Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Coumarins, naturally occurring benzopyrones, have garnered significant attention due to their diverse pharmacological activities and therapeutic potential. Derived from natural sources and synthetic routes such as the Perkin and Pechmann reactions, these compounds exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, antidiabetic, and neuroprotective effects. The structure-activity relationship of coumarins highlights the critical role of substitutions at specific positions on the benzopyrone ring, enhancing their efficacy and selectivity. Notable applications include anticancer activities, with coumarin derivatives inhibiting tumor growth and inducing apoptosis in breast cancer and melanoma cells, and neuroprotection, particularly in Alzheimer's and Parkinson’s diseases, through acetylcholinesterase inhibition and β-amyloid modulation. Additionally, coumarins show promise in combating drug-resistant pathogens and oxidative stress. Despite their potential, challenges such as toxicity and bioavailability remain. Future research should focus on optimizing coumarin scaffolds and advancing clinical evaluations to establish their role as next-generation therapeutic agents.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638374546250323152450
2025-04-08
2025-10-19
Loading full text...

Full text loading...

References

  1. PatilS.B. Medicinal significance of novel coumarin analogs: Recent studies.Results in Chemistry.2022410031310.1016/j.rechem.2022.100313
    [Google Scholar]
  2. CarneiroA. MatosM.J. UriarteE. SantanaL. Trending topics on coumarin and its derivatives in 2020.Molecules202126250110.3390/molecules2602050133477785
    [Google Scholar]
  3. SahniT. SharmaS. VermaD. KaurP. Overview of coumarins and its derivatives: Synthesis and biological activity.Lett. Org. Chem.2021181188090210.2174/1570178617999201006195742
    [Google Scholar]
  4. KumarN. KaushikN. KumarS. SharmaV. Synthetic investigations on medicinally important quinoxaline scaffold: A mini review.Lett. Org. Chem.2021181186787910.2174/1570178617666200409101903
    [Google Scholar]
  5. BouhaouiA. EddahmiM. DibM. Synthesis and biological properties of coumarin derivatives. A review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  6. SasidharanS. ChenY. SaravananD. SundramK.M. LathaL.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts.Afr. J. Tradit. Complement. Altern. Med.20108111010.4314/ajtcam.v8i1.6048322238476
    [Google Scholar]
  7. VekariyaR.H. PatelH.D. Recent advances in the synthesis of coumarin derivatives via Knoevenagel condensation: A review.Synth. Commun.201444192756278810.1080/00397911.2014.926374
    [Google Scholar]
  8. BairagiS.H. SalaskarP.P. LokeS.D. SurveN.N. TandelD.V. DusaraM.D. Medicinal significance of coumarins: A review.Int J Pharm Res2012421619
    [Google Scholar]
  9. NaseriM. Monsef-EsfehaniH.R. SaeidniaS. DastanD. GohariA.R. Antioxidative coumarins from the roots of Ferulago subvelutina.Asian J. Chem.20132541875187810.14233/ajchem.2013.13208
    [Google Scholar]
  10. AsifM. Pharmacologically potentials of different substituted coumarin derivatives.Chem. Int.20151111
    [Google Scholar]
  11. YeggoniD.P.R. ManidharD.M. Suresh ReddyC. SubramanyamR. Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein.J. Biomol. Struct. Dyn.20163492023203610.1080/07391102.2015.110426426440860
    [Google Scholar]
  12. AbdouM.M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications.Arab. J. Chem.201710S3664S367510.1016/j.arabjc.2014.04.005
    [Google Scholar]
  13. Al-MajedyY.K. KadhumA.A. Al-AmieryA.A. MohamadA.B. Coumarins: The antimicrobial agents.Syst. Rev. Pharm.2017816270
    [Google Scholar]
  14. WeiY. LiS. HaoS. New angular oxazole-fused coumarin derivatives: Synthesis and biological activities.Nat. Prod. Res.201832151824183110.1080/14786419.2017.140540829156971
    [Google Scholar]
  15. SalemM. MarzoukM. El-KazakA. Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage.Molecules201621224910.3390/molecules2102024926907244
    [Google Scholar]
  16. AroraR.K. KaurN. BansalY. BansalG. Novel coumarin–benzimidazole derivatives as antioxidants and safer anti-inflammatory agents.Acta Pharm. Sin. B20144536837510.1016/j.apsb.2014.07.00126579406
    [Google Scholar]
  17. OlmedoD. SanchoR. BedoyaL.M. 3-Phenylcoumarins as inhibitors of HIV-1 replication.Molecules20121789245925710.3390/molecules1708924522858844
    [Google Scholar]
  18. EmamiS. DadashpourS. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.Eur. J. Med. Chem.201510261163010.1016/j.ejmech.2015.08.03326318068
    [Google Scholar]
  19. KeriR.S. SasidharB.S. NagarajaB.M. SantosM.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.Eur. J. Med. Chem.201510025726910.1016/j.ejmech.2015.06.01726112067
    [Google Scholar]
  20. AkoudadS. DarweeshS.K. LeeningM.J. Use of coumarin anticoagulants and cerebral microbleeds in the general population.Stroke201445113436343910.1161/STROKEAHA.114.00711225316276
    [Google Scholar]
  21. GuptaM.K. KumarS. ChaudharyS. Synthesis and investigation of antidiabetic response of new coumarin derivatives against streptozotocin induced diabetes in experimental rats.Pharm. Chem. J.202053121122112710.1007/s11094‑020‑02134‑w
    [Google Scholar]
  22. AnandP. SinghB. SinghN. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease.Bioorg. Med. Chem.20122031175118010.1016/j.bmc.2011.12.04222257528
    [Google Scholar]
  23. AbdallahM. HijaziA. DumurF. LalevéeJ. Coumarins as powerful photosensitizers for the cationic polymerization of epoxy-silicones under near-UV and visible light and applications for 3D printing technology.Molecules2020259206310.3390/molecules2509206332354136
    [Google Scholar]
  24. WangH. JiX. PageZ.A. SesslerJ.L. Fluorescent materials-based information storage.Mater. Chem. Front.2020441024103910.1039/C9QM00607A
    [Google Scholar]
  25. TupareS.D. MeshramP. Chemistry of Coumarin: A Review.MumbaiInstitute of Science, Dr. Homi Bhabha Deemed University202416
    [Google Scholar]
  26. LiuX. ColeJ.M. WaddellP.G. LinT.C. RadiaJ. ZeidlerA. Molecular origins of optoelectronic properties in coumarin dyes: Toward designer solar cell and laser applications.J. Phys. Chem. A2012116172773710.1021/jp209925y22117623
    [Google Scholar]
  27. Ioana-AdrianaP. GălătușR. Applications based on optical sensors and intelligent methods.Romania: Doctoral Thesis Technical University of Cluj-Napoca 202416
    [Google Scholar]
  28. Ranjan SahooC. SahooJ. MahapatraM. Coumarin derivatives as promising antibacterial agent(s).Arab. J. Chem.202114210292210.1016/j.arabjc.2020.102922
    [Google Scholar]
  29. NofalZ.M. El-ZaharM.I. Abd El-KarimS.S. Novel coumarin derivatives with expected biological activity.Molecules2000529911310.3390/50200099
    [Google Scholar]
  30. LiX. LewisM.T. HuangJ. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.J. Natl. Cancer Inst.2008100967267910.1093/jnci/djn12318445819
    [Google Scholar]
  31. NowellP.C. The clonal evolution of tumor cell populations.Science19761944260232810.1126/science.959840959840
    [Google Scholar]
  32. LiuY. YangY. LiL. LncRNA SNHG1 enhances cell proliferation, migration, and invasion in cervical cancer.Biochem. Cell Biol.2018961384310.1139/bcb‑2017‑018828930646
    [Google Scholar]
  33. WadaK. GotoM. LeeK.H. YamashitaH. Antiproliferative effect of N-heterocyclo-coumarin derivatives against multidrug-resistant cells.Chem. Pharm. Bull. (Tokyo)2023711525710.1248/cpb.c22‑0058536596512
    [Google Scholar]
  34. DettoriT. SannaG. CoccoA. Synthesis and antiproliferative effect of halogenated coumarin derivatives.Molecules20222724889710.3390/molecules2724889736558029
    [Google Scholar]
  35. ShaheenH.M. NyembJ.N. SegueniN. GeorgeJ. R Patil V, El-Saber Batiha G. Anticancer properties and clinical trials of coumarins: A review.Free Radic. Antioxid.2022122414810.5530/fra.2022.2.8
    [Google Scholar]
  36. RehmanS. IkramM. KhanA. New dicoumarol sodium compound: Crystal structure, theoretical study and tumoricidal activity against osteoblast cancer cells.Chem. Cent. J.20137111010.1186/1752‑153X‑7‑11023819586
    [Google Scholar]
  37. Küpeli AkkolE. GençY. KarpuzB. Sobarzo-SánchezE. CapassoR. Coumarins and coumarin-related compounds in pharmacotherapy of cancer.Cancers (Basel)2020127195910.3390/cancers1207195932707666
    [Google Scholar]
  38. StaceyD. DeGrasseC. JohnstonL. Addressing the support needs of women at high risk for breast cancer: Evidence-based care by advanced practice nurses.Oncol. Nurs. Forum2002296E77E8410.1188/02.ONF.E77‑E8412096298
    [Google Scholar]
  39. CuiN. LinD.D. ShenY. Triphenylethylene-coumarin hybrid TCH-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis.Anticancer. Agents Med. Chem.201919101253126110.2174/187152061966619040415523030947677
    [Google Scholar]
  40. GkionisL. KavetsouE. KalospyrosA. Investigation of the cytotoxicity of bioinspired coumarin analogues towards human breast cancer cells.Mol. Divers.202125130732110.1007/s11030‑020‑10082‑632328962
    [Google Scholar]
  41. AlhakamyNA SaquibM Sanobar Natural product-inspired synthesis of coumarin–chalcone hybrids as potential anti-breast cancer agents.Front. Pharmacol.202314123145010.3389/fphar.2023.123145037745072
    [Google Scholar]
  42. RigelD.S. FriedmanR.J. KopfA.W. The incidence of malignant melanoma in the United States: Issues as we approach the 21st century.J. Am. Acad. Dermatol.199634583984710.1016/S0190‑9622(96)90041‑98632084
    [Google Scholar]
  43. GodarD.E. Worldwide increasing incidences of cutaneous malignant melanoma.J. Skin Cancer2011201111610.1155/2011/85842522007306
    [Google Scholar]
  44. BakerD. ElkonD. LimM.L. ConstableW. RinehartL. WaneboH. The influence of warfarin or levamisole on the incidence of metastases following local irradiation of a solid tumor.Cancer198249342743310.1002/1097‑0142(19820201)49:3<427:AID‑CNCR2820490306>3.0.CO;2‑67059906
    [Google Scholar]
  45. LacyA. O’KennedyR. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer.Curr. Pharm. Des.200410303797381110.2174/138161204338269315579072
    [Google Scholar]
  46. ThornesR.D. DalyL. LynchG. Treatment with coumarin to prevent or delay recurrence of malignant melanoma.J. Cancer Res. Clin. Oncol.1994120S1Suppl.S32S3410.1007/BF013771228132701
    [Google Scholar]
  47. SabtA. KhedrM.A. EldehnaW.M. New pyrazolylindolin-2-one based coumarin derivatives as anti-melanoma agents: Design, synthesis, dual BRAFV600E /VEGFR-2 inhibition, and computational studies.RSC Advances20241495907592510.1039/D4RA00157E38370458
    [Google Scholar]
  48. ArbynM. CastellsaguéX. de SanjoséS. Worldwide burden of cervical cancer in 2008.Ann. Oncol.201122122675268610.1093/annonc/mdr01521471563
    [Google Scholar]
  49. KiloweCE Assessment of Prescription Patterns and Costs of Oncology Drugs Used in the Pazdiatric Unit of Queen Elizabeth Central Hospital2023
    [Google Scholar]
  50. TaniguchiK. FunasakiM. KishidaA. Two new coumarins and a new xanthone from the leaves of Rhizophora mucronata.Bioorg. Med. Chem. Lett.20182861063106610.1016/j.bmcl.2018.02.02229475587
    [Google Scholar]
  51. EganD. JamesP. CookeD. O’KennedyR. Studies on the cytostatic and cytotoxic effects and mode of action of 8-nitro-7-hydroxycoumarin.Cancer Lett.1997118220121110.1016/S0304‑3835(97)00331‑59459210
    [Google Scholar]
  52. RafatpanahH. GolizadehM. MahdifarM. MahdaviS. IranshahiM. RassouliF.B. Conferone, a coumarin from Ferula flabelliloba, induced toxic effects on adult T-cell leukemia/lymphoma cells.Int. J. Immunopathol. Pharmacol.2023370394632023119759210.1177/0394632023119759237688389
    [Google Scholar]
  53. RahmaniA. Zavvar MousaviH. SalehiR. BagheriA. Novel pH-sensitive and biodegradable micelles for the combined delivery of doxorubicin and conferone to induce apoptosis in MDA-MB-231 breast cancer cell line.RSC Advances20201049292282924610.1039/D0RA03467C35521092
    [Google Scholar]
  54. CheraghiO. DehghanG. MahdaviM. Potent anti-angiogenic and cytotoxic effect of conferone on human colorectal adenocarcinoma HT-29 cells.Phytomedicine201623439840510.1016/j.phymed.2016.01.01527002410
    [Google Scholar]
  55. ZhouR. YuY.H. KimH. HaH.H. Synthesis of coumarin derivatives and investigation of their inhibitory effects on lung cancer cell motility.Sci. Rep.20221212163510.1038/s41598‑022‑26212‑z36517633
    [Google Scholar]
  56. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  57. ZhuX. ChenJ. YangF. TangC. Multiple sites of soft-tissue metastases secondary to lung cancer.Medicine (Baltimore)20199849e1816210.1097/MD.000000000001816231804329
    [Google Scholar]
  58. ThandraK.C. BarsoukA. SaginalaK. AluruJ.S. BarsoukA. Epidemiology of lung cancer.Contemp. Oncol. (Pozn.)2021251455210.5114/wo.2021.10382933911981
    [Google Scholar]
  59. de AraújoR.S.A. CarmoJ.O.S. de Omena SilvaS.L. Coumarin derivatives exert anti-lung cancer activity by inhibition of epithelial–mesenchymal transition and migration in A549 cells.Pharmaceuticals (Basel)202215110410.3390/ph1501010435056161
    [Google Scholar]
  60. ChauhanA. SharmaP.K. KaushikN. KumarN. Synthesis of novel pyrazole analogues as efficacious antimicrobial agents.Int. J. Pharm. Pharm. Sci.201135166176
    [Google Scholar]
  61. JoyM.N. BakulevV.A. BodkeY.D. TelkarS. Synthesis of coumarins coupled with benzamides as potent antimicrobial agents.Pharm. Chem. J.202054660462110.1007/s11094‑020‑02245‑4
    [Google Scholar]
  62. SmythT. RamachandranV.N. SmythW.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins.Int. J. Antimicrob. Agents200933542142610.1016/j.ijantimicag.2008.10.02219155158
    [Google Scholar]
  63. ManaguttiP.B. MangasuliS.N. MalaganviS.S. Synthesis, crystal structure, electronic structure, and anti-tubercular properties of coumarin derivatives bearing theophylline moiety.SSRN20221429070310.1016/j.molstruc.2022.134888
    [Google Scholar]
  64. NatarajanA. BeenaP.M. DevnikarA.V. MaliS. A systemic review on tuberculosis.Indian J. Tuberc.202067329531110.1016/j.ijtb.2020.02.00532825856
    [Google Scholar]
  65. GodgeR. KunkulolR. Synthesis of Coumarin heterocyclic derivatives with in-vitro antitubercular activity.J. Drug Deliv. Ther.20188521722310.22270/jddt.v8i5.1859
    [Google Scholar]
  66. KhanYusufzaiS. OsmanH. KhanMS. Design, characterization, in vitro antibacterial, antitubercular evaluation and structure–activity relationships of new hydrazinyl thiazolyl coumarin derivatives.Med. Chem. Res.20172661139114810.1007/s00044‑017‑1820‑2
    [Google Scholar]
  67. AlshiblH.M. Al-AbdullahE.S. HaibaM.E. Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents.Molecules20202514325110.3390/molecules2514325132708787
    [Google Scholar]
  68. BinduS. MazumderS. BandyopadhyayU. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective.Biochem. Pharmacol.202018011414710.1016/j.bcp.2020.11414732653589
    [Google Scholar]
  69. ChavanR.R. HosamaniK.M. Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid.R. Soc. Open Sci.20185517243510.1098/rsos.17243529892430
    [Google Scholar]
  70. MbabaM. DingleL.M.K. ZuluA.I. Coumarin-annulated ferrocenyl 1, 3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency.Molecules2021265133310.3390/molecules2605133333801371
    [Google Scholar]
  71. CoronadoL. ZhangX.Q. DortaD. Semisynthesis, antiplasmodial activity, and mechanism of action studies of isocoumarin derivatives.J. Nat. Prod.20218451434144110.1021/acs.jnatprod.0c0103233979168
    [Google Scholar]
  72. NathM. WadiI. NathM. RajendranV. GhoshC. Synthesis and antimalarial activity of sulfonamide-attached coumarin-[1,2,3]-triazoles.Indian J. Chem. Sect. B202059101545155510.3390/molecules24213917
    [Google Scholar]
  73. KangD. UrhanÇ. WeiF. Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors.Eur. J. Med. Chem.202122511376910.1016/j.ejmech.2021.11376934403976
    [Google Scholar]
  74. MishraS. PandeyA. ManvatiS. Coumarin: An emerging antiviral agent.Heliyon202061e0321710.1016/j.heliyon.2020.e0321732042967
    [Google Scholar]
  75. MooreJ.P. StevensonM. New targets for inhibitors of HIV-1 replication.Nat. Rev. Mol. Cell Biol.200011404910.1038/3503606011413488
    [Google Scholar]
  76. SrivastavV.K. TiwariM. ZhangX. YaoX.J. Synthesis and antiretroviral activity of 6-acetyl-coumarin derivatives against HIV-1 infection.Indian J. Pharm. Sci.201880110811710.4172/pharmaceutical‑sciences.1000335
    [Google Scholar]
  77. Al-SoudY.A. Al-Sa’doniH.H. AmajaourH.A.S. SalihK.S.M. MubarakbM.S. Al-MasoudicN.A. Synthesis, characterization and anti-HIV and antitumor activities of new coumarin derivatives.Z. Naturforsch. B. J. Chem. Sci.2008631838910.1515/znb‑2008‑0112
    [Google Scholar]
  78. KaushikN. KumarN. KumarA. SharmaV. Synthesis and biological activity of 3-(substitutedphenyl)-6-(4-methoxy phenyl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine: Part II.Antiinfect. Agents202119216216810.2174/2211352518666200617144227
    [Google Scholar]
  79. KanafaniZ.A. PerfectJ.R. Antimicrobial resistance: Resistance to antifungal agents: Mechanisms and clinical impact.Clin. Infect. Dis.200846112012810.1086/52407118171227
    [Google Scholar]
  80. WangC.M. ZhouW. LiC.X. ChenH. ShiZ.Q. FanY.J. Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea.J. Asian Nat. Prod. Res.200911978379110.1080/1028602090315896420183325
    [Google Scholar]
  81. MontagnerC. de SouzaS.M. GroposoC. Delle MonacheF. SmâniaE.F.A. SmâniaA.Jr Antifungal activity of coumarins.Z. Naturforsch. C J. Biosci.2008631-2212810.1515/znc‑2008‑1‑20518386483
    [Google Scholar]
  82. KaushikN. KumarN. KumarA. Synthesis of substituted 5-phenyl-1-(5-phenyl)-isoxazol-3-yl)-1H-tetrazole as antioxidant agents.Int. J. Adv. Sci. Res.20156011419
    [Google Scholar]
  83. TodorovL. SasoL. KostovaI. Antioxidant activity of coumarins and their metal complexes.Pharmaceuticals (Basel)202316565110.3390/ph1605065137242434
    [Google Scholar]
  84. FilipskýT. ŘíhaM. MacákováK. AnzenbacherováE. KarlíčkováJ. MladěnkaP. Antioxidant effects of coumarins include direct radical scavenging, metal chelation and inhibition of ROS-producing enzymes.Curr. Top. Med. Chem.201515541543110.2174/156802661566615020615223325658804
    [Google Scholar]
  85. WhangW.K. ParkH.S. HamI. Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress.Exp. Mol. Med.200537543644610.1038/emm.2005.5416264268
    [Google Scholar]
  86. KimS. KangK. ZhangR. Protective effect of esculetin against oxidative stress-induced cell damage via scavenging reactive oxygen species.Acta Pharmacol. Sin.200829111319132610.1111/j.1745‑7254.2008.00878.x18954526
    [Google Scholar]
  87. BasileA. SorboS. SpadaroV. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae).Molecules200914393995210.3390/molecules1403093919255552
    [Google Scholar]
  88. NajmanováI. DosedělM. HrdinaR. Cardiovascular effects of coumarins besides their antioxidant activity.Curr. Top. Med. Chem.201515983084910.2174/156802661566615022011243725697565
    [Google Scholar]
  89. CrichtonE.G. WatermanP.G. Dihydromammea C/OB: A new coumarin from the seed of Mammea africana.Phytochemistry197817101783178610.1016/S0031‑9422(00)88695‑1
    [Google Scholar]
  90. MeadJ.A.R. SmithJ.N. WilliamsR.T. Studies in detoxication. 72. The metabolism of coumarin and of o-coumaric acid.Biochem. J.1958681677410.1042/bj068006713522576
    [Google Scholar]
  91. DuarteJ. VallejoI. Pérez-VizcainoF. JiménezR. ZarzueloA. TamargoJ. Effects of visnadine on rat isolated vascular smooth muscles.Planta Med.199763323323610.1055/s‑2006‑9576609225605
    [Google Scholar]
  92. Sharifi-RadJ. Cruz-MartinsN. López-JornetP. Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms.Oxid. Med. Cell. Longev.202120211649234610.1155/2021/649234634531939
    [Google Scholar]
  93. IslamM.S. QuispeC. HossainR. Neuropharmacological effects of quercetin: A literature-based review.Front. Pharmacol.20211266503110.3389/fphar.2021.66503134220504
    [Google Scholar]
  94. TsatsakisA. DoceaA.O. CalinaD. A mechanistic and pathophysiological approach for stroke associated with drugs of abuse.J. Clin. Med.201989129510.3390/jcm809129531450861
    [Google Scholar]
  95. Erdogan OrhanI. DenizF.S.S. SalmasR.E. Evaluation of anti‐alzheimer activity of synthetic coumarins by combination of in vitro and in silico approaches.Chem. Biodivers.20221912e20220031510.1002/cbdv.20220031536282001
    [Google Scholar]
  96. SalehiB. Sharifi-RadJ. CappelliniF. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action.Front. Pharmacol.202011130010.3389/fphar.2020.0130032982731
    [Google Scholar]
  97. OrhanG. OrhanI. SenerB. Recent developments in natural and synthetic drug research for Alzheimer’s disease.Lett. Drug Des. Discov.20063426827410.2174/157018006776743215
    [Google Scholar]
  98. AliM.Y. JannatS. JungH.A. ChoiR.J. RoyA. ChoiJ.S. Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis.Asian Pac. J. Trop. Med.20169210311110.1016/j.apjtm.2016.01.01426919937
    [Google Scholar]
  99. Rodríguez-EnríquezF. Costas-LagoM.C. BesadaP. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy.Bioorg. Chem.202010410420310.1016/j.bioorg.2020.10420332932120
    [Google Scholar]
  100. LiH. FengY. ChenZ. Pepper component 7-ethoxy-4-methylcoumarin, a novel dopamine D2 receptor agonist, ameliorates experimental Parkinson’s disease in mice and Caenorhabditis elegans.Pharmacol. Res.202116310522010.1016/j.phrs.2020.10522033007422
    [Google Scholar]
  101. BeghiE. The epidemiology of epilepsy.Neuroepidemiology202054218519110.1159/00050383131852003
    [Google Scholar]
  102. BaekN.I. AhnE.M. KimH.Y. ParkY.D. Furanocoumarins from the root of Angelica dahurica.Arch. Pharm. Res.200023546747010.1007/BF0297657411059825
    [Google Scholar]
  103. ZangerlA.R. BerenbaumM.R. Furanocoumarin induction in wild parsnip: Genetics and population variation.Ecology19907151933194010.2307/1937601
    [Google Scholar]
  104. LuszczkiJ.J. WojdaE. Andres-MachM. Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: A comparative study.Epilepsy Res.2009852-329329910.1016/j.eplepsyres.2009.03.02719406619
    [Google Scholar]
  105. KaushikN. KumarN. KumarA. Synthesis and biological activity of 3-(substitutedphenyl)-6-(4-methoxyphenyl)-7h-[1, 2, 4] triazolo [3, 4-b][1, 3, 4] thiadiazine.Immunol. Endocr. Metab. Agents Med. Chem.2016161708010.2174/1871522216999160406125836
    [Google Scholar]
  106. LiH. YaoY. LiL. Coumarins as potential antidiabetic agents.J. Pharm. Pharmacol.201769101253126410.1111/jphp.1277428675434
    [Google Scholar]
  107. NumonovS. SharopovF.S. AtolikhshoevaS. Volatile secondary metabolites with potent antidiabetic activity from the roots of Prangos pabularia Lindl.—Computational and experimental investigations.Appl. Sci. (Basel)2019911236210.3390/app9112362
    [Google Scholar]
  108. KoleyM. HanJ. SoloshonokV. MojumderS. JavahershenasR. MakaremA. Recent advances in coumarin-based anticancer agents: Mechanism of action and structure-activity relationship studies.RSC Med. Chem.202315105410.1039/D3MD00511A
    [Google Scholar]
  109. RamsisT.M. EbrahimM.A. FayedE.A. Synthetic coumarin derivatives with anticoagulation and antiplatelet aggregation inhibitory effects.Med. Chem. Res.202332112269227810.1007/s00044‑023‑03148‑1
    [Google Scholar]
  110. G AC Gondru R Li Y Banothu J Coumarin–benzimidazole hybrids: A review of developments in medicinal chemistry.Eur. J. Med. Chem.202222711392110.1016/j.ejmech.2021.11392134715585
    [Google Scholar]
  111. LiuW. WuL. LiuW. Design, synthesis and biological evaluation of novel coumarin derivatives as multifunctional ligands for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202224211468910.1016/j.ejmech.2022.11468936007469
    [Google Scholar]
  112. JacobowitzJ.R. WengJ.K. Exploring uncharted territories of plant specialized metabolism in the postgenomic era.Annu. Rev. Plant Biol.202071163165810.1146/annurev‑arplant‑081519‑03563432176525
    [Google Scholar]
  113. VenugopalaK.N. RashmiV. OdhavB. Review on natural coumarin lead compounds for their pharmacological activity.BioMed Res. Int.2013201311410.1155/2013/96324823586066
    [Google Scholar]
  114. FarinolaN. PillerN. Pharmacogenomics: Its role in re-establishing coumarin as treatment for lymphedema.Lymphat. Res. Biol.200532818610.1089/lrb.2005.3.8116000056
    [Google Scholar]
  115. ByeA. KingH.K. The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius.Biochem. J.1970117223724510.1042/bj11702374192639
    [Google Scholar]
  116. SaiduN.E.B. ValverdeA. ValverdeV. Coumarins as potential therapeutic agents: A review of their pharmacological and medicinal properties.Future Med. Chem.20124676379110.4155/fmc.12.21
    [Google Scholar]
  117. SantanaL. UriarteE. RoleiraF. MilhazesN. BorgesF. FiuzaT. Recent advances in coumarins and their hybrids in medicinal chemistry.Med. Res. Rev.200626546949210.1002/med.20065
    [Google Scholar]
  118. SakaiT. KogureT. OhashiA. IshidaY. Antioxidant and anticancer activities of coumarin derivatives in tumor cells.Biochem. Pharmacol.20118191232124210.1016/j.bcp.2011.02.018
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638374546250323152450
Loading
/content/journals/cddt/10.2174/0115701638374546250323152450
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-cancer; anti-HIV; anti-tuberculosis; antibacterial; antifungal; antimicrobial; Coumarin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test