Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

In recent years, the development of medical technologies leveraging nanomedicine has witnessed remarkable progress, particularly in areas such as targeted drug delivery, controlled drug release, tissue engineering, and diagnostics. This review explores the transformative impact of nanotechnology on medical imaging, focusing on developing novel contrast agents. Diagnostic imaging techniques, including Positron Emission Tomography (PET), Computed Tomography, and Magnetic Resonance Imaging, have become indispensable tools in modern healthcare. Contrast agents play an important role in enhancing the sensitivity of these imaging modalities, enabling the detection of previously undetectable anomalies. Nanotechnology offers unprecedented opportunities to revolutionize contrast agent design, leading to improved imaging modalities and diagnostic accuracy. Due to their high X-ray attenuation coefficients, metal-based inorganic nanoparticles, such as gold, bismuth, and lanthanide-based nanomaterials, exhibit significant potential as CT contrast agents. Furthermore, the pharmacokinetic properties and drug metabolism profiles of these nanomaterials are critical in ensuring their safety, efficacy, and optimal performance in clinical applications. Moreover, nanomaterials with integrated diagnostic and therapeutic capabilities are emerging as promising candidates for real-time disease detection and image-guided treatment. This review highlights the properties of nanomaterials that make them suitable for use as contrast agents. It discusses the challenges and opportunities in developing multifunctional nanomaterials for medical and diagnostic purposes. Overall, nanotechnology-enabled contrast agents have the potential to redefine the landscape of medical imaging, paving the way for more precise diagnosis and personalized treatment strategies.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002382141250825102311
2025-09-12
2026-02-02
Loading full text...

Full text loading...

References

  1. KahG. ChandranR. AbrahamseH. Biogenic silver nanoparticles for targeted cancer therapy and enhancing photodynamic therapy.Cells20231215201210.3390/cells12152012 37566091
    [Google Scholar]
  2. PetkarK.C. ChavhanS.S. Agatonovik-KustrinS. SawantK.K. Nanostructured materials in drug and gene delivery: A review of the state of the art.Crit. Rev. Ther. Drug Carrier Syst.201128210116410.1615/CritRevTherDrugCarrierSyst.v28.i2.10 21663574
    [Google Scholar]
  3. ShiJ. VotrubaA.R. FarokhzadO.C. LangerR. Nanotechnology in drug delivery and tissue engineering: From discovery to applications.Nano Lett.20101093223323010.1021/nl102184c 20726522
    [Google Scholar]
  4. EricksonD. MandalS. YangA.H.J. CordovezB. Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.Microfluid. Nanofluidics200841-2335210.1007/s10404‑007‑0198‑8 18806888
    [Google Scholar]
  5. PowerS. SlatteryM.M. LeeM.J. Nanotechnology and its relationship to interventional radiology. Part I: Imaging.Cardiovasc. Intervent. Radiol.201134222122610.1007/s00270‑010‑9961‑4 20845041
    [Google Scholar]
  6. SmithB.R. GambhirS.S. Nanomaterials for in vivo imaging.Chem. Rev.2017117390198610.1021/acs.chemrev.6b00073 28045253
    [Google Scholar]
  7. WidmarkJ.M. Imaging-related medications: A class overview.Proc. Bayl. Univ. Med. Cent.200720440841710.1080/08998280.2007.11928336 17948119
    [Google Scholar]
  8. RumbergerJ.A. Coronary computed tomography angiography: our time has come, but there are miles to go before we sleep.J. Am. Coll. Cardiol.200852211733173510.1016/j.jacc.2008.08.034 19007694
    [Google Scholar]
  9. RaghunathanM. KapoorA. KumarP. TripathiS.C. HaqueS. PalD.B. Biosensing and biotechnological applications of nanofillers: Current status and perspectives.Indian J. Microbiol.202565123525210.1007/s12088‑024‑01326‑2 40371016
    [Google Scholar]
  10. YuS.B. DroegeM. SegalB. KimS.H. SandersonT. WatsonA.D. Cuboidal W3S4 cluster complexes as new generation X-ray contrast agents.Inorg. Chem.20003961325132810.1021/ic990976g 12526428
    [Google Scholar]
  11. SpinosaD.J. KaufmannJ.A. HartwellG.D. Gadolinium chelates in angiography and interventional radiology: A useful alternative to iodinated contrast media for angiography.Radiology2002223231932510.1148/radiol.2232010742 11997531
    [Google Scholar]
  12. AttiaM.F. WallynJ. AntonN. VandammeT.F. Inorganic nanoparticles for x-ray computed tomography imaging.Crit. Rev. Ther. Drug Carrier Syst.201835539143110.1615/CritRevTherDrugCarrierSyst.2018020974 30317944
    [Google Scholar]
  13. OwensT.C Anton, N.; Attia, M.F. CT and X-ray contrast agents: Current clinical challenges and the future of contrast.Acta. Biomater2023171193610.1016/j.actbio.2023.09.027 37739244
    [Google Scholar]
  14. CormodeD.P. JarzynaP.A. MulderW.J.M. FayadZ.A. Modified natural nanoparticles as contrast agents for medical imaging.Adv. Drug Deliv. Rev.201062332933810.1016/j.addr.2009.11.005 19900496
    [Google Scholar]
  15. PearceA.K. WilksT.R. ArnoM.C. O’ReillyR.K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions.Nat. Rev. Chem.202051214510.1038/s41570‑020‑00232‑7 37118104
    [Google Scholar]
  16. JanaN.R. GearheartL. MurphyC.J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods.J. Phys. Chem. B2001105194065406710.1021/jp0107964
    [Google Scholar]
  17. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  18. CorotC. RobertP. IdéeJ. PortM. Recent advances in iron oxide nanocrystal technology for medical imaging.Adv. Drug Deliv. Rev.200658141471150410.1016/j.addr.2006.09.013 17116343
    [Google Scholar]
  19. CormodeD.P. SkajaaT. FayadZ.A. MulderW.J.M. Nanotechnology in medical imaging: Probe design and applications.Arterioscler. Thromb. Vasc. Biol.2009297992100010.1161/ATVBAHA.108.165506 19057023
    [Google Scholar]
  20. CorotC. PetryK.G. TrivediR. SalehA. JonkmannsC. Le BasJ.F. BlezerE. RauschM. BrochetB. Foster-GareauP. BalériauxD. GaillardS. DoussetV. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging.Invest. Radiol.2004391061962510.1097/01.rli.0000135980.08491.33 15377941
    [Google Scholar]
  21. MoghimiS.M. HunterA.C. MurrayJ.C. Long-circulating and target-specific nanoparticles: Theory to practice.Pharmacol. Rev.200153228331810.1016/S0031‑6997(24)01494‑7 11356986
    [Google Scholar]
  22. MulderW.J.M. GriffioenA.W. StrijkersG.J. CormodeD.P. NicolayK. FayadZ.A. Magnetic and fluorescent nanoparticles for multimodality imaging.Nanomedicine20072330732410.2217/17435889.2.3.307 17716176
    [Google Scholar]
  23. MulderW.J.M. StrijkersG.J. van TilborgG.A.F. CormodeD.P. FayadZ.A. NicolayK. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging.Acc. Chem. Res.200942790491410.1021/ar800223c 19435319
    [Google Scholar]
  24. RiehemannK. SchneiderS.W. LugerT.A. GodinB. FerrariM. FuchsH. Nanomedicine--challenge and perspectives.Angew. Chem. Int. Ed.200948587289710.1002/anie.200802585 19142939
    [Google Scholar]
  25. LusicH. GrinstaffM.W. X-ray-computed tomography contrast agents.Chem. Rev.201311331641166610.1021/cr200358s 23210836
    [Google Scholar]
  26. CormodeD.P. NahaP.C. FayadZ.A. Nanoparticle contrast agents for computed tomography: A focus on micelles.Contrast Media Mol. Imaging201491375210.1002/cmmi.1551 24470293
    [Google Scholar]
  27. Sprawls, Perry Physical Principles of Medical Imaging.Madison, WisconsinMedical Physics Publishing1995
    [Google Scholar]
  28. GalperM.W. SaungM.T. FusterV. RoesslE. ThranA. ProksaR. FayadZ.A. CormodeD.P. Effect of computed tomography scanning parameters on gold nanoparticle and iodine contrast.Invest. Radiol.201247847548110.1097/RLI.0b013e3182562ab9 22766909
    [Google Scholar]
  29. SarasteA. NekollaS.G. SchwaigerM. Cardiovascular molecular imaging: An overview.Cardiovasc. Res.200983464365210.1093/cvr/cvp209 19553359
    [Google Scholar]
  30. HurrellM.A. ButlerA.P.H. CookN.J. ButlerP.H. RonaldsonJ.P. ZainonR. Spectral Hounsfield units: A new radiological concept.Eur. Radiol.20122251008101310.1007/s00330‑011‑2348‑3 22134894
    [Google Scholar]
  31. GabbaiM. LeichterI. MahgereftehS. SosnaJ. Spectral material characterization with dual-energy CT: Comparison of commercial and investigative technologies in phantoms.Acta Radiol.201556896096910.1177/0284185114545150 25182803
    [Google Scholar]
  32. IfijenI.H. ChristopherA.T. LekanO.K. AworindeO.R. FaderinE. ObembeO. Abdulsalam AkanjiT.F. IgboanugoJ.C. UdoguU. OgidiG.O. IorkulaT.H. OsayaweO.J. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management.RSC Advances20241446336813374010.1039/D4RA05732E 39450067
    [Google Scholar]
  33. LoweK.C. Synthetic oxygen transport fluids based on perfluorochemicals: Applications in medicine and biology.Vox Sang.199160312914010.1111/j.1423‑0410.1991.tb00888.x 1862635
    [Google Scholar]
  34. WathenC. FojeN. AvermaeteT. MiramontesB. ChapamanS. SasserT. KannanR. GerstlerS. LeevyW. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast.Sensors20131366957698010.3390/s130606957 23711461
    [Google Scholar]
  35. Al RifaiN. DesgrangesS. Le Guillou-BuffelloD. GironA. UrbachW. NassereddineM. ChararaJ. Contino-PépinC. TaulierN. Ultrasound-triggered delivery of paclitaxel encapsulated in an emulsion at low acoustic pressures.J. Mater. Chem. B Mater. Biol. Med.2020881640164810.1039/C9TB02493J 32011617
    [Google Scholar]
  36. LaiJ. LuoZ. ChenL. WuZ. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance.Sci. Prog.202410710036850424122807610.1177/00368504241228076 38332327
    [Google Scholar]
  37. RhynerM.N. SmithA.M. GaoX. MaoH. YangL. NieS. Quantum dots and multifunctional nanoparticles: New contrast agents for tumor imaging.Nanomedicine20061220921710.2217/17435889.1.2.209 17716110
    [Google Scholar]
  38. FangC. BhattaraiN. SunC. ZhangM. Functionalized nanoparticles with long-term stability in biological media.Small20095141637164110.1002/smll.200801647 19334014
    [Google Scholar]
  39. PengY.K. TsangS.C.E. ChouP.T. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging.Mater. Today201619633634810.1016/j.mattod.2015.11.006
    [Google Scholar]
  40. StephenZR. KievitFM. ZhangM. Magnetite nanoparticles for medical MR imaging.Mater. Today2011147-833033810.1016/S1369‑7021(11)70163‑8 22389583
    [Google Scholar]
  41. Briley-SaeboK. BjørnerudA. GrantD. AhlstromH. BergT. KindbergG.M. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: Implications for magnetic resonance imaging.Cell Tissue Res.2004316331532310.1007/s00441‑004‑0884‑8 15103550
    [Google Scholar]
  42. LuC. XuX. ZhangT. WangZ. ChaiY. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T1 contrast agents for magnetic resonance imaging.J. Mater. Chem. B Mater. Biol. Med.202210101623163310.1039/D1TB02572D 35191907
    [Google Scholar]
  43. AlipourA. Soran-ErdemZ. UtkurM. SharmaV.K. AlginO. SaritasE.U. DemirH.V. A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI.Magn. Reson. Imaging201849162410.1016/j.mri.2017.09.013 28958878
    [Google Scholar]
  44. MieszawskaA.J. MulderW.J.M. FayadZ.A. CormodeD.P. Multifunctional gold nanoparticles for diagnosis and therapy of disease.Mol. Pharm.201310383184710.1021/mp3005885 23360440
    [Google Scholar]
  45. NahaP.C. ChhourP. CormodeD.P. Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications.Toxicol. In vitro 20152971445145310.1016/j.tiv.2015.05.022 26031843
    [Google Scholar]
  46. YoonS.J. MallidiS. TamJ.M. TamJ.O. MurthyA. JohnstonK.P. SokolovK.V. EmelianovS.Y. Utility of biodegradable plasmonic nanoclusters in photoacoustic imaging.Opt. Lett201035223751375310.1364/OL.35.003751 21081985
    [Google Scholar]
  47. Danesh-DoustM. IrajiradR. Vaziri NezamdoustF. KhademiS. MontazerabadiA. Triptorelin peptide conjugated alginate coated gold nanoparticles as a new contrast media for targeted computed tomography imaging of cancer cells.Cell J.202325212613410.22074/cellj.2022.557552.1068 36840459
    [Google Scholar]
  48. Lazaro-CarrilloA. FiliceM. GuillénM.J. AmaroR. ViñambresM. TaberoA. ParedesK.O. VillanuevaA. CalvoP. del Puerto MoralesM. MarcielloM. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers.Mater. Sci. Eng. C202010711026210.1016/j.msec.2019.110262 31761230
    [Google Scholar]
  49. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.86467 37650011
    [Google Scholar]
  50. LiuQ. LiuL. MoC. ZhouX. ChenD. HeY. HeH. KangW. ZhaoY. JinG. Polyethylene glycol-coated ultrasmall superparamagnetic iron oxide nanoparticles-coupled sialyl lewis x nanotheranostic platform for nasopharyngeal carcinoma imaging and photothermal therapy.J. Nanobiotechnology202119117110.1186/s12951‑021‑00918‑0 34103070
    [Google Scholar]
  51. SinghD. ThapaS. SinghK. R. VermaR. SinghR. P. SinghJ. Cadmium selenide quantum dots and its biomedical applications.Mater. Lett X202318202310020010.1016/j.mlblux.2023.100200
    [Google Scholar]
  52. YuanD. EllisC.M. DavisJ.J. Mesoporous silica nanoparticles in bioimaging.Materials20201317379510.3390/ma13173795 32867401
    [Google Scholar]
  53. LamichhaneN. UdayakumarT. D’SouzaW. SimoneC. RaghavanS. PolfJ. MahmoodJ. Liposomes: Clinical applications and potential for image-guided drug delivery.Molecules201823228810.3390/molecules23020288 29385755
    [Google Scholar]
  54. De La ZerdaA. ZavaletaC. KerenS. VaithilingamS. BodapatiS. LiuZ. LeviJ. SmithB.R. MaT.J. OralkanO. ChengZ. ChenX. DaiH. Khuri-YakubB.T. GambhirS.S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice.Nat. Nanotechnol.20083955756210.1038/nnano.2008.231 18772918
    [Google Scholar]
  55. HuP. FuZ. LiuG. TanH. XiaoJ. ShiH. ChengD. Gadolinium-based nanoparticles for theranostic MRI-guided radiosensitization in hepatocellular carcinoma.Front. Bioeng. Biotechnol.2019736810.3389/fbioe.2019.00368 31828068
    [Google Scholar]
  56. ElsabahyM. HeoG.S. LimS.M. SunG. WooleyK.L. Polymeric nanostructures for imaging and therapy.Chem. Rev.201511519109671101110.1021/acs.chemrev.5b00135 26463640
    [Google Scholar]
  57. JiangZ. ZhangM. LiP. WangY. FuQ. Nanomaterial-based CT contrast agents and their applications in image-guided therapy.Theranostics202313248350910.7150/thno.79625
    [Google Scholar]
  58. HanX. XuK. TaratulaO. FarsadK. Applications of nanoparticles in biomedical imaging.Nanoscale201911379981910.1039/C8NR07769J 30603750
    [Google Scholar]
  59. AlphandéryE. Nanomaterials as ultrasound theragnostic tools for heart disease treatment/diagnosis.Int. J. Mol. Sci.2022233168310.3390/ijms23031683 35163604
    [Google Scholar]
  60. JungH.S. MoonD.S. LeeJ.K. Quantitative analysis and efficient surface modification of silica nanoparticles.J. Nanomater.20122012159347110.1155/2012/593471
    [Google Scholar]
  61. WenS. OvaisM. LiX. RenJ. LiuT. WangZ. CaiR. ChenC. Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy.Nanoscale202214238245825410.1039/D2NR01500E 35647806
    [Google Scholar]
  62. Shahbazi-GahroueiD. ChoghazardiY. KazemzadehA. NaseriP. Shahbazi-GahroueiS. A review of bismuth‐based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy.IET Nanobiotechnol.202317430231110.1049/nbt2.12134 37139612
    [Google Scholar]
  63. RibeiroA.L. BassaiL.W. RobertA.W. MachadoT.N. BezerraA.G. HorinouchiC.D.S. AguiarA.M. Bismuth-based nanoparticles impair adipogenic differentiation of human adipose-derived mesenchymal stem cells.Toxicol. In vitro 20217710524810.1016/j.tiv.2021.105248 34560244
    [Google Scholar]
  64. ProdiL. RampazzoE. RastrelliF. SpeghiniA. ZaccheroniN. Imaging agents based on lanthanide doped nanoparticles.Chem. Soc. Rev.201544144922495210.1039/C4CS00394B 26090530
    [Google Scholar]
  65. XuH. YangY. LuL. YangY. ZhangZ. ZhaoC.X. ZhangF. FanY. Orthogonal multiplexed NIR-II imaging with excitation-selective lanthanide-based nanoparticles.Anal. Chem.20229483661366810.1021/acs.analchem.1c05253 35175033
    [Google Scholar]
  66. YiH. YanG. HeJ. ZhuangJ. JinC. ZhangD.Y. Tantalum nitride-based theranostic agent for photoacoustic imaging-guided photothermal therapy in the second NIR window.Nanomaterials20231311170810.3390/nano13111708 37299611
    [Google Scholar]
  67. KhorasaniA. Shahbazi-GahroueiD. SafariA. Recent metal nanotheranostics for cancer diagnosis and therapy: A review.Diagnostics202313583310.3390/diagnostics13050833 36899980
    [Google Scholar]
  68. PengC. LiangY. ChenY. QianX. LuoW. ChenS. ZhangS. DanQ. ZhangL. LiM. YuanM. ZhaoB. LiY. Hollow mesoporous tantalum oxide based nanospheres for triple sensitization of radiotherapy.ACS Appl. Mater. Interfaces20201255520553010.1021/acsami.9b20053 31891473
    [Google Scholar]
  69. KimS.C. Tungsten-based hybrid composite shield for medical radioisotope defense.Materials2022154133810.3390/ma15041338 35207876
    [Google Scholar]
  70. LevinT. SadeH. BinyaminiR.B.S. PourM. NachmanI. LelloucheJ.P. Tungsten disulfide-based nanocomposites for photothermal therapy.Beilstein J. Nanotechnol.20191081182210.3762/bjnano.10.81 31019868
    [Google Scholar]
  71. BelyaevIB. ZelepukinIV. TishchenkoVK. PetrievVM. TrushinaDB. KlimentovSM. ZavestovskayaIN. IvanovSA. KaprinAD. DeyevSM. Kabashin, AV Nanoparticles based on MIL-101 metal-organic frameworks as efficient carriers of therapeutic 188Re radionuclide for nuclear medicine.Nanotechnology202335710.1088/1361‑6528/ad0c74 37963406
    [Google Scholar]
  72. MkhatshwaM. MoremiJM. MakgopaK. Manicum, AE Nanoparticles functionalised with Re(I) tricarbonyl complexes for cancer theranostics.Int. J. Mol. Sci.20212212654610.3390/ijms22126546 34207182
    [Google Scholar]
  73. QuinsonJ. Iridium and IrOx nanoparticles: An overview and review of syntheses and applications.Adv. Colloid Interface Sci.202230310264310.1016/j.cis.2022.102643 35334351
    [Google Scholar]
  74. SarkarA. Novel platinum compounds and nanoparticles as anticancer agents.Pharm. Pat. Anal.201871334610.4155/ppa‑2017‑0036 29227198
    [Google Scholar]
  75. SunY. ShiT. ZhouL. ZhouY. SunB. LiuX. Folate-decorated and NIR-activated nanoparticles based on platinum(IV) prodrugs for targeted therapy of ovarian cancer.J. Microencapsul.201734767568610.1080/02652048.2017.1393114 29027828
    [Google Scholar]
  76. PandaA. KeerthiM. SakthivelR. DhawanU. LiuX. ChungR.J. Biocompatible electrochemical sensor based on platinum-nickel alloy nanoparticles for in situ monitoring of hydrogen sulfide in breast cancer cells.Nanomaterials202212225810.3390/nano12020258 35055275
    [Google Scholar]
  77. WaddingtonD.E.J. SarracanieM. ZhangH. SalamehN. GlennD.R. RejE. GaebelT. BoeleT. WalsworthR.L. ReillyD.J. RosenM.S. Nanodiamond-enhanced MRI via in situ hyperpolarization.Nat. Commun.2017811511810.1038/ncomms15118 28443626
    [Google Scholar]
  78. ReaI. MartucciN.M. De StefanoL. RuggieroI. TerraccianoM. DardanoP. MigliaccioN. ArcariP. TatéR. RendinaI. LambertiA. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells.Biochim. Biophys. Acta, Gen. Subj.20141840123393340310.1016/j.bbagen.2014.09.009 25224732
    [Google Scholar]
  79. BanihashemS. NezhatiMN Panahi, HA Synthesis of chitosan-grafted-poly(N-vinylcaprolactam) coated on the thiolated gold nanoparticles surface for controlled release of cisplatin.Carbohydr. Polym.202022711533310.1016/j.carbpol.2019.115333 31590864
    [Google Scholar]
  80. FuJ.W. LinY.S. GanS.L. LiY.R. WangY. FengS.T. LiH. ZhouG.F. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors.Contrast Media Mol. Imaging2019201911810.1155/2019/3145647 31360144
    [Google Scholar]
  81. BatchelorD.V.B. ArmisteadF.J. IngramN. PeymanS.A. McLaughlanJ.R. ColettaP.L. EvansS.D. The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery.Langmuir20223845139431395410.1021/acs.langmuir.2c02303 36322191
    [Google Scholar]
  82. ArmisteadF.J. BatchelorD.V.B. JohnsonB.R.G. EvansS.D. QCM-D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy.J. Phys. Chem. B2023127112466247410.1021/acs.jpcb.2c07256 36917458
    [Google Scholar]
  83. KorpanyK.V. MottilloC. BachelderJ. CrossS.N. DongP. TrudelS. FriščićT. BlumA.S. One-step ligand exchange and switching from hydrophobic to water-stable hydrophilic superparamagnetic iron oxide nanoparticles by mechanochemical milling.Chem. Commun. (Camb.)201652143054305710.1039/C5CC07107K 26794225
    [Google Scholar]
  84. ChenJ. ZhangY. ZhangM. YaoB. LiY. HuangL. LiC. ShiG. Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups.Chem. Sci. (Camb.)2016731874188110.1039/C5SC03828F 29899910
    [Google Scholar]
  85. PohH.L. ŠimekP. SoferZ. PumeraM. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere.Chemistry20131982655266210.1002/chem.201202972 23296548
    [Google Scholar]
  86. ChuaC.K. PumeraM. Covalent chemistry on graphene.Chem. Soc. Rev.20134283222323310.1039/c2cs35474h 23403465
    [Google Scholar]
  87. El-BoubbouK. Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings.In: Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. KumarC. CanadaSpringer2019
    [Google Scholar]
  88. García-TorraV. CanoA. EspinaM. EttchetoM. CaminsA. BarrosoE. Vazquez-CarreraM. GarcíaM.L. Sánchez-LópezE. SoutoE.B. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks.Toxics20219819510.3390/toxics9080195 34437513
    [Google Scholar]
  89. AbdelkawiA. SlimA. ZinouneZ. PathakY. Surface modification of metallic nanoparticles for targeting drugs.Coatings2023139166010.3390/coatings13091660
    [Google Scholar]
  90. ŞologanM. PadelliF. GiachettiI. AquinoD. BoccalonM. AdamiG. PengoP. PasquatoL. Functionalized Gold Nanoparticles as Contrast Agents for Proton and Dual Proton/Fluorine MRI.Nanomaterials20199687910.3390/nano9060879 31200518
    [Google Scholar]
  91. NetoD.M.A. da CostaL.S. de MenezesF.L. FechineL.M.U.D. FreireR.M. DenardinJ.C. Bañobre-LópezM. VasconcelosI.F. RibeiroT.S. LealL.K.A.M. de SousaJ.A.C. GalloJ. FechineP.B.A. A novel amino phosphonate-coated magnetic nanoparticle as MRI contrast agent.Appl. Surf. Sci.202154314882410.1016/j.apsusc.2020.148824
    [Google Scholar]
  92. ChenF. EhlerdingE.B. CaiW. Theranostic Nanoparticles.J. Nucl. Med.201455121919192210.2967/jnumed.114.146019 25413134
    [Google Scholar]
  93. ManiglioD. BenettiF. MinatiL. JovicichJ. ValentiniA. SperanzaG. MigliaresiC. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization.Nanotechnology2018293131510110.1088/1361‑6528/aac4ce 29762138
    [Google Scholar]
  94. VerryC DufortS LemassonB GrandS PietrasJ TroprèsI CrémillieuxY LuxF MériauxS LarratB BalossoJ Le DucG BarbierEL TillementO Targeting brain metastases with ultrasmall theranostic nanoparticles, a first-in-human trial from an MRI perspective.Sci. Adv.2020629eaay527910.1126/sciadv.aay5279 32832613
    [Google Scholar]
  95. EmerichD.F. ThanosC.G. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis.Biomol. Eng.200623417118410.1016/j.bioeng.2006.05.026 16843058
    [Google Scholar]
  96. José AlonsoM. Nanomedicines for overcoming biological barriers.Biomed. Pharmacother.200458316817210.1016/j.biopha.2004.01.007 15082339
    [Google Scholar]
  97. SilvaGA Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS.BMC Neurosci.20089Suppl 3(Suppl 3), S410.1186/1471‑2202‑9‑S3‑S419091001
    [Google Scholar]
  98. HawkinsM.J. Soon-ShiongP. DesaiN. Protein nanoparticles as drug carriers in clinical medicine.Adv. Drug Deliv. Rev.200860887688510.1016/j.addr.2007.08.044 18423779
    [Google Scholar]
  99. EmerichD.F. Nanomedicine – prospective therapeutic and diagnostic applications.Expert Opin. Biol. Ther.2005511510.1517/14712598.5.1.1 15709905
    [Google Scholar]
  100. SteeleR.H. LimayeS. ClelandB. ChowJ. SuranyiM.G. Hypersensitivity reactions to the polysorbate contained in recombinant erythropoietin and darbepoietin (Case Report).Nephrology (Carlton)200510331732010.1111/j.1440‑1797.2005.00389.x 15958049
    [Google Scholar]
  101. PetrelliF. BorgonovoK. BarniS. Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel.Expert Opin. Pharmacother.20101181413143210.1517/14656561003796562 20446855
    [Google Scholar]
  102. LammersT. HenninkW.E. StormG. Tumour-targeted nanomedicines: principles and practice.Br. J. Cancer200899339239710.1038/sj.bjc.6604483 18648371
    [Google Scholar]
  103. GuptaB. LevchenkoT. TorchilinV. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.Adv. Drug Deliv. Rev.200557463765110.1016/j.addr.2004.10.007 15722168
    [Google Scholar]
  104. DanhierF. VromanB. LecouturierN. CrokartN. PourcelleV. FreichelsH. JérômeC. Marchand-BrynaertJ. FeronO. PréatV. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel.J. Control. Release2009140216617310.1016/j.jconrel.2009.08.011 19699245
    [Google Scholar]
  105. LiuY. ZhaoY. SunB. ChenC. Understanding the toxicity of carbon nanotubes.Acc. Chem. Res.201346370271310.1021/ar300028m 22999420
    [Google Scholar]
  106. DasJ. ChoiY.J. SongH. KimJ.H. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery.Hum. Reprod. Update201622558861910.1093/humupd/dmw020 27385359
    [Google Scholar]
  107. AliM. What function of nanoparticles is the primary factor for their hyper-toxicity?Adv. Colloid Interface Sci.202331410288110.1016/j.cis.2023.102881 36934512
    [Google Scholar]
  108. XuanL JuZ SkoniecznaM ZhouPK HuangR Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models.MedComm (2020)202344e32710.1002/mco2.327
    [Google Scholar]
  109. BishoyiA.K. NouriS. HussenA. BayaniA. KhaksariM.N. Soleimani SamarkhazanH. Nanotechnology in leukemia therapy: revolutionizing targeted drug delivery and immune modulation.Clin. Exp. Med.202525116610.1007/s10238‑025‑01686‑z 40379943
    [Google Scholar]
  110. MarcusC.L. The respiratory system: not just the lungs.Paediatr. Respir. Rev.201011419119210.1016/j.prrv.2010.07.007 21109175
    [Google Scholar]
  111. ChakrabortyA. DharmarajS. TruongN. PearsonR.M. Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection.ACS Appl. Mater. Interfaces20221451564405645310.1021/acsami.2c14424 36525379
    [Google Scholar]
  112. CaliffR.M. Biomarker definitions and their applications.Exp. Biol. Med. (Maywood)2018243321322110.1177/1535370217750088 29405771
    [Google Scholar]
  113. HuhD. MatthewsB.D. MammotoA. Montoya-ZavalaM. HsinH.Y. IngberD.E. Reconstituting organ-level lung functions on a chip.Science201032859861662166810.1126/science.1188302 20576885
    [Google Scholar]
  114. MorimotoY. HorieM. KobayashiN. ShinoharaN. ShimadaM. Inhalation toxicity assessment of carbon-based nanoparticles.Acc. Chem. Res.201346377078110.1021/ar200311b 22574947
    [Google Scholar]
  115. LiuH. YangD. YangH. ZhangH. ZhangW. FangY. LinZ. TianL. LinB. YanJ. XiZ. Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: Silver, zinc oxide and titanium dioxide.J. Hazard. Mater.2013248-24947848610.1016/j.jhazmat.2013.01.046 23419906
    [Google Scholar]
  116. LiuH.J. XuP. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor.Adv. Drug Deliv. Rev.202219111461910.1016/j.addr.2022.114619 36372301
    [Google Scholar]
  117. HouS. LiC. WangY. SunJ. GuoY. NingX. MaK. LiX. ShaoH. CuiG. JinM. DuZ. Silica nanoparticles cause activation of NLRP3 inflammasome in-vitro model-using microglia.Int. J. Nanomedicine2022175247526410.2147/IJN.S372485 36388872
    [Google Scholar]
  118. LeiL. QiaoK. GuoY. HanJ. ZhouB. Titanium dioxide nanoparticles enhanced thyroid endocrine disruption of pentachlorophenol rather than neurobehavioral defects in zebrafish larvae.Chemosphere202024912653610.1016/j.chemosphere.2020.126536 32217413
    [Google Scholar]
  119. LuX. LiuY. KongX. LobieP.E. ChenC. ZhuT. Nanotoxicity: A growing need for study in the endocrine system.Small201399-101654167110.1002/smll.201201517 23401134
    [Google Scholar]
  120. ZhuB. HanJ. LeiL. HuaJ. ZuoY. ZhouB. Effects of SiO2 nanoparticles on the uptake of tetrabromobisphenol A and its impact on the thyroid endocrine system in zebrafish larvae.Ecotoxicol. Environ. Saf.202120911184510.1016/j.ecoenv.2020.111845 33385677
    [Google Scholar]
  121. YamawakiH. IwaiN. Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis: Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells.Circ. J.200670112914010.1253/circj.70.129 16377937
    [Google Scholar]
  122. SaptarshiS.R. DuschlA. LopataA.L. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: An overview.Nanomedicine201510132075209210.2217/nnm.15.44 26135328
    [Google Scholar]
  123. PoonW.L. AleniusH. NdikaJ. FortinoV. KolhinenV. MeščeriakovasA. WangM. GrecoD. LähdeA. JokiniemiJ. LeeJ.C.Y. El-NezamiH. KarisolaP. Nano-sized zinc oxide and silver, but not titanium dioxide, induce innate and adaptive immunity and antiviral response in differentiated THP-1 cells.Nanotoxicology201711793695110.1080/17435390.2017.1382600 28958187
    [Google Scholar]
  124. HeZ LiC ZhangX ZhongR WangH LiuJ DuL The effects of gold nanoparticles on the human blood functions.Artif. Cells Nanomed Biotechnol.201846sup272072610.1080/21691401.2018.146876929741395
    [Google Scholar]
  125. LiuY. LiX. XiaoS. LiuX. ChenX. XiaQ. LeiS. LiH. ZhongZ. XiaoK. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice.Int. J. Nanomedicine2020159499951410.2147/IJN.S276606 33281445
    [Google Scholar]
  126. MaY.B. LuC.J. JunaidM. JiaP.P. YangL. ZhangJ.H. PeiD.S. Potential adverse outcome pathway (AOP) of silver nanoparticles mediated reproductive toxicity in zebrafish.Chemosphere201820732032810.1016/j.chemosphere.2018.05.019 29803881
    [Google Scholar]
  127. PinhoA.R. MartinsF. CostaM.E.V. SenosA.M.R. da Cruz e Silva, O.A.B.; Pereira, M.L.; Rebelo, S. In vitro cytotoxicity effects of zinc oxide nanoparticles on spermatogonia cells.Cells202095108110.3390/cells9051081 32357578
    [Google Scholar]
  128. ParkM.V.D.Z. NeighA.M. VermeulenJ.P. de la FonteyneL.J.J. VerharenH.W. BriedéJ.J. van LoverenH. de JongW.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles.Biomaterials201132369810981710.1016/j.biomaterials.2011.08.085 21944826
    [Google Scholar]
  129. AokiK. SaitoN. Biocompatibility and carcinogenicity of carbon nanotubes as biomaterials.Nanomaterials202010226410.3390/nano10020264 32033249
    [Google Scholar]
  130. KwonJY KoedrithP SeoYR Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: Carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations.Int. J. Nanomedicine20149Suppl 227128610.2147/IJN.S5791825565845
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002382141250825102311
Loading
/content/journals/cdm/10.2174/0113892002382141250825102311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test