Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Traditional drug discovery processes have disadvantages such as efficiency, cost, and high attrition rates. methods, involving computational simulations and modelling, offer powerful solutions to bridge the gap between discovery and development. This review explores various approaches, including ligand-based and structure-based drug design, virtual screening, molecular docking, and ADMET prediction. We explore their utilization throughout different phases of pharmaceutical development, spanning from target identification and lead refinement to forecasting toxicity and pharmacokinetics. methods enable rapid lead identification and optimization, reducing reliance on expensive wet lab experiments. They contribute to improved drug quality by predicting ADMET properties and off-target effects, ultimately accelerating development timelines and lowering costs. approaches are revolutionizing drug design by providing predictive and cost-effective solutions. Incorporating them into the design process streamlines lead refinement and enhances the likelihood of success for potential drugs, ultimately expediting the translation of innovative treatments to patients.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638326869250207060616
2025-02-17
2025-10-28
Loading full text...

Full text loading...

References

  1. ReboredoC.P. BlancoL.J. FernándezR.N. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  2. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals20231712210.3390/ph17010022 38256856
    [Google Scholar]
  3. XuJ. Evolving drug design methodology: From QSAR to AIDD.ChemRxiv20229: 2643410.26434/chemrxiv‑2022‑9fwmg
    [Google Scholar]
  4. MuratovE.N. BajorathJ. SheridanR.P. QSAR without borders.Chem. Soc. Rev.202049113525356410.1039/D0CS00098A 32356548
    [Google Scholar]
  5. AdelusiT.I. OyedeleA.Q.K. BoyenleI.D. Molecular modeling in drug discovery.Inform. Med. Unlocked20222910088010.1016/j.imu.2022.100880
    [Google Scholar]
  6. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w 34159484
    [Google Scholar]
  7. VatanseverS. SchlessingerA. WackerD. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.21764 33295676
    [Google Scholar]
  8. EkertJ.E. DeakyneJ. AllenP.P. Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery.SLAS Discov.202025101174119010.1177/2472555220923332 32495689
    [Google Scholar]
  9. JabaliaN. KumarA. KumarV. RaniR. In silico approach in drug design and drug discovery: An update.Innovations and Implementations of Computer Aided Drug Discovery Strategies in Rational Drug Design202124527110.1007/978‑981‑15‑8936‑2_10
    [Google Scholar]
  10. AgamahF.E. MazanduG.K. HassanR. Computational/in-silico methods in drug target and lead prediction.Brief. Bioinform.20202151663167510.1093/bib/bbz103 31711157
    [Google Scholar]
  11. SinghD.B. PathakR.K. Computational approaches in drug designing and their applications.Exper Prot Biot20209511710.1007/978‑1‑0716‑0607‑0_6
    [Google Scholar]
  12. KomuraH. WatanabeR. MizuguchiK. The trends and future prospective of in-silico models from the viewpoint of ADME evaluation in drug discovery.Pharmaceutics20231511261910.3390/pharmaceutics15112619 38004597
    [Google Scholar]
  13. TiwariP.C. PalR. ChaudharyM.J. NathR. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges.Drug Dev. Res.20238481652166310.1002/ddr.22115 37712494
    [Google Scholar]
  14. PaananenJ. FortinoV. An omics perspective on drug target discovery platforms.Brief. Bioinform.20202161937195310.1093/bib/bbz122 31774113
    [Google Scholar]
  15. OchoaD. HerculesA. CarmonaM. Open Targets Platform: Supporting systematic drug–target identification and prioritisation.Nucleic Acids Res.202149D1D1302D131010.1093/nar/gkaa1027 33196847
    [Google Scholar]
  16. PunF.W. OzerovI.V. ZhavoronkovA. AI-powered therapeutic target discovery.Trends Pharmacol. Sci.202344956157210.1016/j.tips.2023.06.010 37479540
    [Google Scholar]
  17. ShiK. LinW. ZhaoX.M. Identifying molecular biomarkers for diseases with machine learning based on integrative omics.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211862514252510.1109/TCBB.2020.2986387 32305934
    [Google Scholar]
  18. GayathiriE. PrakashP. KumaravelP. Computational approaches for modeling and structural design of biological systems: A comprehensive review.Prog. Biophys. Mol. Biol.2023185173210.1016/j.pbiomolbio.2023.08.002 37821048
    [Google Scholar]
  19. HameduhT. HaddadY. AdamV. HegerZ. Homology modeling in the time of collective and artificial intelligence.Comput. Struct. Biotechnol. J.2020183494350610.1016/j.csbj.2020.11.007 33304450
    [Google Scholar]
  20. HahnD.F. BaylyC.I. BobyM.L. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1].Living J. Comput. Mol. Sci.202241149710.33011/livecoms.4.1.1497 36382113
    [Google Scholar]
  21. NiD. ChaiZ. WangY. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022124e158510.1002/wcms.1585
    [Google Scholar]
  22. SeidelT. BryantS.D. IbisG. PoliG. LangerT. 3D Pharmacophore modeling techniques in computer‐aided molecular design using ligandscout.Tutorials in Chemoinformatics201727930910.1002/9781119161110.ch20
    [Google Scholar]
  23. ZsidóB.Z. BayarsaikhanB. BörzseiR. SzélV. MohosV. HetényiC. The advances and limitations of the determination and applications of water structure in molecular engineering.Int. J. Mol. Sci.202324141178410.3390/ijms241411784 37511543
    [Google Scholar]
  24. VázquezJ. LópezM. GibertE. HerreroE. LuqueF.J. Merging ligand-based and structure-based methods in drug discovery: An overview of combined virtual screening approaches.Molecules20202520472310.3390/molecules25204723 33076254
    [Google Scholar]
  25. SousaS.F. FernandesP.A. RamosM.J. Protein–ligand docking: Current status and future challenges.Proteins2006651152610.1002/prot.21082 16862531
    [Google Scholar]
  26. VasquezS.L. TillackA.F. MartinsS.D. KochA. LeGrandS. ForliS. Benchmarking the performance of irregular computations in AutoDock-GPU molecular docking.Parallel Comput.202210910286110.1016/j.parco.2021.102861 34898769
    [Google Scholar]
  27. SivakumarK.C. HaixiaoJ. NamanC.B. SajeevanT.P. Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process.Drug Dev. Res.202081668569910.1002/ddr.21673 32329098
    [Google Scholar]
  28. JakharR. DangiM. KhichiA. ChhillarA.K. Relevance of molecular docking studies in drug designing.Curr. Bioinform.202015427027810.2174/1574893615666191219094216
    [Google Scholar]
  29. AhenS.O.M.H. AlankoI. BhadaneR. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes (Basel)2020917110.3390/pr9010071
    [Google Scholar]
  30. PatilV M GuptaS P MasandN BalasubramanianK Experimental and computational models to understand protein-ligand, metal-ligand and metal-DNA interactions pertinent to targeted cancer and other therapies. Euro J Med Chem Rep2024100133
    [Google Scholar]
  31. CaballeroJ. The latest automated docking technologies for novel drug discovery.Expert Opin. Drug Discov.202116662564510.1080/17460441.2021.1858793 33353444
    [Google Scholar]
  32. GagicZ. RuzicD. DjokovicN. DjikicT. NikolicK. In-silico methods for design of kinase inhibitors as anticancer drugs.Front Chem.2020787310.3389/fchem.2019.00873 31970149
    [Google Scholar]
  33. MartinezR DefnetA ShapiroP. Avoiding or co-opting ATP inhibition: Overview of type III, IV, V, and VI kinase inhibitors. California: Next generation kinase inhibitors: moving beyond the ATP binding/catalytic sites20202959
    [Google Scholar]
  34. ShenS. ZhaoC. WuC. Allosteric modulation of G protein-coupled receptor signaling.Front. Endocrinol.202314113760410.3389/fendo.2023.1137604 36875468
    [Google Scholar]
  35. ParvatikarP.P. PatilS. KhaparkhuntikarK. Artificial intelligence: Machine learning approach for screening large database and drug discovery.Antiviral Res.202322010574010.1016/j.antiviral.2023.105740 37935248
    [Google Scholar]
  36. AcharyP.G.R. Applications of quantitative structure-activity relationships (QSAR) based virtual screening in drug design: A review.Mini Rev. Med. Chem.202020141375138810.2174/1389557520666200429102334 32348219
    [Google Scholar]
  37. RáczA. BajuszD. QuintanaM.R.A. HébergerK. Machine learning models for classification tasks related to drug safety.Mol. Divers.20212531409142410.1007/s11030‑021‑10239‑x 34110577
    [Google Scholar]
  38. DesaiN. BurnsL. GongY. An update on drug–drug interactions between antiretroviral therapies and drugs of abuse in HIV systems.Expert Opin. Drug Metab. Toxicol.202016111005101810.1080/17425255.2020.1814737 32842791
    [Google Scholar]
  39. LangD.K. KaurR. AroraR. SainiB. AroraS. Nitrogen-containing heterocycles as anticancer agents: An overview.Anti-Canc Agen Medic Chem2020201821502168
    [Google Scholar]
  40. RoskoskiR.Jr Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs).Pharmacol. Res.202116510542210.1016/j.phrs.2021.105422 33434619
    [Google Scholar]
  41. AskrH. ElgeldawiE. EllaA.H. ElshaierY.A.M.M. GomaaM.M. HassanienA.E. Deep learning in drug discovery: An integrative review and future challenges.Artif. Intell. Rev.20235675975603710.1007/s10462‑022‑10306‑1 36415536
    [Google Scholar]
  42. YuW. MacKerellA.D.Jr Computer-Aided Drug Design Methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_5 27873247
    [Google Scholar]
  43. KiriiriG.K. NjoguP.M. MwangiA.N. Exploring different approaches to improve the success of drug discovery and development projects: A review.Future J. Pharm. Sci.2020612710.1186/s43094‑020‑00047‑9
    [Google Scholar]
  44. HuangD.Z. BaberJ.C. BahmanyarS.S. The challenges of generalizability in artificial intelligence for ADME/Tox endpoint and activity prediction.Expert Opin. Drug Discov.20211691045105610.1080/17460441.2021.1901685 33739897
    [Google Scholar]
  45. StanzioneF. GiangrecoI. ColeJ.C. Use of molecular docking computational tools in drug discovery.Prog. Med. Chem.20216027334310.1016/bs.pmch.2021.01.004 34147204
    [Google Scholar]
  46. ChenC. WangJ. PanD. Applications of multi‐omics analysis in human diseases.MedComm202344e31510.1002/mco2.315 37533767
    [Google Scholar]
  47. DrieV.J.H. TongL. Cryo-EM as a powerful tool for drug discovery.Bioorg. Med. Chem. Lett.2020302212752410.1016/j.bmcl.2020.127524 32890683
    [Google Scholar]
  48. GrenierD. AudebertS. PretoJ. GuichouJ.F. KrimmI. Linkers in fragment-based drug design: An overview of the literature.Expert Opin. Drug Discov.2023189987100910.1080/17460441.2023.2234285 37466331
    [Google Scholar]
  49. ChandranU MehendaleN PatilS ChaguturuR PatwardhanB. Network Pharmacology.Bara Boca: Innovative Approaches in Drug Discovery201712764
    [Google Scholar]
  50. SinghD.B. PathakR.K. Computational approaches in drug designing and their applications.Exp Prot Biotech202095117
    [Google Scholar]
  51. ElmezayenA.D. ObaidiA.A. ŞahinA.T. YelekçiK. Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes.J. Biomol. Struct. Dyn.20213982980299210.1080/07391102.2020.1758791 32306862
    [Google Scholar]
  52. JainS. SharmaM.K. GuptaN. ChatterjeeS. An experimental and computational approach to evaluate the antidiabetic activity of Guggul gum by inhibition of a common diabetes target.Res Squa2023182810.21203/rs.3.rs‑3383828/v1
    [Google Scholar]
  53. MohsenA.H.T. IbrahimM.A. NageebA.M. KerdawyE.A.M. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors.BMC Chem.20241814210.1186/s13065‑024‑01135‑0 38395926
    [Google Scholar]
  54. ZhaoY. XiaY. YuY. LiangG. QSAR in natural non-peptidic food-related compounds: Current status and future perspective.Trends Food Sci. Technol.202314010416510.1016/j.tifs.2023.104165
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638326869250207060616
Loading
/content/journals/cddt/10.2174/0115701638326869250207060616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test