Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

The effective integration of blockchain technology and artificial intelligence (AI) has the potential to change healthcare management. Two cutting-edge developments in the healthcare industry are blockchain and artificial intelligence. Blockchain, an open network for information sharing and permission, is being used in e-Health to apply artificial intelligence models. Healthcare workers will be able to view patient medical records on the blockchain. Artificial intelligence (AI) makes use of a wide range of suggested algorithms, decision-making power, and vast amounts of data. Health care services can be made more decentralized, transparent, safe, and impenetrable with the use of blockchain technology. AI needs cryptographic records to be stored, and blockchain makes this possible. Applications of artificial intelligence in healthcare management include chatbots for diagnosis and treatment, predictive analytics, personalized medicine, and more. Blockchain technology has applications in supply chain management, clinical trial management, interoperability, and data security and integrity in healthcare management. A more effective, safe, and patient-centered healthcare ecosystem can be created by integrating blockchain technology and artificial intelligence (AI) into healthcare management. It can encourage the development of a wide range of applications in radiology, cancer treatment, cardiology, dermatology, and fundoscopy that may save patients' lives.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638361312250402125556
2025-04-21
2025-10-19
Loading full text...

Full text loading...

References

  1. SchiavoneF. FerrettiM. The futures of healthcare.Futures202113410284910.1016/j.futures.2021.10284934584276
    [Google Scholar]
  2. GanesanD. Human rights implications of the digital revolution in health care in India.Health Hum. Rights202224151935747286
    [Google Scholar]
  3. MaaßL. AngoumisK. FreyeM. PanC.C. Mapping digital public health interventions among existing digital technologies and internet-based interventions to maintain and improve population health in practice: Scoping review.J. Med. Internet Res.202426e5392710.2196/5392739018096
    [Google Scholar]
  4. JainD. Regulation of digital healthcare in India: Ethical and legal challenges.Health Care202311691110.3390/healthcare1106091136981568
    [Google Scholar]
  5. JungM. Digital health care and the fourth industrial revolution.Health Care Manag. (Frederick)201938325325710.1097/HCM.000000000000027331246624
    [Google Scholar]
  6. AcsB. RantalainenM. HartmanJ. Artificial intelligence as the next step towards precision pathology.J. Intern. Med.20202881628110.1111/joim.1303032128929
    [Google Scholar]
  7. PatelD.J. ChaudhariK. AcharyaN. ShrivastavaD. MuneebaS. Artificial intelligence in obstetrics and gynecology: Transforming care and outcomes.Cureus2024167e6472510.7759/cureus.6472539156405
    [Google Scholar]
  8. TagdeP. TagdeS. BhattacharyaT. Blockchain and artificial intelligence technology in e-Health.Environ. Sci. Pollut. Res. Int.20212838528105283110.1007/s11356‑021‑16223‑034476701
    [Google Scholar]
  9. AraujoS.M. SousaP. DutraI. Clinical decision support systems for pressure ulcer management: Systematic review.JMIR Med. Inform.2020810e2162110.2196/2162133064099
    [Google Scholar]
  10. HunterB. HindochaS. LeeR.W. The role of artificial intelligence in early cancer diagnosis.Cancers2022146152410.3390/cancers1406152435326674
    [Google Scholar]
  11. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑333844136
    [Google Scholar]
  12. ChenZ.H. LinL. WuC.F. LiC.F. XuR.H. SunY. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine.Cancer Commun.202141111100111510.1002/cac2.1221534613667
    [Google Scholar]
  13. PoncetteA.S. MoschL. SpiesC. Improvements in patient monitoring in the intensive care unit: Survey study.J. Med. Internet Res.2020226e1909110.2196/1909132459655
    [Google Scholar]
  14. VodanovićM. SubašićM. MiloševićD. Savić PavičinI. Artificial intelligence in medicine and dentistry.Acta Stomatol. Croat.2023571708410.15644/asc57/1/837288152
    [Google Scholar]
  15. AbonamahA.A. TariqM.U. ShilbayehS. On the commoditization of artificial intelligence.Front. Psychol.20211269634610.3389/fpsyg.2021.69634634659012
    [Google Scholar]
  16. SahooP. KunduM. BegumJ. Artificial intelligence in cancer diagnosis: A game-changer in healthcare.Curr. Pharm. Biotechnol.20242510.2174/011389201029885224052812391138847160
    [Google Scholar]
  17. AlhasanM. HasaneenM. Digital imaging, technologies and artificial intelligence applications during COVID-19 pandemic.Comput. Med. Imaging Graph.20219110193310.1016/j.compmedimag.2021.10193334082281
    [Google Scholar]
  18. BozyelS. ŞimşekE. Koçyiğit BurunkayaD. Artificial intelligence-based clinical decision support systems in cardiovascular diseases.Anatol. J. Cardiol.2024282748610.14744/AnatolJCardiol.2023.368538168009
    [Google Scholar]
  19. LiJ.P.O. LiuH. TingD.S.J. Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective.Prog. Retin. Eye Res.20218210090010.1016/j.preteyeres.2020.10090032898686
    [Google Scholar]
  20. Martínez-GarcíaM. Hernández-LemusE. Data integration challenges for machine learning in precision medicine.Front. Med.2022878445510.3389/fmed.2021.78445535145977
    [Google Scholar]
  21. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  22. GrahamS. DeppC. LeeE.E. Artificial intelligence for mental health and mental illnesses: An overview.Curr. Psychiatry Rep.2019211111610.1007/s11920‑019‑1094‑031701320
    [Google Scholar]
  23. MorrowE. ZidaruT. RossF. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review.Front. Psychol.20231397104410.3389/fpsyg.2022.97104436733854
    [Google Scholar]
  24. CremaC. AttardiG. SartianoD. RedolfiA. Natural language processing in clinical neuroscience and psychiatry: A review.Front. Psychiatry20221394638710.3389/fpsyt.2022.94638736186874
    [Google Scholar]
  25. YouY. LaiX. PanY. Artificial intelligence in cancer target identification and drug discovery.Signal Transduct. Target. Ther.20227115610.1038/s41392‑022‑00994‑035538061
    [Google Scholar]
  26. AlafaleqM. Robotics and cybersurgery in ophthalmology: A current perspective.J. Robot. Surg.20231741159117010.1007/s11701‑023‑01532‑y36637738
    [Google Scholar]
  27. XieY. ZhangJ. WangH. Applications of blockchain in the medical field: Narrative review.J. Med. Internet Res.20212310e2861310.2196/2861334533470
    [Google Scholar]
  28. RaimundoR. RosárioA. The impact of artificial intelligence on data system security: A literature review.Sensors20212121702910.3390/s2121702934770336
    [Google Scholar]
  29. KhannaA. SahA. BolshevV. BurgioA. PanchenkoV. JasińskiM. Blockchain–cloud integration: A survey.Sensors20222214523810.3390/s2214523835890918
    [Google Scholar]
  30. KannB.H. HosnyA. AertsH.J.W.L. Artificial intelligence for clinical oncology.Cancer Cell202139791692710.1016/j.ccell.2021.04.00233930310
    [Google Scholar]
  31. DurnevaP. CousinsK. ChenM. The current state of research, challenges, and future research directions of blockchain technology in patient care: Systematic review.J. Med. Internet Res.2020227e1861910.2196/1861932706668
    [Google Scholar]
  32. ZhuangY. ZhangL. GaoX. Re-engineering a clinical trial management system using blockchain technology: System design, development, and case studies.J. Med. Internet Res.2022246e3677410.2196/3677435759315
    [Google Scholar]
  33. HiranoT. MotohashiT. OkumuraK. Data validation and verification using blockchain in a clinical trial for breast cancer: Regulatory sandbox.J. Med. Internet Res.2020226e1893810.2196/1893832340974
    [Google Scholar]
  34. YeungK. The health care sector’s experience of blockchain: A cross-disciplinary investigation of its real transformative potential.J. Med. Internet Res.20212312e2410910.2196/2410934932009
    [Google Scholar]
  35. KasyapaM.S.B. VanmathiC. Blockchain integration in healthcare: A comprehensive investigation of use cases, performance issues, and mitigation strategies.Front. Digit. Health20246135985810.3389/fdgth.2024.135985838736708
    [Google Scholar]
  36. YavaprabhasK. PournaderM. SeuringS. Blockchain as the “trust-building machine” for supply chain management.Ann. Oper. Res.2022327498810.1007/s10479‑022‑04868‑035967837
    [Google Scholar]
  37. TsolakisN. SchumacherR. DoraM. KumarM. Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation?Ann. Oper. Res.202232715721010.1007/s10479‑022‑04785‑235755830
    [Google Scholar]
  38. DuttaP. ChoiT.M. SomaniS. ButalaR. Blockchain technology in supply chain operations: Applications, challenges and research opportunities.Transp. Res., Part E Logist. Trans. Rev.202014210206710.1016/j.tre.2020.10206733013183
    [Google Scholar]
  39. McBeeM.P. WilcoxC. Blockchain technology: Principles and applications in medical imaging.J. Digit. Imaging202033372673410.1007/s10278‑019‑00310‑331898037
    [Google Scholar]
  40. AhmadR.W. SalahK. JayaramanR. YaqoobI. EllahhamS. OmarM. The role of blockchain technology in telehealth and telemedicine.Int. J. Med. Inform.202114810439910.1016/j.ijmedinf.2021.10439933540131
    [Google Scholar]
  41. KrichenM. AmmiM. MihoubA. AlmutiqM. Blockchain for modern applications: A survey.Sensors20222214527410.3390/s2214527435890953
    [Google Scholar]
  42. CadoretD. KailasT. VelmovitskyP. MoritaP. IgboeliO. Proposed implementation of blockchain in british columbia’s health care data management.J. Med. Internet Res.20202210e2089710.2196/2089733095183
    [Google Scholar]
  43. AlmalkiJ. State-of-the-art research in blockchain of things for healthcare.Arab. J. Sci. Eng.2023493163319110.1007/s13369‑023‑07896‑537361466
    [Google Scholar]
  44. El-GazzarR. StendalK. Blockchain in health care: Hope or hype?J. Med. Internet Res.2020227e1719910.2196/1719932673219
    [Google Scholar]
  45. MasloveD.M. KleinJ. BrohmanK. MartinP. Using blockchain technology to manage clinical trials data: A proof-of-concept study.JMIR Med. Inform.201864e1194910.2196/1194930578196
    [Google Scholar]
  46. MamoN. MartinG.M. DesiraM. EllulB. EbejerJ.P. Dwarna: A blockchain solution for dynamic consent in biobanking.Eur. J. Hum. Genet.202028560962610.1038/s41431‑019‑0560‑931844175
    [Google Scholar]
  47. BaysalM.V. Özcan-TopÖ. Betin-CanA. Blockchain technology applications in the health domain: A multivocal literature review.J. Supercomput.20237933112315610.1007/s11227‑022‑04772‑136060094
    [Google Scholar]
  48. VelmovitskyP.E. BublitzF.M. FadriqueL.X. MoritaP.P. Blockchain applications in health care and public health: Increased transparency.JMIR Med. Inform.202196e2071310.2196/2071334100768
    [Google Scholar]
  49. ZubaydiH.D. VargaP. MolnárS. Leveraging blockchain technology for ensuring security and privacy aspects in internet of things: A systematic literature review.Sensors202323278810.3390/s2302078836679582
    [Google Scholar]
  50. RathodT. JadavN.K. AlshehriM.D. Blockchain for future wireless networks: A decade survey.Sensors20222211418210.3390/s2211418235684802
    [Google Scholar]
  51. FangH.S.A. TanT.H. TanY.F.C. TanC.J.M. Blockchain personal health records: Systematic review.J. Med. Internet Res.2021234e2509410.2196/2509433847591
    [Google Scholar]
  52. LeeS. KimJ. KwonY. KimT. ChoS. Privacy preservation in patient information exchange systems based on blockchain: System design study.J. Med. Internet Res.2022243e2910810.2196/2910835315778
    [Google Scholar]
  53. AliA. AliH. SaeedA. Blockchain-powered healthcare systems: Enhancing scalability and security with hybrid deep learning.Sensors20232318774010.3390/s2318774037765797
    [Google Scholar]
  54. SyllaT. MendiboureL. ChaloufM.A. KriefF. Blockchain-based context-aware authorization management as a service in IoT.Sensors20212122765610.3390/s2122765634833732
    [Google Scholar]
  55. Pelekoudas-OikonomouF. ZachosG. PapaioannouM. Blockchain-based security mechanisms for iomt edge networks in iomt-based healthcare monitoring systems.Sensors2022227244910.3390/s2207244935408064
    [Google Scholar]
  56. XieX. YuT. LiX. Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials.Signal Transduct. Target. Ther.20238133510.1038/s41392‑023‑01589‑z37669923
    [Google Scholar]
  57. ChopraH Annu ShinDK Revolutionizing clinical trials: The role of ai in accelerating medical breakthroughs.Int. J. Surg.2023109124211422010.1097/JS9.000000000000070538259001
    [Google Scholar]
  58. VatanseverS. SchlessingerA. WackerD. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.2176433295676
    [Google Scholar]
  59. HashimotoD.A. WitkowskiE. GaoL. MeirelesO. RosmanG. Artificial intelligence in anesthesiology.Anesthesiology2020132237939410.1097/ALN.000000000000296031939856
    [Google Scholar]
  60. SalybekovA.A. WolfienM. HahnW. HidakaS. KobayashiS. Artificial intelligence reporting guidelines’ adherence in nephrology for improved research and clinical outcomes.Biomedicines202412360610.3390/biomedicines1203060638540219
    [Google Scholar]
  61. FangB. YuJ. ChenZ. Artificial intelligence for waste management in smart cities: A review.Environ. Chem. Lett.20232141959198910.1007/s10311‑023‑01604‑337362015
    [Google Scholar]
  62. FisherS. RosellaL.C. Priorities for successful use of artificial intelligence by public health organizations: A literature review.BMC Public Health2022221214610.1186/s12889‑022‑14422‑z36419010
    [Google Scholar]
  63. KongJ.D. AkpudoU.E. EffoduhJ.O. BragazziN.L. Leveraging responsible, explainable, and local artificial intelligence solutions for clinical public health in the global South.Health Care202311445710.3390/healthcare1104045736832991
    [Google Scholar]
  64. ChenY. MoreiraP. LiuW. MonachinoM. NguyenT.L.H. WangA. Is there a gap between artificial intelligence applications and priorities in health care and nursing management?J. Nurs. Manag.20223083736374210.1111/jonm.1385136216773
    [Google Scholar]
  65. DingH. TianJ. YuW. The application of artificial intelligence and big data in the food industry.Foods20231224451110.3390/foods1224451138137314
    [Google Scholar]
  66. ParkY. CaseyD. JoshiI. ZhuJ. ChengF. Emergence of new disease: How can artificial intelligence help?Trends Mol. Med.202026762762910.1016/j.molmed.2020.04.00732418724
    [Google Scholar]
  67. KuoT.T. Zavaleta RojasH. Ohno-MachadoL. Comparison of blockchain platforms: A systematic review and healthcare examples.J. Am. Med. Inform. Assoc.201926546247810.1093/jamia/ocy18530907419
    [Google Scholar]
  68. MackeyT.K. KuoT.T. GummadiB. ‘Fit-for-purpose?’ – Challenges and opportunities for applications of blockchain technology in the future of healthcare.BMC Med.20191716810.1186/s12916‑019‑1296‑730914045
    [Google Scholar]
  69. AliA. AlmaiahM.A. HajjejF. An industrial IoT-based blockchain-enabled secure searchable encryption approach for healthcare systems using neural network.Sensors202222257210.3390/s2202057235062530
    [Google Scholar]
  70. JainG. JainA. Blockchain for 5G-enabled networks in healthcare service based on several aspects.Blockchain Applications for Healthcare Informatics.Academic Press202247149310.1016/B978‑0‑323‑90615‑9.00018‑9
    [Google Scholar]
  71. KamruzzamanM.M. YanB. SarkerM.N.I. AlruwailiO. WuM. AlrashdiI. Blockchain and fog computing in iot-driven healthcare services for smart cities.J. Healthc. Eng.2022202211310.1155/2022/995788835126961
    [Google Scholar]
  72. SinghR. DwivediA.D. SrivastavaG. Internet of things based blockchain for temperature monitoring and counterfeit pharmaceutical prevention.Sensors20202014395110.3390/s2014395132708588
    [Google Scholar]
  73. GaiW. GuY. QinJ. Financial automation audit method based on blockchain technology.Comput. Intell. Neurosci.2022202211210.1155/2022/994158535837212
    [Google Scholar]
  74. ChangS.E. ChenY. Blockchain in health care innovation: Literature review and case study from a business ecosystem perspective.J. Med. Internet Res.2020228e1948010.2196/1948032865501
    [Google Scholar]
  75. GerkeS. MinssenT. CohenG. Ethical and legal challenges of artificial intelligence-driven healthcare.In: Artificial Intelligence in Healthcare.Academic Press202029533610.1016/B978‑0‑12‑818438‑7.00012‑5
    [Google Scholar]
  76. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑633256715
    [Google Scholar]
  77. HagosD.H. RawatD.B. Recent advances in artificial intelligence and tactical autonomy: Current status, challenges, and perspectives.Sensors20222224991610.3390/s2224991636560285
    [Google Scholar]
  78. WilleminkM.J. KoszekW.A. HardellC. Preparing medical imaging data for machine learning.Radiology2020295141510.1148/radiol.202019222432068507
    [Google Scholar]
  79. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z37740191
    [Google Scholar]
  80. SolbrigH.R. Prud’hommeauxE. GrieveG. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).J. Biomed. Inform.2017679010010.1016/j.jbi.2017.02.00928213144
    [Google Scholar]
  81. MandlK.D. GottliebD. MandelJ.C. Push button population health: The SMART/HL7 FHIR bulk data access application programming interface.NPJ Digit. Med.20203115110.1038/s41746‑020‑00358‑433299056
    [Google Scholar]
  82. Prud’hommeauxE. CollinsJ. BoothD. PetersonK.J. SolbrigH.R. JiangG. Development of a FHIR RDF data transformation and validation framework and its evaluation.J. Biomed. Inform.202111710375510.1016/j.jbi.2021.10375533781919
    [Google Scholar]
  83. AyazM. PashaM.F. AlahmadiT.J. AbdullahN.N.B. AlkahtaniH.K. Transforming healthcare analytics with FHIR: A framework for standardizing and analyzing clinical data.Health Care20231112172910.3390/healthcare1112172937372847
    [Google Scholar]
  84. ChiE.A. ChiG. TsuiC.T. Development and validation of an artificial intelligence system to optimize clinician review of patient records.JAMA Netw. Open202147e211739110.1001/jamanetworkopen.2021.1739134297075
    [Google Scholar]
  85. KennerB.J. AbramsN.D. ChariS.T. Early detection of pancreatic cancer.Pancreas202150791692210.1097/MPA.000000000000188234629446
    [Google Scholar]
  86. YangX. MuD. PengH. Research and application of artificial intelligence based on electronic health records of patients with cancer: Systematic review.JMIR Med. Inform.2022104e3379910.2196/3379935442195
    [Google Scholar]
  87. BednorzA. MakJ. JylhäväJ. ReligaD. Use of electronic medical records (EMR) in gerontology: Benefits, considerations and a promising future.Clin. Interv. Aging2023182171218310.2147/CIA.S40088738152074
    [Google Scholar]
  88. LinC. LeeY.T. WuF.J. The application of projection word embeddings on medical records scoring system.Health Care2021910129810.3390/healthcare910129834682978
    [Google Scholar]
  89. HeL. ZhouZ.Y. NiuF.S. Research on standard compliance test algorithm based on electronic medical records of traditional chinese medicine outpatients.J. Healthc. Eng.202020201910.1155/2020/886526433204405
    [Google Scholar]
  90. YangZ. DehmerM. Yli-HarjaO. Emmert-StreibF. Combining deep learning with token selection for patient phenotyping from electronic health records.Sci. Rep.2020101143210.1038/s41598‑020‑58178‑131996705
    [Google Scholar]
  91. KhannaN.N. MaindarkarM.A. ViswanathanV. Economics of artificial intelligence in healthcare: Diagnosis vs. Treatment.Health Care20221012249310.3390/healthcare1012249336554017
    [Google Scholar]
  92. BarrettM. BoyneJ. BrandtsJ. Artificial intelligence supported patient self-care in chronic heart failure: A paradigm shift from reactive to predictive, preventive and personalised care.EPMA J.201910444546410.1007/s13167‑019‑00188‑931832118
    [Google Scholar]
  93. AntonN. DorofteiB. CurteanuS. Comprehensive review on the use of artificial intelligence in ophthalmology and future research directions.Diagnostics202213110010.3390/diagnostics1301010036611392
    [Google Scholar]
  94. BonnyT. Al NassanW. ObaideenK. Al MallahiM.N. MohammadY. El-damanhouryH.M. Contemporary role and applications of artificial intelligence in dentistry.F1000 Res.202312117910.12688/f1000research.140204.137942018
    [Google Scholar]
  95. HamiltonA. Artificial intelligence and healthcare simulation: The shifting landscape of medical education.Cureus2024165e5974710.7759/cureus.5974738840993
    [Google Scholar]
  96. JiY. JiY. LiuY. ZhaoY. ZhangL. Research progress on diagnosing retinal vascular diseases based on artificial intelligence and fundus images.Front. Cell Dev. Biol.202311116832710.3389/fcell.2023.116832737056999
    [Google Scholar]
  97. VodanovićM. SubašićM. MiloševićD.P. GalićI. BrkićH. Artificial intelligence in forensic medicine and forensic dentistry.J. Forensic Odontostomatol.2023412304137634174
    [Google Scholar]
  98. WehkampK. KrawczakM. SchreiberS. The quality and utility of artificial intelligence in patient care.Dtsch. Arztebl. Int.202312027-2846346910.3238/arztebl.m2023.012437218054
    [Google Scholar]
  99. IsmailL. MaterwalaH. HennebelleA. A scoping review of integrated blockchain-cloud (BcC) architecture for healthcare: Applications, challenges and solutions.Sensors20212111375310.3390/s2111375334071449
    [Google Scholar]
  100. ZhuangY. ChenY.W. ShaeZ.Y. ShyuC.R. Generalizable layered blockchain architecture for health care applications: Development, case studies, and evaluation.J. Med. Internet Res.2020227e1902910.2196/1902932716300
    [Google Scholar]
  101. EsmaeilzadehP. MirzaeiT. The potential of blockchain technology for health information exchange: Experimental study from patients’ perspectives.J. Med. Internet Res.2019216e1418410.2196/1418431223119
    [Google Scholar]
  102. GaynorM. Tuttle-NewhallJ. ParkerJ. PatelA. TangC. Adoption of blockchain in health care.J. Med. Internet Res.2020229e1742310.2196/1742332940618
    [Google Scholar]
  103. PilaresI.C.A. AzamS. AkbulutS. JonkmanM. ShanmugamB. Addressing the challenges of electronic health records using blockchain and IPFS.Sensors20222211403210.3390/s2211403235684652
    [Google Scholar]
  104. LinS.Y. ZhangL. LiJ. JiL. SunY. A survey of application research based on blockchain smart contract.Wirel. Netw.202228263569010.1007/s11276‑021‑02874‑x
    [Google Scholar]
  105. SahooS. KumarS. SivarajahU. LimW.M. WestlandJ.C. KumarA. Blockchain for sustainable supply chain management: Trends and ways forward.Electron. Commerce Res.2022241563161810.1007/s10660‑022‑09569‑1
    [Google Scholar]
  106. Mashamba-ThompsonT.P. CraytonE.D. Blockchain and artificial intelligence technology for novel coronavirus disease 2019 self-testing.Diagnostics202010419810.3390/diagnostics1004019832244841
    [Google Scholar]
  107. SaeedH. MalikH. BashirU. Blockchain technology in healthcare: A systematic review.PLoS One2022174e026646210.1371/journal.pone.026646235404955
    [Google Scholar]
  108. XieY. LuL. GaoF. Integration of artificial intelligence, blockchain, and wearable technology for chronic disease management: A new paradigm in smart healthcare.Curr. Med. Sci.20214161123113310.1007/s11596‑021‑2485‑034950987
    [Google Scholar]
  109. JabarullaM.Y. LeeH.N. A blockchain and artificial intelligence-based, patient-centric healthcare system for combating the COVID-19 pandemic: Opportunities and applications.Health Care202198101910.3390/healthcare908101934442156
    [Google Scholar]
  110. PabloR.G.J. RobertoD.P. VictorS.U. IsabelG.R. PaulC. ElizabethO.R. Big data in the healthcare system: A synergy with artificial intelligence and blockchain technology.J. Integr. Bioinform.20221912020003510.1515/jib‑2020‑003534412176
    [Google Scholar]
  111. SinghY. JabbarM.A. Kumar ShandilyaS. VovkO. HnatiukY. Exploring applications of blockchain in healthcare: Road map and future directions.Front. Public Health202311122938610.3389/fpubh.2023.122938637790716
    [Google Scholar]
  112. SrivastavaS. PantM. JauharS.K. NagarA.K. Analyzing the prospects of blockchain in healthcare industry.Comput. Math. Methods Med.2022202212410.1155/2022/372738936506597
    [Google Scholar]
  113. MamoshinaP. OjomokoL. YanovichY. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare.Oncotarget2018955665569010.18632/oncotarget.2234529464026
    [Google Scholar]
  114. HiwaleM. WalambeR. PotdarV. KotechaK. A systematic review of privacy-preserving methods deployed with blockchain and federated learning for the telemedicine.Healthc. Anal.2023310019210.1016/j.health.2023.10019237223223
    [Google Scholar]
  115. KrittanawongC. RogersA.J. AydarM. Integrating blockchain technology with artificial intelligence for cardiovascular medicine.Nat. Rev. Cardiol.20201711310.1038/s41569‑019‑0294‑y31605093
    [Google Scholar]
  116. SkariaR. SatamP. KhalpeyZ. Opportunities and challenges of disruptive innovation in medicine using artificial intelligence.Am. J. Med.20201336e215e21710.1016/j.amjmed.2019.12.01631981487
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638361312250402125556
Loading
/content/journals/cddt/10.2174/0115701638361312250402125556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test