Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Microbial infections continue to pose significant threats to global health, necessitating the development of innovative therapeutic strategies. One promising avenue is the use of protease inhibitors, with darunavir (DRV) emerging as a potent candidate in the field. Designed to combat resistance to standard HIV therapy, DRV is a second-generation protease inhibitor. Regarding microbial infections, this study sheds light on the internal processes behind the impact of DRV within cells. Novel protease inhibitor DRV targets essential proteolytic enzymes that are essential for microbial survival and growth in order to achieve its antimicrobial actions. By interfering with the proteolytic digestion of important microbial proteins, its inhibitory effect prevents infectious particles from being assembled and maturing. DRV is a viable treatment option for microbial infections as its selective suppression reduces the possibility of off-target consequences. DRV efficiently penetrates the intracellular milieu of host cells, where it prevents the proteolytic cleavage of vital viral and bacterial proteins, hence combating pathogenic infections. Microbial infections may be treated in a variety of ways using DRV as it disrupts the cycle of pathogen reproduction. The present review explores the molecular principles behind the effectiveness of DRV against microbial infections, emphasizing the drug's ability to fight a wide range of pathogens. The comprehension of the intracellular activity of DRV is promising for the creation of novel treatment approaches, providing encouragement in the continuous fight against microbial diseases.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638336144250331174407
2025-04-25
2025-10-19
Loading full text...

Full text loading...

References

  1. JiangW. LedermanM.M. HuntP. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection.J. Infect. Dis.200919981177118510.1086/59747619265479
    [Google Scholar]
  2. LehmannH.C. HartungH.P. Varicella-zoster virus: Another trigger of Guillain-Barré syndrome?Clin. Infect. Dis.201051553153310.1086/65513720642352
    [Google Scholar]
  3. CarrA. CooperD.A. HIV protease inhibitors.AIDS199610Suppl.S151S15810.1097/00002030‑199601001‑000218883623
    [Google Scholar]
  4. DeeksS.G. SmithM. HolodniyM. KahnJ.O. HIV-1 protease inhibitors. A review for clinicians.JAMA1997277214515310.1001/jama.1997.035402600590378990341
    [Google Scholar]
  5. McDonaldC.K. KuritzkesD.R. Human immunodeficiency virus type 1 protease inhibitors.Arch. Intern. Med.1997157995195910.1001/archinte.1997.004403000370039140265
    [Google Scholar]
  6. Morris-JonesS. MoyleG. EasterbrookP.J. Antiretroviral therapies in HIV-1 infection.Expert Opin. Investig. Drugs1997681049106110.1517/13543784.6.8.104915989663
    [Google Scholar]
  7. MuellerB.U. Antiviral chemotherapy.Curr. Opin. Pediatr.19979217818310.1097/00008480‑199704000‑000129204247
    [Google Scholar]
  8. VellaS. PalmisanoL. Update on protease inhibitors.Antivir. Ther.199722937
    [Google Scholar]
  9. ConantM. MarkowitzM. HurleyA. HoD. PeterkinJ. ChapmanS. A randomized phase II dose range- finding study of the HIV protease inhibitor VIRACEPTt as monotherapy in HIV positive patients.XI International Conference on Aids199612867
    [Google Scholar]
  10. ClendeninnN. QuartB. AndersonR. KnowlesM. ChangY. Analysis of long-term virologic data from the VIRA-CEPTt 511 protocol using 3 HIV-RNA assays.5th Conference on Retroviruses and Opportunistic Infections1998148
    [Google Scholar]
  11. GatheJ.Jr BurkhardtB. HawleyP. ConantM. PeterkinJ. ChapmanS. A randomized phase II study of VIRACEPT®, a novel HIV protease inhibitor, used in combination with stavudine vs stavudine alone, abstr.XI International Conference on AIDS1996
    [Google Scholar]
  12. Sáez-LlorensX. RamiloO. Early experience with protease inhibitors in human immunodeficiency virus-infected children.Pediatr. Infect. Dis. J.199817872873810.1097/00006454‑199808000‑000139726349
    [Google Scholar]
  13. SensionM. ElionR. FarthingC. Open label pi- lot studies to assess the safety and efficacy of bid dosing regimens of VIRACEPTt (nelfinavir mesylate) combined with NRTI’s in HIV-infected treatment-naive patients.5th Conference on Retroviruses and Opportunistic Infections p1998151151
    [Google Scholar]
  14. DongB.J. GrutaC. LeggJ. BalanoK. GoldschmitR.H. Diabetes and use of protease inhibitors.Abst Conf Retrov Opport Infec19981574166
    [Google Scholar]
  15. KerulyJ.C. ChaissonR.E. MooreR.D. Diabetes and hyperglycemia in patients receiving protease inhibitors.5th Conference on Retroviruses and Opportunistic Infections1998157
    [Google Scholar]
  16. MannM. Piazza-HeppT. KollerE. GibertC. Abnormal fat distribution in AIDS patients following protease inhibitor therapy.5th Conference on Retroviruses and Opportunistic Infections p1998157
    [Google Scholar]
  17. RothV.R. AngelJ.B. KravickS. Developmentofacerv calfat pad following treatment with HIV-1 protease inhibitors.5th Conference on Retroviruses and Opportunistic Infections1998156
    [Google Scholar]
  18. ChincharV.G. Ranaviruses (family Iridoviridae): emerging cold-blooded killers.Arch. Virol.2002147344747010.1007/s00705020000011958449
    [Google Scholar]
  19. EssbauerS. BremontM. AhneW. Comparison of the eIF-2alpha homologous proteins of seven ranaviruses (Iridoviridae).Virus Genes2001233347359www2.ebi.ac.uk/10.1023/A:101253362557111778703
    [Google Scholar]
  20. TravisJ. PotempaJ. Bacterial proteinases as targets for the development of second-generation antibiotics.Biochim. Biophys. Acta200014771-2355010.1016/S0167‑4838(99)00278‑210708847
    [Google Scholar]
  21. MiyoshiS.I. ShinodaS. Bacterial metalloproteases as the toxic factor in infection.J. Toxicol. Toxin Rev.199716417719410.3109/15569549709016455
    [Google Scholar]
  22. FriedenT. HHS has declared a Public Health Emergency for California to address the health impacts of the ongoing wildfires in Los Angeles County2010http://www.hhs.gov/ asl/testify/2010/04/t20100428b.html
  23. RajuR.M. GoldbergA.L. RubinE.J. Bacterial proteolytic complexes as therapeutic targets.Nat. Rev. Drug Discov.2012111077778910.1038/nrd384623023677
    [Google Scholar]
  24. Fernández-MonteroJ.V. BarreiroP. SorianoV. Protease inhibitors for treatment of genotype 1 hepatitis C virus infection.Expert Opin. Pharmacother.2009101069722[PMID: 19527188
    [Google Scholar]
  25. Virus taxonomy classification and nomenclature of viruses2000Available from:https://ictv.global/about/taxonomy
  26. DavisonA.J. EberleR. EhlersB. The order herpesvirales.Arch. Virol.2009154117117710.1007/s00705‑008‑0278‑419066710
    [Google Scholar]
  27. GatheJ. Adherence and potency with antiretroviral therapy: A combination for success.J. Acquir. Immune Defic. Syndr.200334Suppl. 2S118S12210.1097/00126334‑200310012‑0000414703940
    [Google Scholar]
  28. AbateD.A. WatanabeS. MocarskiE.S. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response.J. Virol.20047820109951100610.1128/JVI.78.20.10995‑11006.200415452220
    [Google Scholar]
  29. TandonR. MocarskiE. ConwayJ. The A, B, Cs of herpesvirus capsids.Viruses20157389991410.3390/v703089925730559
    [Google Scholar]
  30. MagerP.P. The active site of HIV‐1 protease.Med. Res. Rev.200121434835310.1002/med.101211410934
    [Google Scholar]
  31. FanS. XuZ. LiuP. QinY. ChenM. Enterovirus 71 2A protease inhibits P-body formation to promote viral RNA synthesis.J. Virol.20219519e00922e2110.1128/JVI.00922‑2134287048
    [Google Scholar]
  32. TyndallJ.D.A. PattendenL.K. ReidR.C. Crystal structures of highly constrained substrate and hydrolysis products bound to HIV-1 protease. Implications for the catalytic mechanism.Biochemistry200847123736374410.1021/bi7023157
    [Google Scholar]
  33. TözsérJ. Comparative studies on retroviral proteases: Substrate specificity.Viruses20102114716510.3390/v201014721994605
    [Google Scholar]
  34. NaglikJ.R. ChallacombeS.J. HubeB. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.Microbiol. Mol. Biol. Rev.200367340042810.1128/MMBR.67.3.400‑428.200312966142
    [Google Scholar]
  35. HaveA.T. DekkersE. KayJ. PhylipL.H. KanJ.A.L.V. Characterization and functional analysis of a Botrytis cinerea aspartic proteinase gene family.In:Abstracts XXIII Fungal Genetics ConferencePacific Grove. California, USA200498
    [Google Scholar]
  36. PählerA. BanerjeeA. DattaguptaJ.K. Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin.EMBO J.1984361311131410.1002/j.1460‑2075.1984.tb01968.x6378621
    [Google Scholar]
  37. YangJ. HuangX. TianB. WangM. NiuQ. ZhangK. Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity.Biotechnol. Lett.200527151123112810.1007/s10529‑005‑8461‑016132863
    [Google Scholar]
  38. MuszewskaA. TaylorJ.W. SzczesnyP. GrynbergM. Independent subtilases expansions in fungi associated with animals.Mol. Biol. Evol.201128123395340410.1093/molbev/msr17621727238
    [Google Scholar]
  39. LiJ. ZhangK.Q. Independent expansion of zincin metalloproteinases in Onygenales fungi may be associated with their pathogenicity.PLoS One201492e9022510.1371/journal.pone.0090225
    [Google Scholar]
  40. LillyW.W. StajichJ.E. PukkilaP.J. WilkeS.K. InoguchiN. GathmanA.C. An expanded family of fungalysin extracellular metallopeptidases of Coprinopsis cinerea.Mycol. Res.2008112338939810.1016/j.mycres.2007.11.01318313909
    [Google Scholar]
  41. XuJ. BaldwinD. KindrachukC. HegedusD.D. Serine proteases and metalloproteases associated with pathogenesis but not host specificity in the Entomophthoralean fungus Zoophthora radicans.Can. J. Microbiol.200652655055910.1139/w06‑00416788723
    [Google Scholar]
  42. MonodM. CapocciaS. LéchenneB. ZauggC. HoldomM. JoussonO. Secreted proteases from pathogenic fungi.Int. J. Med. Microbiol.20022925-640541910.1078/1438‑4221‑0022312452286
    [Google Scholar]
  43. JacksonB.E. WilhelmusK.R. HubeB. The role of secreted aspartyl proteinases in Candida albicans keratitis.Invest. Ophthalmol. Vis. Sci.20074883559356510.1167/iovs.07‑011417652724
    [Google Scholar]
  44. LermannU. MorschhäuserJ. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans.Microbiology2008154113281329510.1099/mic.0.2008/022525‑018957582
    [Google Scholar]
  45. WuH. DownsD. GhoshK. Candida albicans secreted aspartic proteases 4–6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism.FASEB J.20132762132214410.1096/fj.12‑21435323430844
    [Google Scholar]
  46. WuT.Y. MohammadA.W. JahimJ.M. AnuarN. Investigations on protease production by a wild-type Aspergillus terreus strain using diluted retentate of pre-filtered palm oil mill effluent (POME) as substrate.Enzyme Microb. Technol.20063961223122910.1016/j.enzmictec.2006.03.007
    [Google Scholar]
  47. KranthiV.S. RaoD.M. JaganmohanP. Production of protease by Aspergillus flavus through solid state fermentation using different oil seed cakes.Int. J. Microbiol. Res.201231121510.5829/idosi.ijmr.2012.3.1.613
    [Google Scholar]
  48. O’DonnellD. WangL. XuJ. RidgwayD. GuT. Moo-YoungM. Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity.Biochem. Eng. J.20018318719310.1016/S1369‑703X(01)00102‑4
    [Google Scholar]
  49. MacchioneM.M. MerhebC.W. GomesE. SilvaD.R. Protease production by different thermophilic fungi.Appl. Biochem. Biotechnol.20081461-322323010.1007/s12010‑007‑8034‑x18421600
    [Google Scholar]
  50. MalathiS. ChakrabortyR. Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent.Appl. Environ. Microbiol.199157371271610.1128/aem.57.3.712‑716.199116348437
    [Google Scholar]
  51. OgawaA. YasuharaA. TanakaT. SakiyamaT. Production of neutral protease by membrane surface of Aspergillus oryzae IAM2704.J. Ferment. Bioeng.1995801354010.1016/0922‑338X(95)98173‑I
    [Google Scholar]
  52. YangF.C. LinI.H. Production of acid protease using thin stillage from a rice-spirit distillery by Aspergillus niger.Enzyme Microb. Technol.199823639740210.1016/S0141‑0229(98)00070‑2
    [Google Scholar]
  53. VishwanathaK.S. RaoA.A.G. SinghS.A. Production and characterization of a milk-clotting enzyme from Aspergillus oryzae MTCC 5341.Appl. Microbiol. Biotechnol.20108561849185910.1007/s00253‑009‑2197‑z19727708
    [Google Scholar]
  54. VishwanathaK. AppuraoA. SinghS. Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341.Food Chem.2009114240240710.1016/j.foodchem.2008.09.070
    [Google Scholar]
  55. SavithaS. SadhasivamS. SwaminathanK. LinF.H. Fungal protease: Production, purification and compatibility with laundry detergents and their wash performance.J. Taiwan Inst. Chem. Eng.201142229830410.1016/j.jtice.2010.05.012
    [Google Scholar]
  56. AbidiF. ChobertJ.M. HaertléT. MarzoukiM.N. Purification and biochemical characterization of stable alkaline protease Prot-2 from Botrytis cinerea.Process Biochem.201146122301231010.1016/j.procbio.2011.09.010
    [Google Scholar]
  57. GuptaR. BegQ. LorenzP. Bacterial alkaline proteases: Molecular approaches and industrial applications.Appl. Microbiol. Biotechnol.2002591153210.1007/s00253‑002‑0975‑y12073127
    [Google Scholar]
  58. LiQ. YiL. MarekP. IversonB.L. Commercial proteases: Present and future.FEBS Lett.201358781155116310.1016/j.febslet.2012.12.01923318711
    [Google Scholar]
  59. JohnveslyB. NaikG.R. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium.Process Biochem.200137213914410.1016/S0032‑9592(01)00191‑1
    [Google Scholar]
  60. RaoM.B. TanksaleA.M. GhatgeM.S. DeshpandeV.V. Molecular and biotechnological aspects of microbial proteases.Microbiol. Mol. Biol. Rev.199862359763510.1128/MMBR.62.3.597‑635.19989729602
    [Google Scholar]
  61. HajjiM. HmidetN. JellouliK. VallaeysT. NasriM. Sellami-KamounA. Gene cloning and expression of a detergent stable alkaline protease from Aspergillus clavatus ES1.Process Biochem.201045101746175210.1016/j.procbio.2010.07.005
    [Google Scholar]
  62. TavanoO.L. Protein hydrolysis using proteases: An important tool for food biotechnology.J. Mol. Catal., B Enzym.20139011110.1016/j.molcatb.2013.01.011
    [Google Scholar]
  63. WardO.P. Proteases.Compr Biotechnol2019360461510.1016/B978‑0‑444‑64046‑8.00187‑7
    [Google Scholar]
  64. KumariM. SharmaA. JagannadhamM.V. Religiosin B, a milk-clotting serine protease from Ficus religiosa.Food Chem.201213141295130310.1016/j.foodchem.2011.09.122
    [Google Scholar]
  65. DemainA.L. AdrioJ.L. Contributions of microorganisms to industrial biology.Mol. Biotechnol.2008381415510.1007/s12033‑007‑0035‑z18060538
    [Google Scholar]
  66. TomarR. KumarR. JagannadhamM.V. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: Purification and biochemical properties.J. Agric. Food Chem.20085641479148710.1021/jf072653618220346
    [Google Scholar]
  67. KumarC.G. TakagiH. Microbial alkaline proteases.Biotechnol. Adv.199917756159410.1016/S0734‑9750(99)00027‑014538129
    [Google Scholar]
  68. HinzenB. RaddatzS. PaulsenH. Medicinal chemistry optimization of acyldepsipeptides of the enopeptin class antibiotics.ChemMedChem20061768969310.1002/cmdc.20060005516902918
    [Google Scholar]
  69. ReyskensK.M.S.E. EssopM.F. HIV protease inhibitors and onset of cardiovascular diseases: A central role for oxidative stress and dysregulation of the ubiquitin–proteasome system.Biochim. Biophys. Acta Mol. Basis Dis.20141842225626810.1016/j.bbadis.2013.11.01924275553
    [Google Scholar]
  70. MastrolorenzoA. RusconiS. ScozzafavaA. BarbaroG. SupuranC. Inhibitors of HIV-1 protease: Current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors.Curr. Med. Chem.200714262734274810.2174/09298670778236014118045120
    [Google Scholar]
  71. ClercqD.E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS).Adv. Pharmacol.20136731735810.1016/B978‑0‑12‑405880‑4.00009‑323886005
    [Google Scholar]
  72. OllingerJ. O’MalleyT. KesickiE.A. OdingoJ. ParishT. Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target.J. Bacteriol.2012194366366810.1128/JB.06142‑1122123255
    [Google Scholar]
  73. KurosuM. SiricillaS. MitachiK. Advances in MRSA drug discovery: Where are we and where do we need to be?Expert Opin. Drug Discov.2013891095111610.1517/17460441.2013.80724623829425
    [Google Scholar]
  74. NelsonK.E. Epidemiology of infectious disease: General principles.Infectious Disease Epidemiology Theory and Practice.Gaithersburg, MDAspen Publishers20071748
    [Google Scholar]
  75. SchechterI. BergerA. On the size of the active site in proteases. I. Papain. 1967.Biochem. Biophys. Res. Commun.2012425349750210.1016/j.bbrc.2012.08.01522925665
    [Google Scholar]
  76. LathouwersE. WongE.Y. LuoD. SeyedkazemiS. MeyerD.S. BrownK. HIV-1 resistance rarely observed in subjects using darunavir once-daily regimens across clinical studies.HIV Clin. Trials2017185-619620410.1080/15284336.2017.138769029143565
    [Google Scholar]
  77. DierynckI. WitD.M. GustinE. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier.J. Virol.20078124138451385110.1128/JVI.01184‑0717928344
    [Google Scholar]
  78. MeyerD.S. VangeneugdenT. BaelenV.B. Resistance profile of darunavir: Combined 24-week results from the POWER trials.AIDS Res. Hum. Retroviruses200824337938810.1089/aid.2007.017318327986
    [Google Scholar]
  79. VellankiSR SahuA KatukuriAK Process for the preparation of darunavir.Patent US8703980B2,2014
    [Google Scholar]
  80. BrownK. StewartL. WhitcombJ.M. YangD. NettlesR.E. LathouwersE. Prevalence of darunavir resistance in the United States from 2010 to 2017.AIDS Res. Hum. Retroviruses201834121036104310.1089/aid.2018.010030148406
    [Google Scholar]
  81. CorrêaR.J.C. D’ArcyD.M. dos Reis SerraC.H. SalgadoN.H.R. Darunavir: A critical review of its properties, use and drug interactions.Pharmacology2012901-210210910.1159/00033986222797653
    [Google Scholar]
  82. CalcagnoA. YilmazA. CusatoJ. Determinants of darunavir cerebrospinal fluid concentrations.AIDS201226121529153310.1097/QAD.0b013e328355361922555164
    [Google Scholar]
  83. PattersonK. JenningsS. FalconR. MrusJ. KashubaA. Darunavir, ritonavir, and etravirine pharmacokinetics in the cervicovaginal fluid and blood plasma of HIV-infected women.Antimicrob. Agents Chemother.20115531120112210.1128/AAC.00889‑1021173188
    [Google Scholar]
  84. PereiraM. ValeN. A review concerning the use of etravirine and darunavir in translational medicine.Inter J Transl Med20233446147810.3390/ijtm3040032
    [Google Scholar]
  85. AbdallaS. CompagnucciA. RiaultY. Simultaneous pharmacokinetic modeling of unbound and total darunavir with ritonavir in adolescents: A substudy of the SMILE trial.Antimicrob. Agents Chemother.2024682e01004e0102310.1128/aac.01004‑2338092664
    [Google Scholar]
  86. FabbianiM. MasiniM. RossettiB. Efficacy and durability of dolutegravir-or darunavir-based regimens in ART-naïve AIDS-or late-presenting HIV-infected patients.Viruses2023155112310.3390/v1505112337243208
    [Google Scholar]
  87. GhoshA.K. WeberI.T. MitsuyaH. Beyond darunavir: Recent development of next generation HIV-1 protease inhibitors to combat drug resistance.Chem. Commun.20225884117621178210.1039/D2CC04541A36200462
    [Google Scholar]
  88. NairA.B. ChaudharyS. ShahH. Intranasal delivery of darunavir-loaded mucoadhesive in situ gel: Experimental design, in vitro evaluation, and pharmacokinetic studies.Gels20228634210.3390/gels806034235735686
    [Google Scholar]
  89. MaL. XieY. ZhuM. Identification of darunavir derivatives for inhibition of SARS-CoV-2 3CLpro.Int. J. Mol. Sci.202223241601110.3390/ijms23241601136555652
    [Google Scholar]
  90. RiehlP.S. LimJ. FinniganJ.D. CharnockS.J. HysterT.K. An efficient synthesis of the bicyclic darunavir side chain using chemoenzymatic catalysis.Org. Process Res. Dev.20222672096210110.1021/acs.oprd.2c00017
    [Google Scholar]
  91. PatonN.I. MusaaziJ. KityoC. Dolutegravir or darunavir in combination with zidovudine or tenofovir to treat HIV.N. Engl. J. Med.2021385433034110.1056/NEJMoa210160934289276
    [Google Scholar]
  92. LinS. ShenR. HeJ. LiX. GuoX. Molecular modeling evaluation of the binding effect of ritonavir, lopinavir and darunavir to severe acute respiratory syndrome coronavirus 2 proteases.BioRxiv20201910.1101/2020.01.31.929695
    [Google Scholar]
  93. BanoubM.G. BadeA.N. LinZ. Synthesis and characterization of long-acting Darunavir prodrugs.Mol. Pharm.202017115516610.1021/acs.molpharmaceut.9b0087131742407
    [Google Scholar]
  94. MarkovicM. DeodharS. MachhiJ. Prodrug therapies for infectious and neurodegenerative diseases.Pharmaceutics202214351810.3390/pharmaceutics1403051835335894
    [Google Scholar]
  95. ElkatebH. CauldbeckH. NiezabitowskaE. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir.JCIS Open20231110008710.1016/j.jciso.2023.100087
    [Google Scholar]
  96. Sevilla-CastilloF. Roque-ReyesO.J. Romero-LechugaF. Both chloroquine and lopinavir/ritonavir are ineffective for COVID‐19 treatment and combined worsen the pathology: A single‐center experience with severely Ill patients.BioMed Res. Int.202120211882131810.1155/2021/882131833732744
    [Google Scholar]
  97. Verdugo-PaivaF. IzcovichA. RagusaM. RadaG. Lopinavir/ritonavir for COVID-19: A living systematic review.Medwave2020206e796610.5867/medwave.2020.06.796632678815
    [Google Scholar]
  98. SmoldersE.J. BrakeT.L.H.M. BurgerD.M. SARS-CoV-2 and HIV protease inhibitors: Why lopinavir/ritonavir will not work for COVID-19 infection.Antivir. Ther.202025734534710.3851/IMP336532589165
    [Google Scholar]
  99. KimC.M. ChungJ.K. TamannaS. Comparable efficacy of Lopinavir/Ritonavir and remdesivir in reducing viral load and shedding duration in patients with COVID-19.Microorganisms2024128169610.3390/microorganisms1208169639203538
    [Google Scholar]
  100. WaalewijnH. TurkovaA. RakhmaninaN. Optimizing pediatric dosing recommendations and treatment management of antiretroviral drugs using therapeutic drug monitoring data in children living with HIV.Ther. Drug Monit.201941443144310.1097/FTD.000000000000063731008997
    [Google Scholar]
  101. WadesangoL. Dolutegravir reported adverse drug reactions: A systematic review.Thesis, Doctoral dissertation, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2022
    [Google Scholar]
  102. GuptaM.S. RajeshK.S. Development and evaluation of nanoformulation for brain targeting and bioavailability enhancement of anti-viral drug.2017Available from: [https://www.gtu.ac.in/uploads/Shweta%20Gupta%20final%20thesis%20%20combined.pdf
    [Google Scholar]
  103. ElkatebH. Design of Lipid-based Nanocarriers for the Treatment of Human Immunodeficiency Virus (Hiv).United KingdomThe University of Liverpool2021
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638336144250331174407
Loading
/content/journals/cddt/10.2174/0115701638336144250331174407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test