Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Angina pectoris, a common cardiovascular condition, necessitates the development of effective therapeutic agents. Nisoldipine, a calcium channel blocker, and its analogues have shown potential in treating this condition. However, the optimization of these compounds for enhanced therapeutic efficacy remains a critical challenge.

Objective

This study aimed to investigate the therapeutic potential of Nisoldipine analogues through analysis, with the goal of identifying lead compounds for the treatment of angina pectoris and optimizing their formulation for improved solubility and drug release.

Methods

Eighteen Nisoldipine derivatives were screened using techniques, including molecular docking, SWISS ADME analysis, and molecular dynamics (MD) simulations. The top candidate, ZINC26826387, was identified and further analyzed. A comprehensive gene set analysis was performed using OMIM, GeneCards, and STITCH databases to identify target hub genes associated with angina pectoris. PPI network analysis and CytoHubba ranking were used to prioritize key genes for further study. Additionally, the lead compound was optimized through nanoparticle formulation, and the resulting nanoparticle tablets were characterized for solubility, dissolution, particle size, entrapment efficiency, and zeta potential. ANOVA was used to analyze the characterization data.

Results and Discussion

ZINC26826387 emerged as the most promising Nisoldipine analogue, exhibiting superior solubility, absence of AMES toxicity, strong molecular docking interaction with the target protein (docking score of -8.0 kcal/mol), and favourable pharmacokinetic properties. MD simulation confirmed the stability of the ligand-receptor complex. The study also identified 88 target hub genes associated with angina pectoris, with PTGS2 prioritized as a key gene. The nanoparticle formulation of ZINC26826387 significantly enhanced solubility by 2.53-fold compared to the unformulated compound. The optimized nanoparticle tablets achieved a 98.53% drug release within 30 minutes, with an average particle size of 50 nm, entrapment efficiency of 98.89%, and zeta potential of -52 mV, indicating good stability and uniformity.

Conclusion

The study demonstrates the therapeutic potential of ZINC26826387, a Nisoldipine analogue, through its enhanced solubility and reduced crystallinity. The lead compound was made into Nanoparticles using Pluronic F407 as carrier. These nanoparticles were further formulated to oral disintegrating tablets for rapid drug release, good stability compared to conventional tablets. These findings suggest that ZINC26826387 could be a promising candidate for the treatment of angina pectoris.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638359244250411045740
2025-04-18
2025-10-19
Loading full text...

Full text loading...

References

  1. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  2. AhmmedF. IslamA.U. MukhrishY.E. Ahmas; Ozeki, Y.; Kawsar, S.M. Efficient antibacterial/antifungal activities: synthesis, molecular docking, molecular dynamics, pharmacokinetic and binding free energy of galactopyranoside derivatives.Molecules202228121910.3390/molecules2801021936615413
    [Google Scholar]
  3. WangM. YangS. ShaoM. Identification of potential bioactive ingredients and mechanisms of the Guanxin Suhe Pill on angina pectoris by integrating network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.2021202111310.1155/2021/428048234422068
    [Google Scholar]
  4. HosenM.A. AlamA. IslamM. FujiiY. OzekiY. KawsarS.M. Geometrical optimization, PASS prediction, molecular docking, and in silico ADMET studies of thymidine derivatives against FimH adhesion of Escherichia coli.Izv. Him.202153327342
    [Google Scholar]
  5. KawsarS.M.A. Hossai̇nM.A. An optimization and pharmacokinetic studies of some thymidine derivatives.Turk Comput Theore Chem202042596610.33435/tcandtc.718807
    [Google Scholar]
  6. ChoudharyM.I. BegumA. AbbaskhanA. MusharrafS.G. EjazA. Atta-ur-Rahman. Two new antioxidant phenylpropanoids from Lindelofia stylosa.Chem. Biodivers.20085122676268310.1002/cbdv.20089022119089825
    [Google Scholar]
  7. XiaoZ.P. ShiD.H. LiH.Q. ZhangL.N. XuC. ZhuH.L. Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease.Bioorg. Med. Chem.200715113703371010.1016/j.bmc.2007.03.04517400458
    [Google Scholar]
  8. LiH.Q. XiaoZ.P. YanT. LvP.C. ZhuH.L. Amines and oximes derived from deoxybenzoins as Helicobacter pylori urease inhibitors.Eur. J. Med. Chem.20094452246225110.1016/j.ejmech.2008.06.00118625539
    [Google Scholar]
  9. XiaoZ.P. WangX.D. PengZ.Y. Molecular docking, kinetics study, and structure-activity relationship analysis of quercetin and its analogous as Helicobacter pylori urease inhibitors.J. Agric. Food Chem.20126042105721057710.1021/jf303393n23067328
    [Google Scholar]
  10. XiaoZ.P. PengZ.Y. DongJ.J. Synthesis, structure–activity relationship analysis and kinetics study of reductive derivatives of flavonoids as Helicobacter pylori urease inhibitors.Eur. J. Med. Chem.20136368569510.1016/j.ejmech.2013.03.01623567958
    [Google Scholar]
  11. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm030643015027865
    [Google Scholar]
  12. SareenS. JosephL. MathewG. Improvement in solubility of poor water-soluble drugs by solid dispersion.Int. J. Pharm. Investig.201221121710.4103/2230‑973X.9692123071955
    [Google Scholar]
  13. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  14. KumariL. ChoudhariY. PatelP. Advancement in solubilization approaches: a step towards bioavailability enhancement of poorly soluble drugs.Life (Basel)2023135109910.3390/life1305109937240744
    [Google Scholar]
  15. KhanK.U. MinhasM.U. BadshahS.F. SuhailM. AhmadA. IjazS. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs.Life Sci.202229112030110.1016/j.lfs.2022.12030134999114
    [Google Scholar]
  16. AbuzarS.M. HyunS.M. KimJ.H. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.Int. J. Pharm.20185381-211310.1016/j.ijpharm.2017.12.04129278733
    [Google Scholar]
  17. CharyS.S. BhikshapathiD.V.R.N. VamsiN.M. KumarJ.P. Optimizing entrectinib nanosuspension: quality by design for enhanced oral bioavailability and minimized fast-fed variability.Bio Nano sci20241444551456910.1007/s12668‑024‑01462‑5
    [Google Scholar]
  18. MahmoodT. SarfrazR.M. IsmailA. AliM. KhanA.R. Pharmaceutical methods for enhancing the dissolution of poorly water-soluble drugs.Assay Drug Dev. Technol.2023212657910.1089/adt.2022.11936917562
    [Google Scholar]
  19. TingleB.I. TangK.G. CastanonM. ZINC-22—A free multi-billion-scale database of tangible compounds for ligand discovery.J. Chem. Inf. Model.20236341166117610.1021/acs.jcim.2c0125336790087
    [Google Scholar]
  20. MathpalS. JoshiT. SharmaP. A dynamic simulation study of FDA drug from zinc database against COVID-19 main protease receptor.J. Biomol. Struct. Dyn.20224031084110010.1080/07391102.2020.182178532940134
    [Google Scholar]
  21. ByadiS. OblakD. KassmiY. In silico discovery of novel inhibitors from Northern African natural products database against main protease (Mpro) of SARS-CoV-2.J. Biomol. Struct. Dyn.20234172900291010.1080/07391102.2022.204059435168469
    [Google Scholar]
  22. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_1925618350
    [Google Scholar]
  23. KondapuramS.K. SarvagallaS. CoumarM.S. Chapter 22 - Docking--Based Virtual Screening Using PyRx Tool: Autophagy Target Vps34 as a Case Study.In: Molecular Docking for Computer-Aided Drug Design.New YorkAcademic Press202146347710.1016/B978‑0‑12‑822312‑3.00019‑9
    [Google Scholar]
  24. MunC.S. HuiL.Y. SingL.C. KarunakaranR. RavichandranV. Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19.Saudi J. Biol. Sci.2022291210345810.1016/j.sjbs.2022.10345836187455
    [Google Scholar]
  25. LeT.T.V. DoP.C. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors.Front. Microbiol.20221398780110.3389/fmicb.2022.98780136246267
    [Google Scholar]
  26. KhalidZ. ShafqatS.S. AhmadH.A. A combined experimental and computational study of novel benzotriazinone carboxamides as alpha-glucosidase inhibitors.Molecules20232818662310.3390/molecules2818662337764399
    [Google Scholar]
  27. Durán-IturbideN.A. Díaz-EufracioB.I. Medina-FrancoJ.L. In silico ADME/Tox profiling of natural products: a focus on BIOFACQUIM.ACS Omega2020526160761608410.1021/acsomega.0c0158132656429
    [Google Scholar]
  28. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  29. ChengT. PanY. HaoM. WangY. BryantS.H. PubChem applications in drug discovery: a bibliometric analysis.Drug Discov. Today201419111751175610.1016/j.drudis.2014.08.00825168772
    [Google Scholar]
  30. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  31. HamoshA. ScottA.F. AmbergerJ.S. BocchiniC.A. McKusickV.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.Nucleic Acids Res.200433Database issueD514D51710.1093/nar/gki03315608251
    [Google Scholar]
  32. ZhangH. ZhuangX. LiZ. WangX. Investigating the multitarget pharmacological mechanism of Rhodiola wallichiana var. cholaensis acting on angina pectoris using combined network pharmacology and molecular docking.J. Thorac. Dis.20241621350136710.21037/jtd‑23‑189138505080
    [Google Scholar]
  33. KuhnM. von MeringC. CampillosM. JensenL.J. BorkP. STITCH: interaction networks of chemicals and proteins.Nucleic Acids Res.200736D684D68810.1093/nar/gkm79518084021
    [Google Scholar]
  34. AmbergerJ.S. HamoshA. Searching online mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinformatics20175811210.1002/cpbi.27
    [Google Scholar]
  35. TanoliZ. SeemabU. SchererA. WennerbergK. TangJ. Vähä-KoskelaM. Exploration of databases and methods supporting drug repurposing: a comprehensive survey.Brief. Bioinform.20212221656167810.1093/bib/bbaa00332055842
    [Google Scholar]
  36. NetoO.A. TassyO. BiancalanaV. ZanoteliE. PourquiéO. LaporteJ. Integrative data mining highlights candidate genes for monogenic myopathies.PLoS One2014910e11088810.1371/journal.pone.011088825353622
    [Google Scholar]
  37. ChenQ. ZhouX.J. SunF. Finding genetic overlaps among diseases based on ranked gene lists.J. Comput. Biol.201522211112310.1089/cmb.2014.014925684200
    [Google Scholar]
  38. HozhabriH. Ghasemi DehkohnehR.S. RazaviS.M. Comparative analysis of protein-protein interaction networks in metastatic breast cancer.PLoS One2022171e026058410.1371/journal.pone.026058435045088
    [Google Scholar]
  39. Safari-AlighiarlooN. TaghizadehM. Rezaei-TaviraniM. GoliaeiB. PeyvandiA.A. Protein-protein interaction networks (PPI) and complex diseases.Gastroenterol. Hepatol. Bed Bench2014711731[PMID: 25436094
    [Google Scholar]
  40. KohlM. WieseS. WarscheidB. Cytoscape: software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_1821063955
    [Google Scholar]
  41. MousavianZ. KhodabandehM. Sharifi-ZarchiA. NadafianA. MahmoudiA. StrongestPath: a Cytoscape application for protein–protein interaction analysis.BMC Bioinformatics202122135210.1186/s12859‑021‑04230‑434187355
    [Google Scholar]
  42. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: a powerful approach for structure-based drug discovery.Curr Comput Drug Des20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  43. AguP.C. AfiukwaC.A. OrjiO.U. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  44. MohantyM. MohantyP.S. Molecular docking in organic, inorganic, and hybrid systems: a tutorial review.Monatsh. Chem.2023154768370710.1007/s00706‑023‑03076‑137361694
    [Google Scholar]
  45. Abdulhameed OdharH. Fadhil HashimA. Sami HumadS. Molecular docking analysis and dynamics simulation of salbutamol with the monoamine oxidase B (MAO-B) enzyme.Bioinformation202218330430910.6026/9732063001830436518132
    [Google Scholar]
  46. PaulS.K. SaddamM. RahamanK.A. ChoiJ.G. LeeS.S. HasanM. Molecular modeling, molecular dynamics simulation, and essential dynamics analysis of grancalcin: An upregulated biomarker in experimental autoimmune encephalomyelitis mice.Heliyon2022810e1123210.1016/j.heliyon.2022.e1123236340004
    [Google Scholar]
  47. AhmadI. KhanH. SerdaroğluG. Physicochemical properties, drug likeness, ADMET, DFT studies, and in vitro antioxidant activity of oxindole derivatives.Comput. Biol. Chem.202310410786110.1016/j.compbiolchem.2023.10786137060784
    [Google Scholar]
  48. MumitM.A. PalT.K. AlamM.A. IslamM.A.A.A.A. PaulS. SheikhM.C. DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate.J. Mol. Struct.2020122012871510.1016/j.molstruc.2020.12871532834109
    [Google Scholar]
  49. Hadigheh RezvanV. Molecular structure, HOMO–LUMO, and NLO studies of some quinoxaline 1,4-dioxide derivatives: Computational (HF and DFT) analysis.Results in Chemistry.2024710143710.1016/j.rechem.2024.101437
    [Google Scholar]
  50. AdinduE.A. GodfreyO.C. AgwupuyeE.I. Structural analysis, reactivity descriptors (HOMO-LUMO, ELF, NBO), effect of polar (DMSO, EtOH, H2O) solvation, and libido-enhancing potential of resveratrol by molecular docking.Chem Phys Impact2023710029610.1016/j.chphi.2023.100296
    [Google Scholar]
  51. HuangY. RongC. ZhangR. LiuS. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory.J. Mol. Model.2017231310.1007/s00894‑016‑3175‑x27933419
    [Google Scholar]
  52. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑1722889332
    [Google Scholar]
  53. BudimanA. AulifaD.L. A comparative study of the pharmaceutical properties between amorphous drugs loaded-mesoporous silica and pure amorphous drugs prepared by solvent evaporation.Pharmaceuticals (Basel)202215673010.3390/ph1506073035745649
    [Google Scholar]
  54. FinkC. SunD. WagnerK. Evaluating the role of solubility in oral absorption of poorly water-soluble drugs using physiologically-based pharmacokinetic modeling.Clin. Pharmacol. Ther.2020107365066110.1002/cpt.167231608434
    [Google Scholar]
  55. GillP. MoghadamT.T. RanjbarB. Differential scanning calorimetry techniques: applications in biology and nanoscience.J. Biomol. Tech.2010214167193[PMID: 21119929
    [Google Scholar]
  56. YanceyB. VyazovkinS. Venturing into kinetics and mechanism of nanoconfined solid-state reactions: trimerization of sodium dicyanamide in nanopores.Phys. Chem. Chem. Phys.20141623114091141610.1039/c4cp01181c24798065
    [Google Scholar]
  57. MadanJ. DuaK. KhudeP.A. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery.Int. J. Pharm. Investig.201442606410.4103/2230‑973X.13304725006550
    [Google Scholar]
  58. FaroukA. SaeedS.E.S. SharafS. Abd El-HadyM.M. Photocatalytic activity and antibacterial properties of linen fabric using reduced graphene oxide/silver nanocomposite.RSC Advances20201068416004161110.1039/D0RA07544B35516560
    [Google Scholar]
  59. KamarajN. RajaguruP.Y. IssacP. SundaresanS. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles.Asian J. Pharm. Sci.201712435336210.1016/j.ajps.2017.02.00332104346
    [Google Scholar]
  60. MhetreR.L. HolV.B. ChanshettiR.R. DholeS.N. Optimisation of cilnidipine nanoparticles using Box-Behnken design: in-vitro, toxicity and bioavailability assessment.Mater. Technol.202237111796180710.1080/10667857.2021.1988038
    [Google Scholar]
  61. WuC.Y. WangW. Application of antisolvent precipitation method for formulating excipient-free nanoparticles of psychotropic drugs.Pharmaceutics202214481910.3390/pharmaceutics1404081935456653
    [Google Scholar]
  62. MahmoudB.S. McConvilleC. Box-Behnken design of experiments of polycaprolactone nanoparticles loaded with irinotecan hydrochloride.Pharmaceutics2023154127110.3390/pharmaceutics1504127137111756
    [Google Scholar]
  63. NawazT. IqbalM. KhanB.A. Development and optimization of acriflavine-loaded polycaprolactone nanoparticles using Box-Behnken design for burn wound healing applications.Polymers (Basel)202114110110.3390/polym1401010135012125
    [Google Scholar]
  64. PatelG.V. PatelV.B. PathakA. RajputS.J. Nanosuspension of efavirenz for improved oral bioavailability: formulation optimization, in vitro, in situ and in vivo evaluation.Drug Dev. Ind. Pharm.2014401809110.3109/03639045.2012.74636223323843
    [Google Scholar]
  65. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J29926865
    [Google Scholar]
  66. JanaU. MohantyA.K. PalS.L. MannaP.K. MohantaG.P. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study.Nano Converg.2014113110.1186/s40580‑014‑0031‑5
    [Google Scholar]
  67. Abdel-EmamR.A. AliM.F. HassanA.S. Abd-EllatiefR.B. Development and evaluation of dexamethasone-loaded bioadhesive polymeric nanocapsules for mitigating cardiac and gastric adverse effects of free dexamethasone.J. Pharm. Investig.202454682584410.1007/s40005‑024‑00686‑7
    [Google Scholar]
  68. NagaiN. OgataF. KadowakiR. Orally disintegrating tablets containing famotidine nanoparticles provide high intestinal absorbability via the energy-dependent endocytosis pathway.Front. Bioeng. Biotechnol.202311116729110.3389/fbioe.2023.116729136970629
    [Google Scholar]
  69. KissE.L. BerkóS. GácsiA. Development and characterization of potential ocular mucoadhesive nano lipid carriers using full factorial design.Pharmaceutics202012768210.3390/pharmaceutics1207068232698334
    [Google Scholar]
  70. MurthyK.V.R. RajuV. Development and validation of new discriminative dissolution method for carvedilol tablets.Indian J. Pharm. Sci.201173552753610.4103/0250‑474X.9900022923865
    [Google Scholar]
  71. YeeK.M. MohamadN. KeeP.E. Recent advances in orally disintegrating tablet: properties, formulation and production.Drug Deliv. Lett.202414321122510.2174/0122103031291909240317162755
    [Google Scholar]
  72. AlhalawehA. AlzghoulA. MahlinD. BergströmC.A.S. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.Int. J. Pharm.2015495131231710.1016/j.ijpharm.2015.08.10126341321
    [Google Scholar]
  73. JuanC. GalloL. Gonzalez VidalN. Development of losartan orally disintegrating tablets by direct compression: a cost-effective approach to improve paediatric patient’s compliance.AAPS PharmSciTech20242547910.1208/s12249‑024‑02796‑938589718
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638359244250411045740
Loading
/content/journals/cddt/10.2174/0115701638359244250411045740
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test