Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Vaccines are biological products used to prevent diseases and ailments caused by viruses, bacteria, and fungi. Vaccine adjuvants increase the potency of the vaccine. The vaccine adjuvants like gold nanoparticle, silver nanoparticle, Lentinan-calcium carbonate microsphere, Aluminium nano metal-organic framework, Poly[di(carboxylatomethylphenoxy)phosphazene] macromolecule, lignin nanoparticle, nanostructured hydroxy phosphate synthesized by chemical and biosynthesis and their evaluation method have been discussed. Evaluations for physical parameters like particle size and biological evaluation to find out the potency of adjuvants have been discussed. The adjuvant synthesis discussed is a potential method for improvement of the marketed vaccine.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638351666250405070745
2025-04-25
2025-10-19
Loading full text...

Full text loading...

References

  1. LiQ. LiZ. DengN. DingF. LiY. CaiH. Built-in adjuvants for use in vaccines.Eur. J. Med. Chem.202222711391710.1016/j.ejmech.2021.11391734688011
    [Google Scholar]
  2. PippaN. GazouliM. PispasS. Recent advances and future perspectives in polymer based nanovaccines.Vaccines 20219655810.3390/vaccines906055834073648
    [Google Scholar]
  3. PerrieY CroftsF DevittA GriffithsHR KastnerE NadellaV Designing liposomal adjuvants for the next generation of vaccines.Adv Drug Deliv Rev 201699(PT A)859610.1016/j.addr.2015.11.00526576719
    [Google Scholar]
  4. BonamS.R. PartidosC.D. HalmuthurS.K.M. MullerS. An overview of novel adjuvants designed for improving vaccine efficacy.Trends Pharmacol. Sci.201738977179310.1016/j.tips.2017.06.00228668223
    [Google Scholar]
  5. HabibA. AnjumK.M. IqbalR. Vaccine adjuvants: Selection criteria, mechanism of action associated with immune responses and future directions.Iran. J. Immunol.202320111510.22034/iji.2023.94097.228436917475
    [Google Scholar]
  6. CaiF. LiS. HuangH. IqbalJ. WangC. JiangX. Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives.J. Biomed. Mater. Res. A2022110242444210.1002/jbm.a.3728134331516
    [Google Scholar]
  7. Salazar-GonzálezJ.A. González-OrtegaO. Rosales-MendozaS. Gold nanoparticles and vaccine development.Expert Rev. Vaccines20151491197121110.1586/14760584.2015.106477226152550
    [Google Scholar]
  8. LengkeM.F. FleetM.E. SouthamG. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes.Langmuir20062262780278710.1021/la052652c16519482
    [Google Scholar]
  9. BeveridgeT.J. MurrayR.G. Sites of metal deposition in the cell wall of Bacillus subtilis.J. Bacteriol.1980141287688710.1128/jb.141.2.876‑887.19806767692
    [Google Scholar]
  10. TrudingerP.A. Microbiological processes in relation to ore genesis Geochemical studies.NetherlandsElsevier1976135190
    [Google Scholar]
  11. XieJ. LeeJ.Y. WangD.I.C. TingY.P. High-yield synthesis of complex gold nanostructures in a fungal system.J. Phys. Chem. C200711145168581686510.1021/jp0752668
    [Google Scholar]
  12. HeS. GuoZ. ZhangY. ZhangS. WangJ. GuN. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata.Mater. Lett.200761183984398710.1016/j.matlet.2007.01.018
    [Google Scholar]
  13. DeplancheK. MacaskieL.E. Biorecovery of gold by Escherichia coli and Desulfovibriode sulfuricans.Biotechnol. Bioeng.2017995105510.1002/bit.2168817969152
    [Google Scholar]
  14. MukherjeeP. AhmadA. MandalD. SenapatiS. SudhakarR. Bioreduction of AuCl(4)(-) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. D.M. and S.S. thank the Council of Scientific and Industrial Research (CSIR), Government of India, for financial assistance.Angew. Chem. Int. Ed. Engl.20014090358510.1002/1521‑3773(20011001)40:19<3585:AID‑ANIE3585>3.0.CO;2‑K
    [Google Scholar]
  15. PimprikarP.S. JoshiS.S. KumarA.R. ZinjardeS.S. KulkarniS.K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589.Colloids Surf. B Biointerfaces200974130931610.1016/j.colsurfb.2009.07.04019700266
    [Google Scholar]
  16. SongJ.Y. JangH.K. KimB.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts.Process Biochem.200944101133113810.1016/j.procbio.2009.06.005
    [Google Scholar]
  17. RajasekharreddyP. Usha RaniP. SreedharB. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach.J. Nanopart. Res.20101251711172110.1007/s11051‑010‑9894‑5
    [Google Scholar]
  18. PetrovskyN AguilarJC Vaccine adjuvants: Current state and future trends.Immunol Cell Biol20048254889610.1111/j.0818‑9641.2004.01272.x.15479434
    [Google Scholar]
  19. CohanR. ShoariA. Baghbani-AraniF. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine.Int. J. Nanomedicine2016113597360510.2147/IJN.S10909827536101
    [Google Scholar]
  20. MeslinF-X KaplanMM KoprowskiH Laboratory Techniques in Rabies.Geneva: World Health Organization 199649927
    [Google Scholar]
  21. SivakumarSM SafhiMM KannadasanM SukumaranN Vaccine adjuvants - Current status and prospects on controlled release adjuvancitySaudi Pharm J201119419720610.1016/j.jsps.2011.06.00323960760PMC3744968
    [Google Scholar]
  22. DaasA BrucknerL MilneC. EDQM biological reference preparation for rabies vaccine (inactivated) for veterinary usePharmeur Bio Sci Notes 201520155772https://pubmed.ncbi.nlm.nih.gov/26830159/26830159
    [Google Scholar]
  23. PharmacopeiaU.S. USP 38–NF 33US Pharmacopeial Convention: Rockville, MD.2015Available from: [https://www.uspnf.com/official-text/proposal-statuscommentary/usp-38-nf-33]
    [Google Scholar]
  24. GhaedaminiH. AmiriM.C. Effects of temperature and surfactant concentration on the structure and morphology of calcium carbonate nanoparticles synthesized in a colloidal gas aphrons system.J. Mol. Liq.201928221322010.1016/j.molliq.2019.02.119
    [Google Scholar]
  25. DonatanS. YashchenokA. KhanN. Loading capacity versus enzyme activity in anisotropic and spherical calcium carbonate microparticles.ACS Appl. Mater. Interfaces2016822142841429210.1021/acsami.6b0349227166641
    [Google Scholar]
  26. LiuC.M. ChenG.B. ChenH.H. Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment.Colloids Surf. B Biointerfaces201917547748610.1016/j.colsurfb.2018.12.03830572156
    [Google Scholar]
  27. ZhangY. AngC.Y. LiM. Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery.ACS Appl. Mater. Interfaces2015732181791818710.1021/acsami.5b0589326221866
    [Google Scholar]
  28. WangS. NiD. YueH. Exploration of antigen induced CaCO3 nanoparticles for therapeutic vaccine.Small20181414170427210.1002/smll.20170427229468827
    [Google Scholar]
  29. AshokrajaC. SakarM. BalakumarS. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles.Mater. Res. Express201741010540610.1088/2053‑1591/aa90f2
    [Google Scholar]
  30. LiuZ. YuL. GuP. Preparation of lentinan-calcium carbonate microspheres and their application as vaccine adjuvants.Carbohydr. Polym.202024511652010.1016/j.carbpol.2020.11652032718625
    [Google Scholar]
  31. DongZ. FengL. ZhuW. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy.Biomaterials2016110607010.1016/j.biomaterials.2016.09.02527710833
    [Google Scholar]
  32. ZhongX. ZhangY. TanL. An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses.J. Control. Release2019300819210.1016/j.jconrel.2019.02.03530826373
    [Google Scholar]
  33. MarinA. ChowdhuryA. ValenciaS.M. Next generation polyphosphazene immunoadjuvant: Synthesis, self-assembly and in vivo potency with human papillomavirus VLPs-based vaccine.Nanomedicine20213310235910.1016/j.nano.2021.10235933476764
    [Google Scholar]
  34. AlqahtaniM.S. KaziM. AhmadM.Z. SyedR. AlsenaidyM.A. AlbraikiS.A. Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin.Int. J. Biol. Macromol.20201631314132210.1016/j.ijbiomac.2020.07.02632645499
    [Google Scholar]
  35. BergforsE. HermanssonG. Nyström KronanderU. FalkL. ValterL. TrollforsB. How common are long-lasting, intensely itching vaccination granulomas and contact allergy to aluminium induced by currently used pediatric vaccines? A prospective cohort study.Eur. J. Pediatr.2014173101297130710.1007/s00431‑014‑2318‑224752308
    [Google Scholar]
  36. FawcettH.A. SmithN.P. Injection-site granuloma due to aluminum.Arch. Dermatol.1984120101318132210.1001/archderm.1984.016504600580206207779
    [Google Scholar]
  37. GotoN. KatoH. MaeyamaJ. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties.Vaccine19971512-131364137110.1016/S0264‑410X(97)00054‑69302746
    [Google Scholar]
  38. LachB. CuplerE.J. Macrophagic myofasciitis in children is a localized reaction to vaccination.J. Child Neurol.200823661461910.1177/088307380731237018281624
    [Google Scholar]
  39. Batista-DuharteA. LindbladE.B. Oviedo-OrtaE. Progress in understanding adjuvant immunotoxicity mechanisms.Toxicol. Lett.201120329710510.1016/j.toxlet.2011.03.00121392560
    [Google Scholar]
  40. Batista-DuharteA. PortuondoD. CarlosI.Z. PérezO. An approach to local immunotoxicity induced by adjuvanted vaccines.Int. Immunopharmacol.201317352653610.1016/j.intimp.2013.07.02523968848
    [Google Scholar]
  41. Batista-DuharteA. PortuondoD. PérezO. CarlosI.Z. Systemic immunotoxicity reactions induced by adjuvanted vaccines.Int. Immunopharmacol.201420117018010.1016/j.intimp.2014.02.03324607449
    [Google Scholar]
  42. SharmaP. PaliwalS. SharmaS. ChauhanN. JainS. Quan-titative structure activity relationship studies of potent endothelin‐areceptor antagonist for the treatment of pulmonary arterial hyper-tension.Indian J. Chem.2024632190202
    [Google Scholar]
  43. SharmaP. PaliwalS. SharmaS. ChauhanN. JainS. AminopeptidaseA. A novel therapeutic target for hypertension management.Cell Biochem. Funct.202442e7000810.1002/cbf.70008
    [Google Scholar]
  44. AngelovaN. YordanovG. Iron(III) and aluminium(III) based mixed nanostructured hydroxyphosphates as potential vaccine adjuvants: Preparation and physicochemical characterization.Colloids Surf. A Physicochem. Eng. Asp.201753518419310.1016/j.colsurfa.2017.09.043
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638351666250405070745
Loading
/content/journals/cddt/10.2174/0115701638351666250405070745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test