Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

investigations are much more complex than trials conducted in a test tube; the results sometimes aren't as illuminating and could raise more questions than answers. Preclinical data projection into clinical truth is a transcriptional science that remains a compelling trial in drug development. Preclinical and education is important in novel drug's non-violent or active growth. Pharmacokinetic and metabolic research is necessary to better understand the chemical and biological effects of medicines and their metabolites. Information produced by such a policy can be used to progress Phase I studies, primarily for anticancer medication. Both living and deceased models are theoretically excellent preclinical tools for calculating the pharmacological action of counterparts from the same family, such as vinca alkaloids. The animal species most closely linked to humans are chosen based on metabolic patterns. The estimation of the duration of drug action, particularly for medicines with varied metabolic clearances (, benzodiazepines); The empathetic or estimate of medicine relations, , those defined for cyclosporin A and macrolide antibiotics; and Sclarification of the metabolic roots of individual inconsistencies in pharmaceutical action.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638302778240417045451
2024-04-25
2025-11-02
Loading full text...

Full text loading...

References

  1. SinhaK. GhoshN. SilP.C. A review on the recent applications of deep learning in predictive drug toxicological studies.Chem. Res. Toxicol.20233681174120510.1021/acs.chemrestox.2c0037537561655
    [Google Scholar]
  2. AskrH. ElgeldawiE. Aboul EllaH. ElshaierY.A.M.M. GomaaM.M. HassanienA.E. Deep learning in drug discovery: an integrative review and future challenges.Artif. Intell. Rev.20235675975603710.1007/s10462‑022‑10306‑136415536
    [Google Scholar]
  3. LuoY. AbidianM.R. AhnJ.H. AkinwandeD. AndrewsA.M. AntoniettiM. BaoZ. BerggrenM. BerkeyC.A. BettingerC.J. ChenJ. ChenP. ChengW. ChengX. ChoiS.J. ChortosA. DagdevirenC. DauskardtR.H. DiC. DickeyM.D. DuanX. FacchettiA. FanZ. FangY. FengJ. FengX. GaoH. GaoW. GongX. GuoC.F. GuoX. HartelM.C. HeZ. HoJ.S. HuY. HuangQ. HuangY. HuoF. HussainM.M. JaveyA. JeongU. JiangC. JiangX. KangJ. KarnaushenkoD. KhademhosseiniA. KimD.H. KimI.D. KireevD. KongL. LeeC. LeeN.E. LeeP.S. LeeT.W. LiF. LiJ. LiangC. LimC.T. LinY. LipomiD.J. LiuJ. LiuK. LiuN. LiuR. LiuY. LiuY. LiuZ. LiuZ. LohX.J. LuN. LvZ. MagdassiS. MalliarasG.G. MatsuhisaN. NathanA. NiuS. PanJ. PangC. PeiQ. PengH. QiD. RenH. RogersJ.A. RoweA. SchmidtO.G. SekitaniT. SeoD.G. ShenG. ShengX. ShiQ. SomeyaT. SongY. StavrinidouE. SuM. SunX. TakeiK. TaoX.M. TeeB.C.K. TheanA.V.Y. TrungT.Q. WanC. WangH. WangJ. WangM. WangS. WangT. WangZ.L. WeissP.S. WenH. XuS. XuT. YanH. YanX. YangH. YangL. YangS. YinL. YuC. YuG. YuJ. YuS.H. YuX. ZamburgE. ZhangH. ZhangX. ZhangX. ZhangX. ZhangY. ZhangY. ZhaoS. ZhaoX. ZhengY. ZhengY.Q. ZhengZ. ZhouT. ZhuB. ZhuM. ZhuR. ZhuY. ZhuY. ZouG. ChenX. Technology roadmap for flexible sensors.ACS Nano20231765211529510.1021/acsnano.2c1260636892156
    [Google Scholar]
  4. MeaneyC. Applications of deep learning to differential equation models in oncology.UWSpace2023
    [Google Scholar]
  5. BonateP.L. BarrettJ.S. Ait-OudhiaS. Training the next generation of pharmacometric modelers: A multisector perspective.J. Pharmacokinet. Pharmacodyn.202451153110.1007/s10928‑023‑09844‑037573528
    [Google Scholar]
  6. AmiriZ. HeidariA. DarbandiM. YazdaniY. Jafari NavimipourN. EsmaeilpourM. SheykhiF. UnalM. The personal health applications of machine learning techniques in the internet of behaviors.Sustainability202315161240610.3390/su151612406
    [Google Scholar]
  7. OsmanA.I. HosnyM. EltaweilA.S. OmarS. ElgarahyA.M. FarghaliM. YapP.S. WuY.S. NagandranS. BatumalaieK. GopinathS.C.B. JohnO.D. SekarM. SaikiaT. KarunanithiP. HattaM.H.M. AkinyedeK.A. Microplastic sources, formation, toxicity and remediation: A review.Environ. Chem. Lett.20232142129216910.1007/s10311‑023‑01593‑337362012
    [Google Scholar]
  8. FriesF. KanyA. RasheedS. HirschA. MüllerR. HerrmannJ. Impact of drug administration routes on the in vivo efficacy of the natural product sorangicin a using a Staphylococcus aureus infection model in zebrafish embryos.Int. J. Mol. Sci.202324161279110.3390/ijms24161279137628971
    [Google Scholar]
  9. ZoeL.H. DavidS.R. RajabalayaR. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications.Toxicol. Rep.2023118310610.1016/j.toxrep.2023.06.01238187113
    [Google Scholar]
  10. NizamogluM. JoglekarM.M. AlmeidaC.R. Larsson CallerfeltA.K. DupinI. GuenatO.T. HenrotP. van OsL. OteroJ. ElowssonL. FarreR. BurgessJ.K. Innovative three- dimensional models for understanding mechanisms underlying lung diseases: Powerful tools for translational research.Eur. Respir. Rev.20233216923004210.1183/16000617.0042‑202337495250
    [Google Scholar]
  11. Fernández-ColinoA. KiesslingF. SlabuI. De LaporteL. AkhyariP. NagelS.K. StinglJ. ReeseS. JockenhoevelS. Lifelike transformative materials for biohybrid implants: Inspired by nature, driven by technology.Adv. Healthc. Mater.20231220230099110.1002/adhm.20230099137290055
    [Google Scholar]
  12. ThépautE. BrochotC. ChardonK. PersonneS. ZemanF.A. Pregnancy-PBPK models: How are biochemical and physiological processes integrated?Comput. Toxicol.20232710028210.1016/j.comtox.2023.100282
    [Google Scholar]
  13. TindallA.J. Du PasquierD. LemkineG.F. Evaluation of the endocrine activity of surface water samples using aquatic eleuthero-embryos-A comparison with in vitro assays.Water Environ. Res.2023958e1091110.1002/wer.1091137475203
    [Google Scholar]
  14. WangH ChenX VitalN DuffyE RaziA. Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach.arXiv Prepr 2306. 13333.2023
    [Google Scholar]
  15. BekeschusS. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy.Redox Biol.20236510279810.1016/j.redox.2023.10279837556976
    [Google Scholar]
  16. AmelA. RossouwS. GoolamM. Gastruloids: A novel system for disease modelling and drug testing.Stem Cell Rev. Rep.202319110411310.1007/s12015‑022‑10462‑536308705
    [Google Scholar]
  17. Albuquerque de AlmeidaF. RicardoM. Different regulatory framework for medical devices and drugs in the European Union: Impact on clinical research and health technology assessments.Int. J. Health Plann. Manage.20233851420143410.1002/hpm.367137316973
    [Google Scholar]
  18. DhoundiyalS. BishtT. AdhikariA. PatilS. Unraveling drug safety: Importance of toxicological screening and animal models in pharmacokinetics studies for clinical medicinal impact.Int J Pharma Prof Res.2023143118140
    [Google Scholar]
  19. JainK. MarwalA. SharmaK. DesaiN. Identification of etiological agent of telya disease of pomegranate, its pathogenesis and control using integrated management approach.Res J Biotechnol2023181
    [Google Scholar]
  20. ReddyN. LynchB. GujralJ. KarnikK. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments.Food Chem. Toxicol.202317911394410.1016/j.fct.2023.11394437453475
    [Google Scholar]
  21. GrigaitisP SzéliováD. What makes up a cell. Econ Princ Cell Biol2023
    [Google Scholar]
  22. StoutC.N. WasfyN.M. ChenF. RenataH. Charting the evolution of chemoenzymatic strategies in the syntheses of complex natural products.J. Am. Chem. Soc.202314533181611818110.1021/jacs.3c0342237553092
    [Google Scholar]
  23. FrischE. ClavierL. BelhamdiA. VranaN.E. LavalleP. FrischB. HeurtaultB. GribovaV. Preclinical in vitro evaluation of implantable materials: Conventional approaches, new models and future directions.Front. Bioeng. Biotechnol.202311119320410.3389/fbioe.2023.119320437576997
    [Google Scholar]
  24. GarciaJ.M. BurnettC.E. RoybalK.T. Toward the clinical development of synthetic immunity to cancer.Immunol. Rev.20233201839910.1111/imr.1324537491719
    [Google Scholar]
  25. SkvortsovT. MaillardJ-Y. Viruses and other acellular infectious agents: Characteristics and control.Hugo Russell’s Pharm Microbiol2023
    [Google Scholar]
  26. ZhuW.S. WheelerB.D. AnselK.M. RNA circuits and RNA-binding proteins in T cells.Trends Immunol.2023441079280610.1016/j.it.2023.07.00637599172
    [Google Scholar]
  27. LongQ. YanK. WangC. WenY. QiF. WangH. ShiP. LiuX. ChanW.Y. LuX. ZhaoH. Modification of maternally defined H3K4me3 regulates the inviability of interspecific Xenopus hybrids.Sci. Adv.2023914eadd834310.1126/sciadv.add834337027476
    [Google Scholar]
  28. ZhangX.Q. SongQ. ZengL.X. Circulating hsa_circ_0072309, acting via the miR -100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer.Cancer Med.20231217180051801910.1002/cam4.637137496297
    [Google Scholar]
  29. PreissL.C. Exploration of Novel Hepatic in-vitro Systems for Drug Metabolism and Pharmacokinetic Studies.SwedenKarolinska Institutet2023
    [Google Scholar]
  30. Margiotta-CasaluciL. OwenS.F. WinterM.J. Cross-species extrapolation of biological data to guide the environmental safety assessment of pharmaceuticals-the state of the art and future priorities.Environ. Toxicol. Chem.20244335132537067359
    [Google Scholar]
  31. PhilipS.J. LuuT.J. CarteT. There’s No place like home: Understanding users’ intentions toward securing internet-of-things (IoT) smart home networks.Comput. Human Behav.202313910755110.1016/j.chb.2022.107551
    [Google Scholar]
  32. DavidssonM SellnowRC YonkersR ZadorAM ManfredssonFP Serotonergic hyperinnervation in non-motor circuits in the parkinsonian rat.Cell Transplant. 2019284, SI465466
    [Google Scholar]
  33. ReolizoL. MatsudaM. SekiE. Experimental workflow for preclinical studies of human antifibrotic therapies.Hepatic Stellate Cells: Methods and Protocols.Springer202328530610.1007/978‑1‑0716‑3207‑9_18
    [Google Scholar]
  34. Valle-SimónP. BorobiaA.M. Pérez-MartínezA. Clinical research with targeted drugs in paediatric oncology.Drug Discov. Today202328810367210.1016/j.drudis.2023.10367237330039
    [Google Scholar]
  35. RowanA.N. Use of animals in toxicity studies.Handbook of Bioethical Decisions Decisions at the Bench. Springer2023156357410.1007/978‑3‑031‑29451‑8_30
    [Google Scholar]
  36. BeardallT.I.S. The sky really falling?: Myriad and its impact on therapeutic development.Stanford Law Pol. Rev.2023342
    [Google Scholar]
  37. ModyH. OgasawaraK. ZhuX. MilesD. ShastriP.N. GokemeijerJ. LiaoM.Z. KasichayanulaS. YangT.Y. ChemuturiN. GuptaS. JawaV. UpretiV.V. Best practices and considerations for clinical pharmacology and pharmacometric aspects for optimal development of CAR-T and TCR-T cell therapies: An industry perspective.Clin. Pharmacol. Ther.2023114353055710.1002/cpt.298637393588
    [Google Scholar]
  38. YadavR. SukumaranS. LutmanJ. MitraM.S. HalpernW. SunT. SetiadiA.F. NeighborsM. ShengX.R. YipV. ShenB-Q. LiuC. HanL. OvacikA.M. WuY. GlicksteinS. KunderR. ArronJ.R. PanL. KamathA.V. StefanichE.G. Utilizing PK and PD biomarkers to guide the first-in-human starting dose selection of MTBT1466A: A novel humanized monoclonal anti-TGFβ3 antibody for the treatment of fibrotic diseases.J. Pharm. Sci.2023112112910292010.1016/j.xphs.2023.07.005
    [Google Scholar]
  39. AgathokleousE. BlandeJ.D. MasuiN. CalabreseE.J. ZhangJ. SicardP. GuedesR.N.C. BenelliG. Sublethal chemical stimulation of arthropod parasitoids and parasites of agricultural and environmental importance.Environ. Res.2023237Pt 111687610.1016/j.envres.2023.11687637573021
    [Google Scholar]
  40. LamG. NoirezP. DjemaiH. YoussefL. BlancE. AudouzeK. KimM.J. CoumoulX. LiS.F.Y. The effects of pollutant mixture released from grafted adipose tissues on fatty acid and lipid metabolism in the skeletal muscles, kidney, heart, and lungs of male mice.Environ. Pollut.202333612238710.1016/j.envpol.2023.12238737591324
    [Google Scholar]
  41. GoudotG. ChengC. GuédonA.F. MiraultT. PedreiraO. DahanA. WangL.Z. PernotM. MessasE. Methods: Aortic wall deformation assessment by ultrafast ultrasound imaging: Application to bicuspid aortic valve associated aortopathy.Front. Physiol.202314112866310.3389/fphys.2023.112866336935759
    [Google Scholar]
  42. Luffer-AtlasD. ObachR.S. SmithD.A. A MIST conception: What has been learned from twenty years of human metabolite safety assessment?Med. Chem. Res.20233291933194910.1007/s00044‑023‑03089‑9
    [Google Scholar]
  43. MaguranyK.A. ChangX. ClewellR. CoeckeS. HaugabrooksE. MartyS. A pragmatic framework for the application of new approach methodologies in one health toxicological risk assessment.Toxicol. Sci.2023192215517710.1093/toxsci/kfad01236782355
    [Google Scholar]
  44. JacobS. NairA.B. MorsyM.A. Dose conversion between animals and humans: A practical solution.Indian J. Pharm. Educ. Res.202256360060710.5530/ijper.56.3.108
    [Google Scholar]
  45. PorrasK.D.L. AlvesI.A. NovoaD.M.A. PBPK modeling as an alternative method of interspecies extrapolation that reduces the use of animals: A systematic review.Curr. Med. Chem.2023311102126
    [Google Scholar]
  46. LeachM.W. ClarkeD.O. DudalS. HanC. LiC. YangZ. BrennanF.R. BaileyW.J. ChenY. DeslandesA. LobergL.I. MayawalaK. RoggeM.C. ToddM. ChemuturiN.V. Strategies and recommendations for using a data-driven and risk-based approach in the selection of first-in-human starting dose: An international consortium for innovation and quality in pharmaceutical development (IQ) assessment.Clin. Pharmacol. Ther.202110961395141610.1002/cpt.200932757299
    [Google Scholar]
  47. AliM.K. JavaidS. AfzalH. ZafarI. FayyazK. AinQ. RatherM.A. HossainM.J. RashidS. KhanK.A. SharmaR. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine.Environ. Res.202323211629010.1016/j.envres.2023.11629037295589
    [Google Scholar]
  48. WindischM. Phase 1 trials in Alzheimer’s disease drug development.Alzheimer’s Dis Drug Dev Res Dev Ecosyst202213510.1017/9781108975759.012
    [Google Scholar]
  49. Aagat AwasthiA. Positioning science education for the self and society: An autoethnographic inquiry. Doctoral Dissertation,Kathmandu University School of Education2023
    [Google Scholar]
  50. DoratoM.A. MurphyC.J. DanielsJ.S. QuistE.M. GodinC.S. Toxicologic assessment of pharmaceutical, medical device and biotechnology products. Hayes’Princ Methods Toxicol.20238331
    [Google Scholar]
  51. SpitzerP.A. Empowering female climate change activists in the global south: The path toward environmental social justice.State University of New York at Stony BrookUSA2023
    [Google Scholar]
  52. KarS. LeszczynskiJ. Current Trends in Computational Modeling for Drug Discovery.Springer Nature202335
    [Google Scholar]
  53. FiresteinG.S. BuddR.C. GabrielS.E. McInnesI.B. O’DellJ.R. Firestein & kelley’s textbook of rheumatology-E-book.Elsevier Health Sciences2020
    [Google Scholar]
  54. UmanathS. CoaneJ.H. HuffM.J. CimenianT. ChangK. Ecological validity of don’t remember and don’t know for distinguishing accessibility-versus availability-based retrieval failures in older and younger adults: Knowledge for news events.Cogn. Res. Princ. Implic.202381210.1186/s41235‑022‑00458‑736600082
    [Google Scholar]
  55. GrenobleL.A. OsipovB. The dynamics of bilingualism in language shift ecologies.Linguist. Approaches Biling.202313113910.1075/lab.22035.gre
    [Google Scholar]
  56. NazT. AkhtarM. ShahzadS.K. FasliM. IqbalM.W. NaqviM.R. Ontology-driven advanced drug-drug interaction.Comput. Electr. Eng.20208610669510.1016/j.compeleceng.2020.106695
    [Google Scholar]
  57. SpanakisM. Alon-EllenbogenD. IoannouP. SpernovasilisN. Antibiotics and lipid-modifying agents: Potential drug–drug interactions and their clinical implications.Pharmacy202311413010.3390/pharmacy1104013037624085
    [Google Scholar]
  58. VesselsT.J. StrayerN.J. ChoiK.W. LeeH. ZhangS. HanL. Identifying modifiable comorbidities of schizophrenia by integrating electronic health records and polygenic risk.medRxiv20232006202310.1101/2023.06.01.23290057
    [Google Scholar]
  59. SwystunL.L. LillicrapD. Current understanding of inherited modifiers of FVIII pharmacokinetic variation.Pharm. Genomics Pers. Med.20231623925210.2147/PGPM.S38322136998673
    [Google Scholar]
  60. BurbankM. GautierF. HewittN. DetroyerA. Guillet-RevolL. CarronL. WildemannT. BringelT. RiuA. Noel-VoisinA. De CrozeN. LéonardM. OuédraogoG. Advancing the use of new approach methodologies for assessing teratogenicity: Building a tiered approach.Reprod. Toxicol.202312010845410.1016/j.reprotox.2023.10845437543254
    [Google Scholar]
  61. NamdariR. JonesK. ChuangS.S. Van CruchtenS. DincerZ. DownesN. MikkelsenL.F. HardingJ. JäckelS. JacobsenB. Kinyamu-AkundaJ. LortieA. MhedhbiS. MohrS. SchmittM.W. PriorH. Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice.Regul. Toxicol. Pharmacol.202112610502910.1016/j.yrtph.2021.10502934455009
    [Google Scholar]
  62. BermanC.L. AntonssonM. BatkaiS. BosgraS. ChopdaG.R. DriessenW. OSWG recommended approaches to the nonclinical pharmacokinetic (absorption, distribution, metabolism, and excretion) characterization of therapeutic oligonucleotides.Nucleic Acid Ther.202310.1089/nat.2023.0011
    [Google Scholar]
  63. GabrielssonJ. HjorthS. Turn on, tune in, turnover! Target biology impacts in vivo potency, efficacy, and clearance.Pharmacol. Rev.202375341646210.1124/pharmrev.121.00052436627211
    [Google Scholar]
  64. HauglandB.T. RastrickS.P.S. AgnaltA.L. HusaV. KuttiT. SamuelsenO.B. Mortality and reduced photosynthetic performance in sugar kelp Saccharina latissima caused by the salmon-lice therapeutant hydrogen peroxide.Aquacult. Environ. Interact.20191111710.3354/aei00292
    [Google Scholar]
  65. PapachristosA. PatelJ. VasileiouM. PatrinosG.P. Dose optimization in oncology drug development: The emerging role of pharmacogenomics, pharmacokinetics, and pharmacodynamics.Cancers20231512323310.3390/cancers1512323337370844
    [Google Scholar]
  66. AudehmS. GlaserM. PecoraroM. BräunleinE. MallS. KlarR. EffenbergerM. AlbersJ. BianchiH.O. PeperJ. YusufiN. BuschD.H. StevanovićS. MannM. AntesI. KrackhardtA.M. Key features relevant to select antigens and TCR from the MHC-mismatched repertoire to treat cancer.Front. Immunol.201910148510.3389/fimmu.2019.0148531316521
    [Google Scholar]
  67. LangmanR. The immune system.Elsevier2014
    [Google Scholar]
  68. van der HeijdenJ.E.M. FreriksenJ.J.M. de Hoop-SommenM.A. GreupinkR. Physiologically-based pharmacokinetic modeling for drug dosing in pediatric patients: A tutorial for a pragmatic approach in clinical care.Clin. Pharmacol. Ther.2023114596097110.1002/cpt.3023
    [Google Scholar]
  69. MajumderD. Mathematical oncology to cancer systems medicine: translation from academic pursuit to individualized therapy with MORA.Curr. Cancer Ther. Rev.2023191375710.2174/1573394718666220517112049
    [Google Scholar]
  70. KelseyJ.R. SeidelS. Propylene oxide derived glycol ethers: A review of the alkyl glycol ethers potential to cause endocrine disruption.Regul. Toxicol. Pharmacol.202310544210.1016/j.yrtph.2023.10544237394030
    [Google Scholar]
  71. CardenasJ.L.C. An Engineered Paper-Based 3D Co-Culture Model of Pancreatic Cancer as a Platform for Systems Tissue Engineering.CanadaUniversity of Toronto2023
    [Google Scholar]
  72. IavicoliI. FontanaL. SantoconoC. GuarinoD. LaudieroM. CalabreseE.J. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis.Sci. Total Environ.202390216603010.1016/j.scitotenv.2023.16603037544458
    [Google Scholar]
  73. RizviS.H. AbbasM. From data to insight, enhancing structural health monitoring using physics-informed machine learning and advanced data collection methods.Eng Res Express2023503200310.1088/2631‑8695/acefae
    [Google Scholar]
  74. AssaneI.M. DamacenoM.A. CampanharoS.C. da SilvaA.F.B. de SousaE.L. do Vale OliveiraA. de Abreu Reis FerreiraD. KotzentS. de JesusR.B. da PazD.J.F. PaschoalJ.A.R. PilarskiF. Thiamphenicol and florfenicol combination in Nile tilapia: Simultaneous detection and quantification in plasma and muscle plus skin samples, and pharmacokinetics following single oral administration.Aquaculture202357773997810.1016/j.aquaculture.2023.739978
    [Google Scholar]
  75. PoźniakB. TikhomirovM. Motykiewicz-PersK. BobrekK. ŚwitałaM. Allometric optimization of enrofloxacin dosage in growing male turkeys: Empirical evidence for improved internal exposure.Antibiotics202091292510.3390/antibiotics912092533353249
    [Google Scholar]
  76. ChoiG.W. LeeY.B. ChoH.Y. Interpretation of non-clinical data for prediction of human pharmacokinetic parameters: In vitro-in vivo extrapolation and allometric scaling.Pharmaceutics201911416810.3390/pharmaceutics1104016830959827
    [Google Scholar]
  77. BordonK.C.F. ColognaC.T. Fornari-BaldoE.C. Pinheiro-JúniorE.L. CerniF.A. AmorimF.G. AnjoletteF.A.P. CordeiroF.A. WiezelG.A. CardosoI.A. FerreiraI.G. OliveiraI.S. Boldrini-FrançaJ. PuccaM.B. BaldoM.A. ArantesE.C. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery.Front. Pharmacol.202011113210.3389/fphar.2020.0113232848750
    [Google Scholar]
  78. RosensteinNA JohnsonJA KirchoferKS Ropinirole has similar efficacy to apomorphine for induction of emesis and removal of foreign and toxic gastric material in dogsJ Am Vet Med Assoc2023261811401146
    [Google Scholar]
  79. Al-WorafiY.M. Technology for pharmaceutical industry sector safety.Technology for Drug Safety: Current Status and Future Developments.Springer202311512710.1007/978‑3‑031‑34268‑4_11
    [Google Scholar]
  80. GogiaP. AshrafH. BhasinS. XuY. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence.Cancers20231515388610.3390/cancers1515388637568702
    [Google Scholar]
  81. WangR. YangX. WangT. KouR. LiuP. HuangY. ChenC. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells.Ecotoxicol. Environ. Saf.202326311523710.1016/j.ecoenv.2023.11523737451096
    [Google Scholar]
  82. NabityM. HokampJ. Urinary biomarkers of kidney disease in dogs and cats.Vet. Clin. North Am. Small Anim. Pract.2023531537110.1016/j.cvsm.2022.07.00636270837
    [Google Scholar]
  83. Ortiz-CasaslB. CortinaG.C.E. Basics of organ-on-a-chip technology.Nanochemistry.CRC Press202327931210.1201/9781003081944‑12
    [Google Scholar]
  84. MesselmaniT. MorisseauL. SakaiY. LegallaisC. Le GoffA. LeclercE. JellaliR. Liver organ-on-chip models for toxicity studies and risk assessment.Lab Chip202222132423245010.1039/D2LC00307D35694831
    [Google Scholar]
  85. Lizano-FallasV. Carrasco del AmorA. CristobalS. Prediction of molecular initiating events for adverse outcome pathways using high-throughput identification of chemical targets.Toxics202311218910.3390/toxics1102018936851063
    [Google Scholar]
  86. TabernillaA. dos Santos RodriguesB. PietersA. CaufriezA. LeroyK. Van CampenhoutR. CooremanA. GomesA.R. ArnesdotterE. GijbelsE. VinkenM. In vitro liver toxicity testing of chemicals: A pragmatic approach.Int. J. Mol. Sci.2021229503810.3390/ijms2209503834068678
    [Google Scholar]
  87. GengY. Arroyave-OspinaJ.C. Buist-HomanM. PlantingaJ. OlingaP. ReijngoudD.J. Van VilsterenF.G.I. BlokzijlH. KampsJ.A.A.M. MoshageH. Differential effects of oleate on vascular endothelial and liver sinusoidal endothelial cells reveal its toxic features in vitro.J. Nutr. Biochem.202311410925510.1016/j.jnutbio.2022.10925536623779
    [Google Scholar]
  88. FariaJ. AhmedS. GerritsenK.G.F. MihailaS.M. MasereeuwR. Kidney-based in vitro models for drug-induced toxicity testing.Arch. Toxicol.201993123397341810.1007/s00204‑019‑02598‑031664498
    [Google Scholar]
  89. CaiL. KeM. WangH. WuW. LinR. HuangP. LinC. Physiologically based pharmacokinetic model combined with reverse dose method to study the nephrotoxic tolerance dose of tacrolimus.Arch. Toxicol.202397102659267310.1007/s00204‑023‑03576‑337572130
    [Google Scholar]
  90. DasS. Extrapolation of in vitro results to predict human toxicity. In vitro Toxicology.Elsevier201812714210.1016/B978‑0‑12‑804667‑8.00007‑9
    [Google Scholar]
  91. BarileF.A. Introduction to in vitro cytotoxicology: Mechanisms and methods.CRC Press201910.1201/9780429275487
    [Google Scholar]
  92. TiceR.R. AgurellE. AndersonD. BurlinsonB. HartmannA. KobayashiH. MiyamaeY. RojasE. RyuJ.C. SasakiY.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing.Environ. Mol. Mutagen.200035320622110.1002/(SICI)1098‑2280(2000)35:3<206::AID‑EM8>3.0.CO;2‑J10737956
    [Google Scholar]
  93. EteläinenT. The effect of prolyl oligopeptidase inhibition on protein aggregation and oxidative stress in the models of neurodegenerative diseases.Diss Sch Dr Ad Sanit Investig Univ Hels2023
    [Google Scholar]
  94. O’ConnellC.D. DuchiS. OnofrilloC. Caballero-AguilarL.M. TrengoveA. DoyleS.E. ZywickiW.J. PirogovaE. Di BellaC. Within or without you? A perspective comparing in situ and ex situ tissue engineering strategies for articular cartilage repair.Adv. Healthc. Mater.20221124220130510.1002/adhm.20220130536541723
    [Google Scholar]
  95. KoseT. Moreno-FernandezJ. Vera-AvilesM. SharpP.A. Latunde-DadaG.O. Ferulic acid protects HepG2 cells and mouse liver from iron-induced damage.Biochem. Biophys. Rep.20233510152110.1016/j.bbrep.2023.10152137560439
    [Google Scholar]
  96. De HoonI. BoukherroubR. De SmedtS.C. SzuneritsS. SauvageF. In vitro and ex vivo models for assessing drug permeation across the cornea.Mol Pharm20232073298331910.1021/acs.molpharmaceut.3c00195
    [Google Scholar]
  97. ZhengK. ZengZ. TianQ. HuangJ. ZhongQ. HuoX. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children.Sci. Total Environ.202386816169110.1016/j.scitotenv.2023.16169136669659
    [Google Scholar]
  98. TanFHP TingACJ NajimudinN WatanabeN ShamsuddinS ZainuddinA 3-[[(3S)-1, 2, 3, 4-Tetrahydroisoquinoline-3-carbonyl] amino] propanoic acid (THICAPA) is protective against Aβ42-induced toxicity in vitro and in an Alzheimer’s disease drosophila.J. Gerontol. Ser A.20237811194452
    [Google Scholar]
  99. HuangY. ShanY. ZhangW. LeeA.M. LiF. StrangerB.E. HuangR.S. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes.Nat. Commun.202314117510.1038/s41467‑023‑35808‑636635277
    [Google Scholar]
  100. PrasadT. IyerS. ChatterjeeS. KumarM. In vivo models to study neurogenesis and associated neurodevelopmental disorders-Microcephaly and autism spectrum disorder.WIREs Mech. Dis.2023154e160310.1002/wsbm.160336754084
    [Google Scholar]
  101. BengalliR.D. ZerbiG. LucottiA. CatelaniT. ManteccaP. Carbon nanotubes: Structural defects as stressors inducing lung cell toxicity.Chem. Biol. Interact.202338211061310.1016/j.cbi.2023.11061337353135
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638302778240417045451
Loading
/content/journals/cddt/10.2174/0115701638302778240417045451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test