhangL. ChiH. Recent development of polymer nanomicelles in the treatment of eye diseases.Front. Bioeng. Biotechnol.202311124697410.3389/fbioe.2023.1246974 37600322
    [Google Scholar]
  56. ZaghloulN. MahmoudA.A. ElkasabgyN.A. El HoffyN.M. PLGA-modified Syloid ® -based microparticles for the ocular delivery of terconazole: In-vitro and in-vivo investigations.Drug Deliv.20222912117212910.1080/10717544.2022.2092239 35838555
    [Google Scholar]
  57. FathallaZ. FateaseA.A. AbdelkaderH. Formulation and in-vitro/ex-vivo characterization of pregelled hybrid alginate–chitosan microparticles for ocular delivery of ketorolac tromethamine.Polymers20231513277310.3390/polym15132773 37447419
    [Google Scholar]
  58. FitaihiR. AbukhameesS. OrluM. CraigD.Q.M. Transscleral delivery of dexamethasone-loaded microparticles using a dissolving microneedle array.Pharmaceutics2023156162210.3390/pharmaceutics15061622 37376071
    [Google Scholar]
  59. ChobisaD. MuniyandiA. SishtlaK. CorsonT.W. YeoY. Long‐acting microparticle formulation of griseofulvin for ocular neovascularization therapy.Small20242010230647910.1002/smll.202306479 37940612
    [Google Scholar]
  60. WeiD. PuN. LiS.Y. WangY.G. TaoY. Application of iontophoresis in ophthalmic practice: An innovative strategy to deliver drugs into the eye.Drug Deliv.2023301216573610.1080/10717544.2023.2165736 36628545
    [Google Scholar]
  61. ZhaoF. FanS. GhateD. RomanovaS. BronichT.K. ZhaoS. A hydrogel ionic circuit based high‐intensity iontophoresis device for intraocular macromolecule and nanoparticle delivery.Adv. Mater.2022345210731510.1002/adma.202107315 34716729
    [Google Scholar]
  62. ZhaoF. FanS. GhateD. RomanovaS. BronichT.K. ZhaoS. A hydrogel ionic circuit based high‐intensity iontophoresis device for intraocular macromolecule and nanoparticle delivery.Adv. Mater.2022345210731510.1002/adma.202107315 34716729
    [Google Scholar]
  63. KimS.N. MinC.H. KimY.K. HaA. ParkC.G. LeeS.H. ParkK.H. ChoyY.B. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes.Acta Biomater.2022144324110.1016/j.actbio.2022.03.015 35292414
    [Google Scholar]
  64. HelmyA.M. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs.J. Drug Deliv. Sci. Technol.20216110233210.1016/j.jddst.2021.102332
    [Google Scholar]
  65. MikołajewskaE. MikołajewskiD. Iontophoresis of the eye-a computational approach.Appl. Infor Stud Mater.20231516
    [Google Scholar]
  66. LeeS. KimS.N. LeeC. ChoyY.B. ImC.H. Multi-physics simulations for investigating the effect of electrode conditions on transscleral ocular iontophoresis for particulate drug delivery into ocular tissues.Biomed. Eng. Lett.202414343945010.1007/s13534‑024‑00359‑2 38645594
    [Google Scholar]
  67. KimS.N. MinC.H. KimB.H. LeeS. JiH.B. KimC.R. HanJ.H. Im, C.H.; Yu, H.G.; Choy, Y.B. Iontophoretic delivery of dexamethasone-loaded nanoparticles to the anterior segment of the eye.J. Ind. Eng. Chem.202211619920610.1016/j.jiec.2022.09.010
    [Google Scholar]
  68. PandeyM. ChoudhuryH. binti Abd Aziz, A.; Bhattamisra, S.K.; Gorain, B.; Su, J.S.T.; Tan, C.L.; Chin, W.Y.; Yip, K.Y. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research.Polymers2021138134010.3390/polym13081340 33923900
    [Google Scholar]
  69. PaulS. MajumdarS. ChakrabortyM. Revolutionizing ocular drug delivery: Recent advancements in in situ gel technology.Bull. Natl. Res. Cent.202347115410.1186/s42269‑023‑01123‑9
    [Google Scholar]
  70. NairA.B. ShahJ. JacobS. Al-DhubiabB.E. SreeharshaN. MorsyM.A. GuptaS. AttimaradM. ShinuP. VenugopalaK.N. Experimental design, formulation and in vivo evaluation of a novel topical in situ gel system to treat ocular infections.PLoS One2021163024885710.1371/journal.pone.0248857 33739996
    [Google Scholar]
  71. AbbasM.N. KhanS.A. SadozaiS.K. KhalilI.A. AnterA. FoulyM.E. OsmanA.H. KaziM. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis.Polymers2022146113510.3390/polym14061135 35335465
    [Google Scholar]
  72. SunK. HuK. Preparation and characterization of tacrolimus-loaded SLNs in situ gel for ocular drug delivery for the treatment of immune conjunctivitis.Drug Des. Devel. Ther.20211514115010.2147/DDDT.S287721 33469266
    [Google Scholar]
  73. LaddhaU.D. KshirsagarS.J. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences.J. Drug Deliv. Sci. Technol.20216110211210.1016/j.jddst.2020.102112
    [Google Scholar]
  74. ChaudhariP. ShettyD. LewisS.A. Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics.J. Drug Deliv. Sci. Technol.20227110332710.1016/j.jddst.2022.103327
    [Google Scholar]
  75. FangG. YangX. WangQ. ZhangA. TangB. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases.Mater. Sci. Eng. C202112711221210.1016/j.msec.2021.112212 34225864
    [Google Scholar]
  76. IlochonwuB.C. van der LugtS.A. AnnalaA. Di MarcoG. SamponT. SiepmannJ. SiepmannF. HenninkW.E. VermondenT. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment.J. Control. Release202336133434910.1016/j.jconrel.2023.07.052 37532147
    [Google Scholar]
  77. LiX. LiuH. YuA. LinD. BaoZ. WangY. LiX. Bioinspired self-assembly supramolecular hydrogel for ocular drug delivery.Chin. Chem. Lett.202132123936393910.1016/j.cclet.2021.03.037
    [Google Scholar]
  78. PalK. AnisA. NayakAK MajiS. A scientometric review of hydrogel-based ocular drug delivery systems.Adv. Challeng Pharm. Technol202151753710.1016/B978‑0‑12‑820043‑8.00011‑6
    [Google Scholar]
  79. PalP. SambhakarS. PaliwalS. Revolutionizing ophthalmic care: A review of ocular hydrogels from pathologies to therapeutic applications.Curr. Eye Res.202550111710.1080/02713683.2024.2396385 39261982
    [Google Scholar]
  80. WuD. LuoR. ChenY. ZhengZ. GuiS. HeN. Preparation, characterisation, pharmacokinetics and distribution of esculin microspheres administered via intravitreal injection into rabbit brain.Xenobiotica202454523324710.1080/00498254.2024.2341402 38638108
    [Google Scholar]
  81. Varela-FernándezR. García-OteroX. Díaz-ToméV. RegueiroU. López-LópezM. González-BarciaM. Isabel LemaM. Otero-EspinarF.J. Mucoadhesive PLGA nanospheres and nanocapsules for lactoferrin controlled ocular delivery.Pharmaceutics202214479910.3390/pharmaceutics14040799 35456633
    [Google Scholar]
  82. bigdeli, A.; Makhmalzadeh, B.S.; Feghhi, M.; SoleimaniBiatiani, E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: Formulation development and in vitro/in vivo evaluation.Drug Deliv. Transl. Res.20231341035104710.1007/s13346‑022‑01266‑8 36477776
    [Google Scholar]
  83. GuglevaV. AndonovaV. Recent progress of solid lipid nanoparticles and nanostructured lipid carriers as ocular drug delivery platforms.Pharmaceuticals202316347410.3390/ph16030474 36986574
    [Google Scholar]
  84. HippalgaonkarK. AdelliG.R. HippalgaonkarK. RepkaM.A. MajumdarS. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: Development, characterization, and in vitro evaluation.J. Ocul. Pharmacol. Ther.201329221622810.1089/jop.2012.0069 23421502
    [Google Scholar]
  85. PandeyM. ChoudhuryH. binti Abd Aziz, A.; Bhattamisra, S.K.; Gorain, B.; Su, J.S.T.; Tan, C.L.; Chin, W.Y.; Yip, K.Y. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research.Polymers2021138134010.3390/polym13081340 33923900
    [Google Scholar]
  86. AslzadS. SavadiP. AbdolahiniaE.D. OmidiY. FathiM. BararJ. Chitosan/dialdehyde starch hybrid in situ forming hydrogel for ocular delivery of betamethasone.Mater. Today Commun.20223310487310.1016/j.mtcomm.2022.104873
    [Google Scholar]
  87. MaulviF.A. DesaiD.T. ShettyK.H. ShahD.O. WillcoxM.D.P. Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery.Int. J. Pharm.202160812109010.1016/j.ijpharm.2021.121090 34530102
    [Google Scholar]
  88. KannanR.M. PithaI. ParikhK.S. A new era in posterior segment ocular drug delivery: Translation of systemic, cell-targeted, dendrimer-based therapies.Adv. Drug Deliv. Rev.202320011500510.1016/j.addr.2023.115005 37419213
    [Google Scholar]
  89. SilvaB. São BrazB. DelgadoE. GonçalvesL. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery.Int. J. Pharm.202160612087310.1016/j.ijpharm.2021.120873 34246741
    [Google Scholar]
  90. González IglesiasL.G. MessaoudiS. KaliaY.N. Non-invasive iontophoretic delivery of cytochrome c to the posterior segment and determination of its ocular biodistribution.Pharmaceutics2022149183210.3390/pharmaceutics14091832 36145581
    [Google Scholar]
  91. LiZ. LiuM. KeL. WangL.J. WuC. LiC. LiZ. WuY.L. Flexible polymeric nanosized micelles for ophthalmic drug delivery: Research progress in the last three years.Nanoscale Adv.20213185240525410.1039/D1NA00596K 36132623
    [Google Scholar]
  92. KarA. AhamadN. DewaniM. AwasthiL. PatilR. BanerjeeR. Wearable and implantable devices for drug delivery: Applications and challenges.Biomaterials202228312143510.1016/j.biomaterials.2022.121435 35227964
    [Google Scholar]
  93. DhahirR.K. Al-NimaA.M. Al-BazzazF. Nanoemulsions as ophthalmic drug delivery systems.Turk. J. Pharm. Sci.202118565266410.4274/tjps.galenos.2020.59319 34708428
    [Google Scholar]
  94. PelusiL. MandatoriD. MastropasquaL. AgnifiliL. AllegrettiM. NubileM. PandolfiA. Innovation in the development of synthetic and natural ocular drug delivery systems for eye diseases treatment: Focusing on drug-loaded ocular inserts, contacts, and intraocular lenses.Pharmaceutics202315262510.3390/pharmaceutics15020625 36839947
    [Google Scholar]
  95. LamL.A. MehtaS. LadE.M. EmersonG.G. JumperJ.M. AwhC.C. Intravitreal injection therapy: Current techniques and supplemental services.J. Vitreoretin. Dis.20215543844710.1177/24741264211028441 37008713
    [Google Scholar]
  96. BhattM. ShendeP. Modulated approaches for strategic transportation of proteins and peptides via ocular route.J. Drug Deliv. Sci. Technol.20216610283510.1016/j.jddst.2021.102835
    [Google Scholar]
  97. WuY. TaoQ. XieJ. LuL. XieX. ZhangY. JinY. Advances in nanogels for topical drug delivery in ocular diseases.Gels20239429210.3390/gels9040292 37102904
    [Google Scholar]
  98. WangQ. ZhangA. ZhuL. YangX. FangG. TangB. Cyclodextrin-based ocular drug delivery systems: A comprehensive review.Coord. Chem. Rev.202347621491910.1016/j.ccr.2022.214919
    [Google Scholar]
  99. TsungT.H. TsaiY.C. LeeH.P. ChenY.H. LuD.W. Biodegradable polymer-based drug-delivery systems for ocular diseases.Int. J. Mol. Sci.202324161297610.3390/ijms241612976 37629157
    [Google Scholar]
  100. AlmeidaH. SilvaA.C. Nanoparticles in ocular drug delivery systems.Pharmaceutics2023156167510.3390/pharmaceutics15061675 37376123
    [Google Scholar]
  101. AbouelattaS.M. ShetaA.I. IbrahimR.R. Optimized molecular imprints in gamma-irradiated collagen shields of an antifungal drug: In vitro characterization, in-vivo bioavailability enhancement.Eur. J. Pharm. Biopharm.202116613514310.1016/j.ejpb.2021.06.008 34166761
    [Google Scholar]
  102. ZhangY. YangJ. JiY. LiangZ. WangY. ZhangJ. Development of osthole-loaded microemulsions as a prospective ocular delivery system for the treatment of corneal neovascularization: In vitro and in vivo assessments.Pharmaceuticals20231610134210.3390/ph16101342 37895813
    [Google Scholar]
  103. YuY. ChengY. TongJ. ZhangL. WeiY. TianM. Recent advances in thermo-sensitive hydrogels for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20219132979299210.1039/D0TB02877K 33885662
    [Google Scholar]
  104. ShengB. ChenX. LiT. MaT. YangY. BiL. ZhangX. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases.Front. Public Health20221097194310.3389/fpubh.2022.971943 36388304
    [Google Scholar]
  105. Al-MohtasebZ. SchachterS. ShenLee B.; Garlich, J.; Trattler, W. The relationship between dry eye disease and digital screen use.Clin. Ophthalmol.2021153811382010.2147/OPTH.S321591 34531649
    [Google Scholar]
  106. MohamedH.B. Abd El-HamidB.N. FathallaD. FouadE.A. Current trends in pharmaceutical treatment of dry eye disease: A review.Eur. J. Pharm. Sci.202217510620610.1016/j.ejps.2022.106206 35568107
    [Google Scholar]
  107. PapasE.B. The global prevalence of dry eye disease: A Bayesian view.Ophthalmic Physiol. Opt.20214161254126610.1111/opo.12888 34545606
    [Google Scholar]
  108. SheppardJ. ShenLee B.; Periman, L.M. Dry eye disease: Identification and therapeutic strategies for primary care clinicians and clinical specialists.Ann. Med.202355124125210.1080/07853890.2022.2157477 36576348
    [Google Scholar]
  109. HakimF.E. FarooqA.V. Dry eye disease: An update in 2022.JAMA2022327547847910.1001/jama.2021.19963 35103781
    [Google Scholar]
  110. CocoG. BuffonG. TaloniA. GiannaccareG. Recent advances in nanotechnology for the treatment of dry eye disease.Nanomaterials202414866910.3390/nano14080669 38668163
    [Google Scholar]
  111. JoshiV.P. SinghS. ThackerM. PatiF. VemugantiG.K. BasuS. SinghV. Newer approaches to dry eye therapy: Nanotechnology, regenerative medicine, and tissue engineering.Indian J. Ophthalmol.20237141292130310.4103/IJO.IJO_2806_22 37026261
    [Google Scholar]
  112. SharmaS TyagiK DangS Chapter 14 - Use of nanotechnology in dry eye syndrome.In: Nanotechnol. Ophthalmol RaiM OcchiuttoML TalegaonkarS Academic PressUnited States202322724610.1016/B978‑0‑443‑15264‑1.00010‑5
    [Google Scholar]
  113. SteinJ.D. KhawajaA.P. WeizerJ.S. Glaucoma in adults—screening, diagnosis, and management: A review.JAMA2021325216417410.1001/jama.2020.21899 33433580
    [Google Scholar]
  114. JayaramH. KolkoM. FriedmanD.S. GazzardG. Glaucoma: Now and beyond.Lancet2023402104141788180110.1016/S0140‑6736(23)01289‑8 37742700
    [Google Scholar]
  115. LimR. The surgical management of glaucoma: A review.Clin. Exp. Ophthalmol.202250221323110.1111/ceo.14028 35037376
    [Google Scholar]
  116. WagnerI.V. StewartM.W. DorairajS.K. Updates on the diagnosis and management of glaucoma.Mayo Clin. Proc. Innov. Qual. Outcomes20226661863510.1016/j.mayocpiqo.2022.09.007 36405987
    [Google Scholar]
  117. El HoffyN.M. Abdel AzimE.A. HathoutR.M. FoulyM.A. ElkheshenS.A. Glaucoma: Management and future perspectives for nanotechnology-based treatment modalities.Eur. J. Pharm. Sci.202115810564810.1016/j.ejps.2020.105648 33227347
    [Google Scholar]
  118. GautamD. TalwanP. ChaurasiaH. KumarS. SinghR. Nanotechnology carriers for the management, electrochemical detection and diagnosis of glaucoma.Electrocat Mater.20241452755910.1007/978‑3‑031‑65902‑7_15
    [Google Scholar]
  119. AlvesFS DuarteS CabritaA MarquesC OliveiraA MachadoM SilvaG PintoLA FerreiraJT FerreiraQ. Nanotechnology devices for glaucoma surgical treatment: A systematic review.Preprints20231510.20944/preprints202309.1935.v1
    [Google Scholar]
  120. AlbarqiH.A. GargA. AhmadM.Z. AlqahtaniA.A. WalbiI.A. AhmadJ. Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma.Pharmaceutics202315268110.3390/pharmaceutics15020681 36840002
    [Google Scholar]
  121. HuangX.F. BrownM.A. Progress in the genetics of uveitis.Genes Immun.2022232576510.1038/s41435‑022‑00168‑6 35379982
    [Google Scholar]
  122. MalekiA. AnesiS.D. Look-WhyS. ManhapraA. FosterC.S. Pediatric uveitis: A comprehensive review.Surv. Ophthalmol.202267251052910.1016/j.survophthal.2021.06.006 34181974
    [Google Scholar]
  123. García-AparicioÁ. García de YébenesM.J. OtónT. Muñoz-FernándezS. Prevalence and incidence of uveitis: A systematic review and meta-analysis.Ophthalmic Epidemiol.202128646146810.1080/09286586.2021.1882506 33557663
    [Google Scholar]
  124. WuK.Y. TanK. AkbarD. ChoulakianM.Y. TranS.D. A new era in ocular therapeutics: Advanced drug delivery systems for uveitis and neuro-ophthalmologic conditions.Pharmaceutics2023157195210.3390/pharmaceutics15071952 37514137
    [Google Scholar]
  125. FeghhiM. MakhmalzadehB.S. FarrahiF. SharafiA. KasiriA. Development of nano-formulating dexamethasone for anterior uveitis treatment: A randomized clinical trial study.Med. Sci.20212524402451
    [Google Scholar]
  126. HaseebA.A. ElhusseinyA.M. SiddiquiM.Z. AhmadK.T. SallamA.B. Fungal endophthalmitis: A comprehensive review.J. Fungi202171199610.3390/jof7110996 34829283
    [Google Scholar]
  127. DasT. JosephJ. SimunovicM.P. GrzybowskiA. ChenK.J. DaveV.P. SharmaS. StaropoliP. FlynnH. Consensus and controversies in the science of endophthalmitis management: Basic research and clinical perspectives.Prog. Retin. Eye Res.20239710121810.1016/j.preteyeres.2023.101218 37838286
    [Google Scholar]
  128. VanderBeekB.L. ChenY. TomaiuoloM. DeanerJ.D. SyedZ.A. AcharyaB. ZhangQ. SchumanJ.S. HymanL. Endophthalmitis rates and types of treatments after intraocular procedures.JAMA Ophthalmol.2024142982783410.1001/jamaophthalmol.2024.2749 39088207
    [Google Scholar]
  129. MahalingB. BaruahN. AhamadN. MaishaN. LavikE. KattiD.S. A non-invasive nanoparticle-based sustained dual-drug delivery system as an eyedrop for endophthalmitis.Int. J. Pharm.202160612090010.1016/j.ijpharm.2021.120900 34293472
    [Google Scholar]
  130. YuJ. XuH. WeiJ. NiuL. ZhuH. JiangC. Bacteria-targeting nanoparticles with ros-responsive antibiotic release to eradicate biofilms and drug-resistant bacteria in endophthalmitis.Int. J. Nanomedicine2024192939295610.2147/IJN.S433919 38529364
    [Google Scholar]
  131. ZhangJ. KamoiK. ZongY. YangM. ZouY. MiyagakiM. Ohno-MatsuiK. Cytomegalovirus retinitis: Clinical manifestations, diagnosis and treatment.Viruses2024169142710.3390/v16091427 39339903
    [Google Scholar]
  132. UdeI.N. YehS. ShanthaJ.G. Cytomegalovirus retinitis in the highly active anti-retroviral therapy era.Ann. Eye Sci.20227Mar510.21037/aes‑21‑18 35498636
    [Google Scholar]
  133. KobayashiR. HashidaN. Overview of cytomegalovirus ocular diseases: Retinitis, corneal endotheliitis, and iridocyclitis.Viruses2024167111010.3390/v16071110 39066272
    [Google Scholar]
  134. ZhaoQ. LiN. ChenY. ZhaoX. Clinical features of cytomegalovirus retinitis in patients with acquired immunodeficiency syndrome and efficacy of the current therapy.Front. Cell. Infect. Microbiol.202313110723710.3389/fcimb.2023.1107237 37305416
    [Google Scholar]
  135. AkpekE.K. WirtaD.L. DowningJ.E. TauberJ. SheppardJ.D. CiolinoJ.B. MeidesA.S. KrösserS. Efficacy and safety of a water-free topical cyclosporine, 0.1%, solution for the treatment of moderate to severe dry eye disease: The ESSENCE-2 randomized clinical trial.JAMA Ophthalmol.2023141545946610.1001/jamaophthalmol.2023.0709 37022717
    [Google Scholar]
  136. KumariS. DandamudiM. RaniS. BehaeghelE. BehlG. KentD. O’ReillyN.J. O’DonovanO. McLoughlinP. FitzhenryL. Dexamethasone-loaded nanostructured lipid carriers for the treatment of dry eye disease.Pharmaceutics202113690510.3390/pharmaceutics13060905 34207223
    [Google Scholar]
  137. LiJ.X. TsaiY.Y. LaiC.T. LiY.L. WuY.H. ChiangC.C. Lifitegrast ophthalmic solution 5% is a safe and efficient eyedrop for dry eye disease: A systematic review and meta-analysis.J. Clin. Med.20221117501410.3390/jcm11175014 36078948
    [Google Scholar]
  138. HynnekleivL. MagnoM. VernhardsdottirR.R. MoschowitsE. TønsethK.A. DarttD.A. VehofJ. UtheimT.P. Hyaluronic acid in the treatment of dry eye disease.Acta Ophthalmol.2022100884486010.1111/aos.15159 35514082
    [Google Scholar]
  139. YanY.L. ChangJ.Y. LingX.R. XueC.Y. Effects of rebamipide for dry eye on optical quality and efficacy: A systematic review and meta-analysis.J. Ocul. Pharmacol. Ther.2024401062963710.1089/jop.2024.0098 39450472
    [Google Scholar]
  140. CordeiroM.F. GandolfiS. GugletaK. NormandoE.M. OddoneF. How latanoprost changed glaucoma management.Acta Ophthalmol.20241022e140e15510.1111/aos.15725 37350260
    [Google Scholar]
  141. KumaraB.N. ShambhuR. ShimY.B. NirmalJ. PrasadK.S. Development of mucoadhesive Timolol loaded chitosan-nanocomposite to treat glaucoma.Int. J. Biol. Macromol.2023253Pt 312691710.1016/j.ijbiomac.2023.126917 37716661
    [Google Scholar]
  142. WadhwaA. JadhavC. YadavK.S. Bimatoprost: Promising novel drug delivery systems in treatment of glaucoma.J. Drug Deliv. Sci. Technol.20226910315610.1016/j.jddst.2022.103156
    [Google Scholar]
  143. PardeshiS.R. GholapA.D. HatvateN.T. GharatK.D. NaikJ.B. OmriA. Advances in dorzolamide hydrochloride delivery: Harnessing nanotechnology for enhanced ocular drug delivery in glaucoma management.Discov. Nano202419119910.1186/s11671‑024‑04154‑x 39656411
    [Google Scholar]
  144. SchnichelsS. HurstJ. de VriesJ.W. UllahS. FrößlK. GruszkaA. LöscherM. Bartz-SchmidtK.U. SpitzerM.S. HerrmannA. Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles.ACS Appl. Mater. Interfaces20211389445945610.1021/acsami.0c18626 33528240
    [Google Scholar]
  145. LeclercqM. SèveP. BiardL. VautierM. MaaloufG. LerouxG. DomontF. ToutéeA. FardeauC. Sales de GauzyT. TouhamiS. KodjikianL. CacoubP. BodaghiB. SaadounD. DesboisA.C. Methotrexate versus conventional disease-modifying antirheumatic drugs in the treatment of non-anterior sarcoidosis-associated uveitis.Br. J. Ophthalmol.20251091344010.1136/bjo‑2024‑325163 39013629
    [Google Scholar]
  146. ThomasJ. KimL. AlbiniT. YehS. Triamcinolone acetonide injectable suspension for suprachoroidal use in the treatment of macular edema associated with uveitis.Expert Rev. Ophthalmol.202217316517310.1080/17469899.2022.2114456 36060305
    [Google Scholar]
  147. LuisJ. AlsaediA. PhatakS. KapoorB. ReesA. WestcottM. Efficacy of tacrolimus in uveitis, and the usefulness of serum tacrolimus levels in predicting disease control. results from a single large center.Ocul. Immunol. Inflamm.2022307-81654165810.1080/09273948.2021.1930063 34124991
    [Google Scholar]
  148. ChristensenL.F. HassingA.K. KlefterO.N. VorumH. Efficacy and Safety of Fluocinolone Acetonide 0.19 mg Intravitreal Implant for the Treatment of Non-Infectious Uveitis: A Systematic Review of Real-World Evidence.Ocul. Immunol. Inflamm.2024•••12 39630970
    [Google Scholar]
  149. PaivaM.R.B.D. Vasconcelos-SantosD.V. VieiraL.C. FialhoS.L. Silva-CunhaA. Sirolimus-loaded intravitreal implant for effective treatment of experimental uveitis.AAPS PharmSciTech20212213510.1208/s12249‑020‑01898‑4 33404988
    [Google Scholar]
  150. ChenK.J. SunM.H. HouC.H. ChenH.C. ChenY.P. WangN.K. LiuL. WuW.C. ChouH.D. KangE.Y.C. LaiC.C. Susceptibility of bacterial endophthalmitis isolates to vancomycin, ceftazidime, and amikacin.Sci. Rep.20211111587810.1038/s41598‑021‑95458‑w 34354181
    [Google Scholar]
  151. GuoH. ZhuD. WangY. DingM. JiangY. WangX. Endogenous bacterial endophthalmitis complicating hemodialysis catheter-related sepsis: A case report and review of the literature.Hemodial Int.2025hdi.1322610.1111/hdi.1322640055938
    [Google Scholar]
  152. MitchellW. TomL. DuraiI. RajagopalS. VimalanathanM. RengarajV. SrinivasanK. ZebardastN. The effectiveness of intracameral moxifloxacin endophthalmitis prophylaxis for trabeculectomy.Ophthalmol. Glaucoma202141111910.1016/j.ogla.2020.07.008 32738509
    [Google Scholar]
  153. TalwarD. ThulasidasM. Ciprofloxacin: Rationale for use in intraocular infections.J. Pharmacol.20231111171
    [Google Scholar]
  154. MaW. HouG. WangJ. LiuT. TianF. Evaluation of the effect of gentamicin in surgical perfusion solution on cataract postoperative endophthalmitis.BMC Ophthalmol.202222141010.1186/s12886‑022‑02633‑2 36274140
    [Google Scholar]
  155. PetrilloF. PetrilloA. SassoF.P. SchettinoA. MaioneA. GaldieroM. Viral infection and antiviral treatments in ocular pathologies.Microorganisms20221011222410.3390/microorganisms10112224 36363815
    [Google Scholar]
  156. Classification criteria for cytomegalovirus retinitis.Am. J. Ophthalmol.202122824525410.1016/j.ajo.2021.03.051 33845015
    [Google Scholar]
  157. KobayashiR. HashidaN. Overview of cytomegalovirus ocular diseases: Retinitis, corneal endotheliitis, and iridocyclitis.Viruses2024167111010.3390/v16071110 39066272
    [Google Scholar]
  158. DasguptaD. PradhanA. SudharshanS. RamanR. BiswasJ. Successful resolution of ganciclovir-resistant cytomegalovirus (CMV) retinitis with intravitreal foscarnet in a seronegative patient of psoriasis on immunosuppressive therapy.Indian J. Ophthalmol. Case Rep.20244114614810.4103/IJO.IJO_3113_22
    [Google Scholar]
  159. ChiuehV LeeL LeeT Peptide carriers and delivery to the eye of a subject.US Patent 18/596,5552024
  160. HarrellC.R. Methods and compositions for treating dry eye, tear hyperosmolarity, and other ocular conditions.US Patent 18/409,7462024
  161. DoshiP. HuangB. HalbeS. PatodiaN. BalasubramanianP.N Contact lenses including medicaments and methods of making and using same including stabilizers of labile components such as drugs.US Patent 18/606,5512024
  162. BadawiD.Y BadawiP. O’KeeffeD. Bio-erodible ocular implants for treatment of conditions of the eye.US Patent 18/522,1922024
  163. DeVoreD.P EifermanR.A Derivatized collagen-hyaluronic acid based implants for sustained delivery of ophthalmic drugs.US Patent 18/103,6202024
  164. SuW.W LeeC.H Preservative-free ophthalmic pharmaceutical emulsion and its application.US Patent 18/133,9842023
  165. MartinW.A KumarG.N PughR. Polymeric additive manufacturing of an ophthalmic lens.US Patent 11,874,4352024
  166. EnsignL. HanesJ. KimY.C HsuehT.H Ophthalmic formulations for sustained neuroprotection.US Patent 18/554,9282024
  167. ZhouX. PanM. QuJ. ZhengQ. WuH. Method and pharmaceutical composition for treating myopia.US Patent 18/557,5982024
  168. SaimS. SparksM. PaggiarinoD. KarzounB. Bioerodible ocular drug delivery insert and therapeutic method.US Patent 17/671,0602022
  169. KhopadeA.J HalderA. Stable cyclosporine ophthalmic formulation and manufacturing process thereof.US Patent 18/683,9432024
  170. GarrecJ. Mucoadhesive solid or semisolid ocular delivery systems based on preactivated thiomers.US Patent 17/796,1832023
  171. BlizzardC.D DriscollA. El-HayekR. GoldsteinM. IaconaJ. JarrettP. JarrettT.S KahnE. LattrellZ. Ocular implant containing an active ingredient.US Patent 18/033,6892023
  172. RobinsonM GhebremeskelA. NovakovicZ AubuchonD DriesJ.V Posterior chamber placement of sustained release implant.US Patent 18/004,7552024
  173. ElmannA. RotenstreichY. IfatS.H Compounds for treating eye diseases and disorders.US Patent 18/256,7472024
  174. Efficacy and safety of mitoxantrone hydrochloride liposome injection in the treatment of neuromyelitis optica spectrum disorder (nmosd).NCT Patent 055515982025
  175. A randomized, controlled, double-masked, investigator-initiated trial to evaluate tear film quality and stability in subjects with dry eye disease using OC-01 (varenicline solution) nasal spray 0.03 mg as compared to vehicle control nasal spray (tsunami).NCT Patent 055140412025
  176. Liposomal sirolimus in dry eye disease.NCT Patent 041158002025
  177. A multi-center, randomized, double masked, parallel-group, vehicle-controlled, clinical study to assess the safety and efficacy of reproxalap ophthalmic solution in subjects with dry eye disease.NCT Patent 034041152025
  178. Efficacy and safety of dexamethasone nanoparticles eye drops in diabetic macular edema.NCT Patent 053431562025
  179. A randomized controlled trial comparing urea loaded nanoparticles to placebo: A new concept for cataract management.NCT Patent 030014662025
  180. A single centre study to evaluate 3 ophthalmic formulations in healthy subjects.NCT Patent 020035472025
  181. Topical dexamethasone–cyclodextrin microparticle eye drops for diabetic macular edema (decede).NCT Patent 015233142025
  182. Safety and efficacy study of egp-437 (dexamethasone phosphate formulated for ocular iontophoresis) to treat dry eye.NCT Patent 011298562025
  183. A study of different formulations of the l-ppds in subjects with oh or oag.NCT Patent 009678112025
  184. Travoprost new formulations in patients with open-angle glaucoma or ocular hypertension.NCT Patent 006700332025
  185. Paclitaxel albumin-stabilized nanoparticle formulation in treating patients with metastatic melanoma of the eye that cannot be removed by surgery.NCT Patent 007383612025
  186. Safety and efficacy study of iontophoresis and dexamethasone phosphate to treat dry eye.NCT Patent 007658042025
  187. Safety and efficacy study of different formulations of bimatoprost once-daily in patients with glaucoma or ocular hypertension.NCT Patent 006524962025
  188. SrivastavaV. CharyP.S. RajanaN. PardhiE.R. SinghV. KhatriD. SinghS.B. MehraN.K. Complex ophthalmic formulation technologies: Advancement and future perspectives.J. Drug Deliv. Sci. Technol.20238210431710.1016/j.jddst.2023.104317
    [Google Scholar]
  189. HanH. LiS. XuM. ZhongY. FanW. XuJ. ZhouT. JiJ. YeJ. YaoK. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives.Adv. Drug Deliv. Rev.202319611477010.1016/j.addr.2023.114770 36894134
    [Google Scholar]
  190. KimH.M. WooS.J. Ocular drug delivery to the retina: Current innovations and future perspectives.Pharmaceutics202113110810.3390/pharmaceutics13010108 33467779
    [Google Scholar]
  191. ZhangJ. JiaoJ. NiuM. GaoX. ZhangG. YuH. YangX. LiuL. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective.Int. J. Nanomedicine2021166497653010.2147/IJN.S329831 34588777
    [Google Scholar]
  192. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules26195905 34641447
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002384586250731104453
Loading
/content/journals/cdm/10.2174/0113892002384586250731104453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test