Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Targeted Protein Degradation (TPD) offers a solution, eliminating disease-related proteins and overcoming challenges associated with unintended toxicity and lack of precision. PROTACs (Proteolysis Targeting Chimeras) represent an innovative strategy for the specific degradation of target proteins through the UPS (Ubiquitin-Proteasome System). In comparison to conventional protein inhibitor medications, PROTAC offers advantages in terms of efficacy, selectivity, and the ability to overcome drug resistance in cancer treatment, contributing novel perspectives to the field of anti-cancer drug discovery. Proteins play vital roles in an organism’s health, and misfolded contributes to diseases like neurodegenerative disorders and cancer. Cells maintain protein balance through quality control systems, primarily the UPS and autophagy. PROTAC, a Targeted Protein Degradation (TPD) strategy, utilizes UPS, employing small molecules to induce targeted protein degradation. PROTAC exhibits promise in preclinical studies and clinical trials for diverse cancers. Notable examples include breast cancer, where PROTAC targets CDK4/6 (cyclin-dependent kinase) and Estrogen Receptors (ER), prostate cancer, addressing Androgen Receptor (AR) degradation, hematologic malignancies, focusing on AURORA-A and CDKs, and NSCLC (Non-Small-Cell Lung Cancer), targeting Estimated Glomerular Filtration Rate (EGFR), and KRAS. Despite their potential, PROTAC faces challenges, including compensatory protein expression in response to targeted therapies. This comprehensive review explores recent advancements in PROTAC and related technologies, emphasizing the mechanisms and structures of PROTAC and their applications in proteins targeting cancer.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638324854250218053353
2025-02-26
2025-10-19
Loading full text...

Full text loading...

References

  1. ZhangG. ZhangJ. GaoY. LiY. LiY. Strategies for targeting undruggable targets.Expert Opin. Drug Discov.2022171556910.1080/17460441.2021.196935934455870
    [Google Scholar]
  2. ZhaoL. ZhaoJ. ZhongK. TongA. JiaD. Targeted protein degradation: Mechanisms, strategies and application.Signal Transduct. Target. Ther.20227111310.1038/s41392‑022‑00966‑435379777
    [Google Scholar]
  3. AshrafM.G. GreigN. KhanA. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus.CNS Neurol. Disord. Drug Targets201413712801293
    [Google Scholar]
  4. ChenB. RetzlaffM. RoosT. FrydmanJ. Cellular strategies of protein quality control.Cold Spring Harb. Perspect. Biol.201138a00437410.1101/cshperspect.a00437421746797
    [Google Scholar]
  5. LiY. LiS. WuH. Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress.Cells202211585110.3390/cells1105085135269473
    [Google Scholar]
  6. CiulliA. TrainorN. A beginner’s guide to PROTACs and targeted protein degradation.Biochemist2021435747910.1042/bio_2021_148
    [Google Scholar]
  7. PenkeB. BogárF. CrulT. SánthaM. TóthM.E. VíghL. Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions.Int. J. Mol. Sci.201819132510.3390/ijms1901032529361800
    [Google Scholar]
  8. MadanJ. AhujaV.K. DuaK. SamajdarS. RamchandraM. GiriS. PROTACs: Current trends in protein degradation by proteolysis-targeting chimeras.BioDrugs202236560962310.1007/s40259‑022‑00551‑936098871
    [Google Scholar]
  9. ZhuangJ. LiuQ. WuD. TieL. Current strategies and progress for targeting the “undruggable” transcription factors.Acta Pharmacol. Sin.202243102474248110.1038/s41401‑021‑00852‑935132191
    [Google Scholar]
  10. BurslemG.M. CrewsC.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery.Cell2020181110211410.1016/j.cell.2019.11.03131955850
    [Google Scholar]
  11. YaoT. XiaoH. WangH. XuX. Recent advances in PROTACs for drug targeted protein research.Int. J. Mol. Sci.202223181032810.3390/ijms23181032836142231
    [Google Scholar]
  12. ZagidullinA. MilyukovV. RizvanovA. BulatovE. Novel approaches for the rational design of PROTAC linkers.Explor. Target. Antitumor Ther.20201538139010.37349/etat.2020.0002336046487
    [Google Scholar]
  13. LiR. LiuM. YangZ. LiJ. GaoY. TanR. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: Present and future.Molecules20222724882810.3390/molecules2724882836557960
    [Google Scholar]
  14. IshidaT. CiulliA. E3 ligase ligands for protacs: How they were found and how to discover new ones.SLAS Discov.202126448450210.1177/247255522096552833143537
    [Google Scholar]
  15. HanX. WeiW. SunY. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: An updated perspective.Acta Materia Med.20221224425910.15212/AMM‑2022‑001035734447
    [Google Scholar]
  16. BondM.J. CrewsC.M. Proteolysis targeting chimeras (PROTACs) come of age: Entering the third decade of targeted protein degradation.RSC Chem. Biol.20212372574210.1039/D1CB00011J34212149
    [Google Scholar]
  17. GramespacherJ.A. CottonA.D. BurroughsP.W.W. SeipleI.B. WellsJ.A. Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins.ACS Chem. Biol.20221751259126810.1021/acschembio.2c0018535481357
    [Google Scholar]
  18. DassamaL. ShenF. Opportunities and challenges of protein-based targeted protein degradation.Chem. Sci. 2023143284338447
    [Google Scholar]
  19. ZhangY. SunL. GaoX. GuoA. DiaoY. ZhaoY. RNF43 ubiquitinates and degrades phosphorylated E-cadherin by c-Src to facilitate epithelial-mesenchymal transition in lung adenocarcinoma.BMC Cancer201919167010.1186/s12885‑019‑5880‑131286874
    [Google Scholar]
  20. MareiH. TsaiW.T.K. KeeY.S. Antibody targeting of E3 ubiquitin ligases for receptor degradation.Nature2022610793018218910.1038/s41586‑022‑05235‑636131013
    [Google Scholar]
  21. GhidiniA. CléryA. HalloyF. AllainF.H.T. HallJ. RNA‐PROTACs: Degraders of RNA‐binding proteins.Angew. Chem. Int. Ed.20216063163316910.1002/anie.20201233033108679
    [Google Scholar]
  22. SalamaA.K.A.A. TrkuljaM.V. CasanovaE. UrasI.Z. Targeted protein degradation: Clinical advances in the field of oncology.Int. J. Mol. Sci.202223231544010.3390/ijms23231544036499765
    [Google Scholar]
  23. LiuY. QianX. RanC. Aptamer-based targeted protein degradation.ACS Nano20231776150616410.1021/acsnano.2c1037936942868
    [Google Scholar]
  24. FanR. TaoX. ZhaiX. Application of aptamer-drug delivery system in the therapy of breast cancer.Biomed. Pharmacother.202316111444410.1016/j.biopha.2023.11444436857912
    [Google Scholar]
  25. ZhangL. LiL. WangX. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin.Mol. Ther. Nucleic Acids202230667910.1016/j.omtn.2022.09.00836250201
    [Google Scholar]
  26. TongX. GaL. AiJ. WangY. Progress in cancer drug delivery based on AS1411 oriented nanomaterials.J. Nanobiotechnology20222015710.1186/s12951‑022‑01240‑z35101048
    [Google Scholar]
  27. SakamotoK.M. KimK.B. KumagaiA. MercurioF. CrewsC.M. DeshaiesR.J. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation.Proc. Natl. Acad. Sci. USA200198158554855910.1073/pnas.14123079811438690
    [Google Scholar]
  28. SamarasingheK.T.G. Jaime-FigueroaS. BurgessM. Targeted degradation of transcription factors by TRAFTACs: Transcription factor targeting chimeras.Cell Chem. Biol.2021285648661.e510.1016/j.chembiol.2021.03.01133836141
    [Google Scholar]
  29. HuangX. WuF. YeJ. Expanding the horizons of targeted protein degradation: A non-small molecule perspective.Acta Pharm. Sin. B20241462402242710.1016/j.apsb.2024.01.01038828146
    [Google Scholar]
  30. WangH. ZhouR. XuF. Beyond canonical PROTAC: Biological targeted protein degradation (bioTPD).Biomater. Res.20232717210.1186/s40824‑023‑00385‑837480049
    [Google Scholar]
  31. DuG. JiangJ. HenningN.J. Exploring the target scope of KEAP1 E3 ligase-based PROTACs.Cell Chem. Biol.2022291014701481.e3110.1016/j.chembiol.2022.08.00336070758
    [Google Scholar]
  32. HuangX. DixitV.M. Drugging the undruggables: Exploring the ubiquitin system for drug development.Cell Res.201626448449810.1038/cr.2016.3127002218
    [Google Scholar]
  33. DingL. CaoJ. LinW. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer.Int. J. Mol. Sci.2020216196010.3390/ijms2106196032183020
    [Google Scholar]
  34. TopacioB.R. ZatulovskiyE. CristeaS. Cyclin D-Cdk4, 6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix.Mol. Cell2019744758770.e410.1016/j.molcel.2019.03.02030982746
    [Google Scholar]
  35. ZhaoB. BurgessK. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer.Chem. Commun. 201955182704270710.1039/C9CC00163H30758029
    [Google Scholar]
  36. RejR.K. ThomasJ.E. AcharyyaR.K. RaeJ.M. WangS. Targeting the estrogen receptor for the treatment of breast cancer: Recent advances and challenges.J. Med. Chem.202366138339838110.1021/acs.jmedchem.3c0013637377342
    [Google Scholar]
  37. LiuL. ShiL. WangZ. Targeting oncoproteins for degradation by small molecule-based proteolysis-targeting chimeras (PROTACs) in sex hormone-dependent cancers.Front. Endocrinol.20221383985710.3389/fendo.2022.83985735370971
    [Google Scholar]
  38. ChenQ.H. MunozE. AshongD. Insight into recent advances in degrading androgen receptor for castration-resistant prostate cancer.Cancers202416366310.3390/cancers1603066338339414
    [Google Scholar]
  39. Tecalco-CruzA.C. Zepeda-CervantesJ. Ramírez-JarquínJ.O. Rojas-OchoaA. Proteolysis-targeting chimeras and their implications in breast cancer.Explor. Target. Antitumor Ther.20212649651010.37349/etat.2021.0006036046115
    [Google Scholar]
  40. LaiH.Z. HanJ.R. FuX. RenY.F. LiZ.H. YouF.M. Targeted approaches to HER2-low breast cancer: Current practice and future directions.Cancers20221415377410.3390/cancers1415377435954438
    [Google Scholar]
  41. WangY. JiangX. FengF. LiuW. SunH. Degradation of proteins by PROTACs and other strategies.Acta Pharm. Sin. B202010220723810.1016/j.apsb.2019.08.00132082969
    [Google Scholar]
  42. ZhaoL. HanX. LuJ. McEachernD. WangS. A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo .Neoplasia2020221052253210.1016/j.neo.2020.07.00232928363
    [Google Scholar]
  43. BékésM. LangleyD.R. CrewsC.M. PROTAC targeted protein degraders: The past is prologue.Nat. Rev. Drug Discov.202221318120010.1038/s41573‑021‑00371‑635042991
    [Google Scholar]
  44. JiangH. XiongH. GuS.X. WangM. E3 ligase ligand optimization of Clinical PROTACs.Front Chem.202311109833110.3389/fchem.2023.109833136733714
    [Google Scholar]
  45. BhasinS. JasujaR. Selective androgen receptor modulators as function promoting therapies.Curr. Opin. Clin. Nutr. Metab. Care200912323224010.1097/MCO.0b013e32832a3d7919357508
    [Google Scholar]
  46. SalamiJ. AlabiS. WillardR.R. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance.Commun. Biol.20181110010.1038/s42003‑018‑0105‑830271980
    [Google Scholar]
  47. WinterG.E. BuckleyD.L. PaulkJ. Phthalimide conjugation as a strategy for in vivo target protein degradation.Science201534862411376138110.1126/science.aab143325999370
    [Google Scholar]
  48. LebraudH. WrightD.J. JohnsonC.N. HeightmanT.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras.ACS Cent. Sci.201621292793410.1021/acscentsci.6b0028028058282
    [Google Scholar]
  49. LiX. PuW. ZhengQ. AiM. ChenS. PengY. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.Mol. Cancer20222119910.1186/s12943‑021‑01434‑335410300
    [Google Scholar]
  50. HinesJ. LartigueS. DongH. QianY. CrewsC.M. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53.Cancer Res.201979125126210.1158/0008‑5472.CAN‑18‑291830385614
    [Google Scholar]
  51. WangC. ZhangY. YangS. ChenW. XingD. PROTACs for BRDs proteins in cancer therapy: A review.J. Enzyme Inhib. Med. Chem.20223711694170310.1080/14756366.2022.208116435702740
    [Google Scholar]
  52. ZhangJ. ChenP. ZhuP. Development of small-molecule BRD4 degraders based on pyrrolopyridone derivative.Bioorg. Chem.20209910381710.1016/j.bioorg.2020.10381732361153
    [Google Scholar]
  53. LinX. XiangX. HaoL. The role of Aurora-A in human cancers and future therapeutics.Am. J. Cancer Res.20201092705272933042612
    [Google Scholar]
  54. D’AssoroA.B. HaddadT. GalanisE. Aurora-A kinase as a promising therapeutic target in cancer.Front. Oncol.2016529510.3389/fonc.2015.0029526779440
    [Google Scholar]
  55. DingY.H. ZhouZ.W. HaC.F. Alisertib, an Aurora kinase A inhibitor, induces apoptosis and autophagy but inhibits epithelial to mesenchymal transition in human epithelial ovarian cancer cells.Drug Des. Devel. Ther.2015942546425624750
    [Google Scholar]
  56. LiJ.P. YangY.X. LiuQ.L. The investigational Aurora kinase A inhibitor alisertib (MLN8237) induces cell cycle G2/M arrest, apoptosis, and autophagy via p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.Drug Des. Devel. Ther.201591627165225834401
    [Google Scholar]
  57. AdhikariB. BozilovicJ. DieboldM. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase.Nat. Chem. Biol.202016111179118810.1038/s41589‑020‑00652‑y32989298
    [Google Scholar]
  58. AlmeidaG.E. RenaudinX. VenkitaramanA.R. A kinase-independent function for AURORA-A in replisome assembly during DNA replication initiation.Nucleic Acids Res.202048147844785510.1093/nar/gkaa57032652013
    [Google Scholar]
  59. TsunematsuT. ArakakiR. YamadaA. IshimaruN. KudoY. The non-canonical role of Aurora-A in DNA replication.Front. Oncol.2015518710.3389/fonc.2015.0018726380219
    [Google Scholar]
  60. JiangB. WangE.S. DonovanK.A. Development of dual and selective degraders of cyclin‐dependent kinases 4 and 6.Angew. Chem. Int. Ed.201958196321632610.1002/anie.20190133630802347
    [Google Scholar]
  61. AdonT. ShanmugarajanD. KumarH.Y. CDK4/6 inhibitors: A brief overview and prospective research directions.RSC Advances20211147292272924610.1039/D1RA03820F35479560
    [Google Scholar]
  62. QiJ. OuyangZ. Targeting CDK4/6 for anticancer therapy.Biomedicines202210368510.3390/biomedicines1003068535327487
    [Google Scholar]
  63. RanaS. BendjennatM. KourS. Selective degradation of CDK6 by a palbociclib based PROTAC.Bioorg. Med. Chem. Lett.201929111375137910.1016/j.bmcl.2019.03.03530935795
    [Google Scholar]
  64. BaptistaF.R. BelhoutS.A. GiordaniS. QuinnS.J. Recent developments in carbon nanomaterial sensors.Chem. Soc. Rev.201544134433445310.1039/C4CS00379A25980819
    [Google Scholar]
  65. MalhabB.L.J. AlsafarH. IbrahimS. RahmaniM. PROTACs: Walking through hematological malignancies.Front. Pharmacol.202314108694610.3389/fphar.2023.108694636909156
    [Google Scholar]
  66. HeY. KhanS. HuoZ. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies.J. Hematol. Oncol.202013110310.1186/s13045‑020‑00924‑z32718354
    [Google Scholar]
  67. NgW.W. LinC.C. ChengC.Y. JiangJ.S. KaoS.J. YehD.Y. Real-world outcomes of first- and second-generation tyrosine kinase inhibitors first-line in patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer: A retrospective observational cohort study.PLoS One2021166e025333510.1371/journal.pone.025333534166400
    [Google Scholar]
  68. NguyenK.S.H. KobayashiS. CostaD.B. Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway.Clin. Lung Cancer200910428128910.3816/CLC.2009.n.03919632948
    [Google Scholar]
  69. LazzariC. GregorcV. KarachaliouN. RosellR. SantarpiaM. Mechanisms of resistance to osimertinib.J. Thorac. Dis.20201252851285810.21037/jtd.2019.08.3032642198
    [Google Scholar]
  70. RamalingamS.S. VansteenkisteJ. PlanchardD. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC.N. Engl. J. Med.20203821415010.1056/NEJMoa191366231751012
    [Google Scholar]
  71. Ríos-HoyoA. MolinerL. ArriolaE. Acquired mechanisms of resistance to osimertinib—the next challenge.Cancers2022148193110.3390/cancers1408193135454838
    [Google Scholar]
  72. YamaokaT. TsurutaniJ. SagaraH. OhmoriT. HER2-D16 oncogenic driver mutation confers osimertinib resistance in EGFR mutation-positive non-small cell lung cancer.Transl. Lung Cancer Res.2020952178218310.21037/tlcr‑20‑57833209639
    [Google Scholar]
  73. LimJ.U. Overcoming Osimertinib resistance in advanced non-small cell lung cancer.Clin. Oncol.2021331061962610.1016/j.clon.2021.07.01534364740
    [Google Scholar]
  74. ChengM. YuX. LuK. Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional small-molecule degraders.J. Med. Chem.20206331216123210.1021/acs.jmedchem.9b0156631895569
    [Google Scholar]
  75. SakanyanV. IradyanN. Alves de SousaR. Targeted strategies for degradation of key transmembrane proteins in cancer.BioTech20231235710.3390/biotech1203005737754201
    [Google Scholar]
  76. LeeY. WangY. JamesM. JeongJ.H. YouM. Inhibition of IGF1R signaling abrogates resistance to afatinib (BIBW2992) in EGFR T790M mutant lung cancer cells.Mol. Carcinog.2016555991100110.1002/mc.2234226052929
    [Google Scholar]
  77. HagopianG. GrantC. NagasakaM. Proteolysis targeting chimeras in non-small cell lung cancer.Cancer Treat. Rev.202311710256110.1016/j.ctrv.2023.10256137178629
    [Google Scholar]
  78. NeklesaT.K. TaeH.S. SchneeklothA.R. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins.Nat. Chem. Biol.20117853854310.1038/nchembio.59721725302
    [Google Scholar]
  79. NeklesaT.K. CrewsC.M. Greasy tags for protein removal.Nature2012487740730830910.1038/487308a22810693
    [Google Scholar]
  80. BurslemG.M. SmithB.E. LaiA.C. The advantages of targeted protein degradation over inhibition: An RTK case study.Cell Chem. Biol.20182516777.e310.1016/j.chembiol.2017.09.00929129716
    [Google Scholar]
  81. YangY. ZhangH. HuangS. ChuQ. KRAS mutations in solid tumors: Characteristics, current therapeutic strategy, and potential treatment exploration.J. Clin. Med.202312270910.3390/jcm1202070936675641
    [Google Scholar]
  82. HuangL. GuoZ. WangF. FuL. KRAS mutation: From undruggable to druggable in cancer.Signal Transduct. Target. Ther.20216138610.1038/s41392‑021‑00780‑434776511
    [Google Scholar]
  83. AwadM.M. LiuS. RybkinI.I. Acquired resistance to KRASG12C inhibition in cancer.N. Engl. J. Med.2021384252382239310.1056/NEJMoa210528134161704
    [Google Scholar]
  84. LiuJ. KangR. TangD. The KRAS-G12C inhibitor: Activity and resistance.Cancer Gene Ther.202229787587810.1038/s41417‑021‑00383‑934471232
    [Google Scholar]
  85. BurslemG.M. CrewsC.M. Small-molecule modulation of protein homeostasis.Chem. Rev.201711717112691130110.1021/acs.chemrev.7b0007728777566
    [Google Scholar]
  86. BondesonD.P. CrewsC.M. Targeted protein degradation by small molecules.Annu. Rev. Pharmacol. Toxicol.201757110712310.1146/annurev‑pharmtox‑010715‑10350727732798
    [Google Scholar]
  87. OhokaN. ShibataN. HattoriT. NaitoM. Protein knockdown technology: Application of ubiquitin ligase to cancer therapy.Curr. Cancer Drug Targets201616213614610.2174/156800961666615111212250226560118
    [Google Scholar]
  88. OttoC. SchmidtS. KastnerC. Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells.Neoplasia201921111110112010.1016/j.neo.2019.10.00331734632
    [Google Scholar]
  89. AmirianR. BadrbaniA.M. IzadiZ. Targeted protein modification as a paradigm shift in drug discovery.Eur. J. Med. Chem.202326011576510.1016/j.ejmech.2023.11576537659194
    [Google Scholar]
  90. GuS. CuiD. ChenX. XiongX. ZhaoY. PROTACs: An emerging targeting technique for protein degradation in drug discovery.BioEssays2018404170024710.1002/bies.20170024729473971
    [Google Scholar]
  91. TinworthC.P. LithgowH. DittusL. PROTAC-mediated degradation of Bruton’s tyrosine kinase is inhibited by covalent binding.ACS Chem. Biol.201914334234710.1021/acschembio.8b0109430807093
    [Google Scholar]
  92. ToureM. CrewsC.M. Small‐molecule PROTACS: New approaches to protein degradation.Angew. Chem. Int. Ed.20165561966197310.1002/anie.20150797826756721
    [Google Scholar]
  93. ColemanK.G. CrewsC.M. Proteolysis-targeting chimeras: Harnessing the ubiquitin-proteasome system to induce degradation of specific target proteins.Annu. Rev. Cancer Biol.201821415810.1146/annurev‑cancerbio‑030617‑050430
    [Google Scholar]
  94. BansalA.B. CassagnolM. HMG-CoA reductase inhibitors.Treasure Island, FLStatPearls2023
    [Google Scholar]
  95. PaivaS.L. CrewsC.M. Targeted protein degradation: Elements of PROTAC design.Curr. Opin. Chem. Biol.20195011111910.1016/j.cbpa.2019.02.02231004963
    [Google Scholar]
  96. GirardiniM. ManiaciC. HughesS.J. TestaA. CiulliA. Cereblon versus VHL: Hijacking E3 ligases against each other using PROTACs.Bioorg. Med. Chem.201927122466247910.1016/j.bmc.2019.02.04830826187
    [Google Scholar]
  97. BriceljA. SteinebachC. KuchtaR. GütschowM. SosičI. E3 ligase ligands in successful PROTACs: An overview of syntheses and linker attachment points.Front Chem.2021970731710.3389/fchem.2021.70731734291038
    [Google Scholar]
  98. SchapiraM. CalabreseM.F. BullockA.N. CrewsC.M. Targeted protein degradation: Expanding the toolbox.Nat. Rev. Drug Discov.2019181294996310.1038/s41573‑019‑0047‑y31666732
    [Google Scholar]
  99. KargboR.B. PROTAC-mediated degradation of Bruton’s tyrosine kinase as a therapeutic strategy for cancer.ACS Med. Chem. Lett.202112568868910.1021/acsmedchemlett.1c0017834055210
    [Google Scholar]
  100. LuJ. QianY. AltieriM. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4.Chem. Biol.201522675576310.1016/j.chembiol.2015.05.00926051217
    [Google Scholar]
  101. BuckleyD.L. RainaK. DarricarrereN. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins.ACS Chem. Biol.20151081831183710.1021/acschembio.5b0044226070106
    [Google Scholar]
  102. JoshiM. DeyP. DeA. Recent advancements in targeted protein knockdown technologies—emerging paradigms for targeted therapy.Explor. Target. Antit. Ther.2023461227124810.37349/etat.2023.0019438213543
    [Google Scholar]
  103. ZhongY. ChiF. WuH. Emerging targeted protein degradation tools for innovative drug discovery: From classical PROTACs to the novel and beyond.Eur. J. Med. Chem.202223111414210.1016/j.ejmech.2022.11414235092900
    [Google Scholar]
  104. ZouQ. LiuM. LiuK. ZhangY. NorthB.J. WangB. E3 ubiquitin ligases in cancer stem cells: Key regulators of cancer hallmarks and novel therapeutic opportunities.Cell. Oncol.202346354557010.1007/s13402‑023‑00777‑x36745329
    [Google Scholar]
  105. BuhimschiA.D. ArmstrongH.A. ToureM. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation.Biochemistry201857263564357510.1021/acs.biochem.8b0039129851337
    [Google Scholar]
  106. HongS.H. DivakaranA. OsaA. HuangO.W. WertzI.E. NomuraD.K. Exploiting the cullin E3 ligase adaptor protein SKP1 for targeted protein degradation.ACS Chem. Biol.202419244245010.1021/acschembio.3c0064238305738
    [Google Scholar]
  107. BondesonD.P. SmithB.E. BurslemG.M. Lessons in PROTAC design from selective degradation with a promiscuous warhead.Cell Chem. Biol.20182517887.e510.1016/j.chembiol.2017.09.01029129718
    [Google Scholar]
  108. SunX. GaoH. YangY. PROTACs: Great opportunities for academia and industry.Signal Transduct. Target. Ther.2019416410.1038/s41392‑019‑0101‑631885879
    [Google Scholar]
  109. BuckleyD.L. GustafsonJ.L. MolleV.I. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α.Angew. Chem. Int. Ed.20125146114631146710.1002/anie.20120623123065727
    [Google Scholar]
  110. SteinebachC. LindnerS. UdeshiN.D. Homo-PROTACs for the chemical knockdown of cereblon.ACS Chem. Biol.20181392771278210.1021/acschembio.8b0069330118587
    [Google Scholar]
  111. NowakR.P. DeAngeloS.L. BuckleyD. Plasticity in binding confers selectivity in ligand-induced protein degradation.Nat. Chem. Biol.201814770671410.1038/s41589‑018‑0055‑y29892083
    [Google Scholar]
  112. HughesS.J. CiulliA. Molecular recognition of ternary complexes: A new dimension in the structure-guided design of chemical degraders.Essays Biochem.201761550551610.1042/EBC2017004129118097
    [Google Scholar]
  113. ItohY. IshikawaM. NaitoM. HashimotoY. Protein knockdown using methyl bestatin-ligand hybrid molecules: Design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins.J. Am. Chem. Soc.2010132165820582610.1021/ja100691p20369832
    [Google Scholar]
  114. KaeferA. YangJ. NoertersheuserP. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia.Cancer Chemother. Pharmacol.201474359360210.1007/s00280‑014‑2530‑925053389
    [Google Scholar]
  115. ZhuH. WangJ. ZhangQ. PanX. ZhangJ. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance.Pharmacol. Ther.202324410837110.1016/j.pharmthera.2023.10837136871783
    [Google Scholar]
  116. SincereN.I. AnandK. AshiqueS. YangJ. YouC. PROTACs: Emerging targeted protein degradation approaches for advanced druggable strategies.Molecules20232810401410.3390/molecules2810401437241755
    [Google Scholar]
  117. SakamotoK.M. KimK.B. VermaR. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation.Mol. Cell. Proteomics20032121350135810.1074/mcp.T300009‑MCP20014525958
    [Google Scholar]
  118. SchneeklothJ.S. FonsecaF.N. KoldobskiyM. Chemical genetic control of protein levels: Selective in vivo targeted degradation.J. Am. Chem. Soc.2004126123748375410.1021/ja039025z15038727
    [Google Scholar]
  119. NeklesaT.K. WinklerJ.D. CrewsC.M. Targeted protein degradation by PROTACs.Pharmacol. Ther.201717413814410.1016/j.pharmthera.2017.02.02728223226
    [Google Scholar]
  120. CrommP.M. CrewsC.M. Targeted protein degradation: From chemical biology to drug discovery.Cell Chem. Biol.20172491181119010.1016/j.chembiol.2017.05.02428648379
    [Google Scholar]
  121. BondesonD.P. MaresA. SmithI.E.D. Catalytic in vivo protein knockdown by small-molecule PROTACs.Nat. Chem. Biol.201511861161710.1038/nchembio.185826075522
    [Google Scholar]
  122. JiaX. HanX. Targeting androgen receptor degradation with PROTACs from bench to bedside.Biomed. Pharmacother.202315811411210.1016/j.biopha.2022.11411236508999
    [Google Scholar]
  123. RainaK. LuJ. QianY. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer.Proc. Natl. Acad. Sci. USA2016113267124712910.1073/pnas.152173811327274052
    [Google Scholar]
  124. ZorbaA. NguyenC. XuY. Delineating the role of cooperativity in the design of potent PROTACs for BTK.Proc. Natl. Acad. Sci. USA201811531E7285E729210.1073/pnas.180366211530012605
    [Google Scholar]
  125. PetterssonM. CrewsC.M. PROteolysis TArgeting Chimeras (PROTACs)—Past, present and future.Drug Discov. Today. Technol.201931152710.1016/j.ddtec.2019.01.00231200855
    [Google Scholar]
  126. NabetB. FergusonF.M. SeongB.K.A. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules.Nat. Commun.2020111468710.1038/s41467‑020‑18377‑w32948771
    [Google Scholar]
  127. OhokaN. OkuhiraK. ItoM. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs).J. Biol. Chem.2017292114556457010.1074/jbc.M116.76885328154167
    [Google Scholar]
  128. MullardA. First targeted protein degrader hits the clinic.Nat. Rev. Drug Discov.201918423723910.1038/d41573‑019‑00043‑630936511
    [Google Scholar]
  129. CrewAP DongH BerlinM SparksSM Proteolysis targeting chimeric (protac) compound with e3 ubiquitin ligase binding activity and targeting alpha-synuclein protein for treating neurodegenerative diseasesPatent WO2020041331A12020
    [Google Scholar]
  130. SloanT F ForsbergC Coupal-SikesE M TyermanL Electric powertrain system for heavy duty vehicles.Patent US20200331334A12020
    [Google Scholar]
  131. LevineA. DumbleM. Combination therapy for treatment of cancer.European Patent EP4171548A42024
    [Google Scholar]
  132. FletcherS. Proteolysis targeting chimeras and polypharmacological agents targeting bcl-2, and methods of use thereof.Patent WO/2022/WO2022266491A12022
    [Google Scholar]
  133. FuringZ HaibingZ LilanX RongtanX Zhang NanY. PROTAC compounds for targeted degradation of FLT3-ITD mutant proteins, and preparation method and application thereof.Patent CN115124590B2024
    [Google Scholar]
  134. QianY. DongH. WangJ. BerlinM. CrewA.P. CrewsC.M. Compounds and methods for the targeted degradation of bromodomaincontaining proteins.US Patent US20230263893A12023
    [Google Scholar]
  135. SchenkV FlickerkinsT HarpiterS Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers.Patent TWI726872B2021
    [Google Scholar]
  136. BaylinSB PardollDM TopalianSL Cancer therapy via a combination of epigenetic modulation and immune modulation.Patent US20210161928A12021
    [Google Scholar]
  137. CrewA P CrewsC M DongH WangJ QianY JinM Imide-based modulators of proteolysis and associated methods of use.Patent US20240299366A12024
    [Google Scholar]
  138. PetitR PrinciottaMF CorderB BalliD Immunogenic compositions targeting recurrent cancer mutations and methods of their use.Patent JP7197481B22022
    [Google Scholar]
  139. CrewAP AraujoE Compounds and methods for the targeted degradation of interleukin-1 receptor- associated kinase 4 polypeptidesPatent US11065231B22021
    [Google Scholar]
  140. ChuangS H LiaoCB SunWT Antibody protac conjugates.Patent US20210015942A12021
    [Google Scholar]
  141. PhillipsAJ NasveschukCG HendersonJA HeM LazarskiK Degraders and degrons for targeted protein degradation.Patent US20220251061A1,2022
    [Google Scholar]
  142. WangH HuoC GuoY QiR WangZ. Degradation of Bruton's Tyrosine Kinase (BTK) by conjugation of BTK inhibitors to E3 ligase igand and methods of use.Patent CN114174299B2024
    [Google Scholar]
  143. JinMC CrewA P DongH Compounds and methods for targeted androgen receptor degradation.Patent JP6817962B22021
    [Google Scholar]
  144. SternH. KutokJ. Treatment of cancers using modulators of PI3 Kinase Isoforms.US Patent ES2691742T52022
    [Google Scholar]
  145. BellD W HaberD A JanneP A Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments.Patent AU2007202288B22012
    [Google Scholar]
  146. DeyleK FarrowB HeathJR Mutant Akt-specific capture agents, compositions, and methods of using and making.Patent US10975123B2,2021
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638324854250218053353
Loading
/content/journals/cddt/10.2174/0115701638324854250218053353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test