Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

In underdeveloped nations, tuberculosis (TB) continues to be a major source of morbidity and mortality. The currently available vaccine against tuberculosis in endemic areas is mainly ineffective, which triggers the need for a clinically effective vaccine against tuberculosis. In the present review, we emphasized the impact of genetic variations in the BCG strains, which influence the efficacy of BCG vaccines. We also discussed the current status of BCG vaccines and their potential mechanisms on the modulation of B cells and, thereby, humoral immunity, which trigger immune responses against various intracellular pathogens. Further, we also elaborated upon the pre-clinical and clinical studies demonstrating the efficacy and safety of the vaccines. Moreover, we also presented the putative novel targets such as polysaccharide-induced antibodies for the protection against , PGRS domain as an important target for Humoral immunity, HLA-E pathway-Target strategy for new TB vaccine, Coronin-1a - Novel player for Mycobacterial survival, IRGM, IFN-I3, an autophagy inducer with Irgm1 serving as a core part in the Tuberculosis vaccine development.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638285518240601075811
2024-06-07
2025-09-04
Loading full text...

Full text loading...

References

  1. KochiA. The global tuberculosis situation and the new control strategy of the World Health Organization.Tubercle.199172116
    [Google Scholar]
  2. World Health OrganizationTuberculosis.Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis 2023
  3. McShaneH. PathanA.A. SanderC.R. GoonetillekeN.P. FletcherH.A. HillA.V.S. Boosting BCG with MVA85A: The first candidate subunit vaccine for tuberculosis in clinical trials.Tuberculosis2005851-2475210.1016/j.tube.2004.09.01515687027
    [Google Scholar]
  4. ColditzG.A. BrewerT.F. BerkeyC.S. WilsonM.E. BurdickE. FinebergH.V.M.F. MostellerF. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature.JAMA1994271969870210.1001/jama.1994.035103300760388309034
    [Google Scholar]
  5. RodriguesL.C. DiwanV.K. WheelerJ.G. Protective effect of BCG against tuberculous meningitis and miliary tuberculosis: A meta-analysis.Int. J. Epidemiol.19932261154115810.1093/ije/22.6.11548144299
    [Google Scholar]
  6. MangtaniP. AbubakarI. AritiC. BeynonR. PimpinL. FineP.E.M. RodriguesL.C. SmithP.G. LipmanM. WhitingP.F. SterneJ.A. Protection by BCG vaccine against tuberculosis: A systematic review of randomized controlled trials.Clin. Infect. Dis.201458447048010.1093/cid/cit79024336911
    [Google Scholar]
  7. AbdallahA.M. BehrM.A. Evolution and strain variation in BCG.Adv. Exp. Med. Biol.2017101915516910.1007/978‑3‑319‑64371‑7_829116634
    [Google Scholar]
  8. NakashimadaY.MA UnzuetaA GonzálezB.G.L BCG: A vaccine with multiple faces.Hum Vaccin Immunother.20201681841185010.1080/21645515.2019.1706930
    [Google Scholar]
  9. HatherillM. GeldenhuysH. PienaarB. SulimanS. ChhengP. DebanneS.M. HoftD.F. BoomW.H. HanekomW.A. JohnsonJ.L. Safety and reactogenicity of BCG revaccination with isoniazid pretreatment in TST positive adults.Vaccine201432313982398810.1016/j.vaccine.2014.04.08424814553
    [Google Scholar]
  10. SulimanS. GeldenhuysH. JohnsonJ.L. HughesJ.E. SmitE. MurphyM. ToefyA. LerumoL. HopleyC. PienaarB. ChhengP. NemesE. HoftD.F. HanekomW.A. BoomW.H. HatherillM. ScribaT.J. Bacillus calmette–guérin (BCG) revaccination of adults with latent Mycobacterium tuberculosis infection induces long-lived BCG-reactive NK cell responses.J. Immunol.201619741100111010.4049/jimmunol.150199627412415
    [Google Scholar]
  11. DyeC. Making wider use of the world’s most widely used vaccine: Bacille Calmette–Guérin revaccination reconsidered.J. R. Soc. Interface201310872013036510.1098/rsif.2013.036523904584
    [Google Scholar]
  12. NemesE. GeldenhuysH. RozotV. RutkowskiK.T. RatangeeF. BilekN. MabweS. MakhetheL. ErasmusM. ToefyA. MulengaH. HanekomW.A. SelfS.G. BekkerL.G. RyallR. GurunathanS. DiazGranadosC.A. AndersenP. KromannI. EvansT. EllisR.D. LandryB. HokeyD.A. HopkinsR. GinsbergA.M. ScribaT.J. HatherillM. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination.N. Engl. J. Med.2018379213814910.1056/NEJMoa171402129996082
    [Google Scholar]
  13. World Health Organization BCG vaccine: WHO position paper, February 2018 – Recommendations.Vaccine201836243408341010.1016/j.vaccine.2018.03.00929609965
    [Google Scholar]
  14. HusainA.A. WarkeS.R. KaloreyD.R. DaginawalaH.F. TaoriG.M. KashyapR.S. Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: A pilot study.Clin. Exp. Vaccine Res.201541838710.7774/cevr.2015.4.1.8325649326
    [Google Scholar]
  15. MartínC. MarinovaD. AguilóN. AsensioG.J. MTBVAC, a live TB Vaccine poised to initiate efficacy trials 100 years after BCG.Vaccine202139507277728510.1016/j.vaccine.2021.06.04934238608
    [Google Scholar]
  16. LucaS. History of BCG vaccine.Maedica2013853
    [Google Scholar]
  17. Bacillary infection and tuberculosis in humans and animals.JAMA192380171265126510.1001/jama.1923.02640440079032
    [Google Scholar]
  18. Tuberculosis infection immunization trial - Google Scholar
    [Google Scholar]
  19. GreenwoodM. Professor calmette’s statistical study of B.C.G. vaccination.BMJ19281351479379510.1136/bmj.1.3514.79320773879
    [Google Scholar]
  20. DonaldP. KaufmannS. TheeS. MandalakasA.M. LangeC. Pathogenesis of tuberculosis: The 1930 Lübeck disaster revisited.Eur. Respir. Rev.20223116422004610.1183/16000617.0046‑202235768133
    [Google Scholar]
  21. HartP.D. SutherlandI. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life.BMJ19772608229329510.1136/bmj.2.6082.293326347
    [Google Scholar]
  22. ComstockG.W. PalmerC.E. Long-term results of BCG vaccination in the southern United States.Am. Rev. Respir. Dis.19669321711835908081
    [Google Scholar]
  23. BehrM.A. BCG - different strains, different vaccines?Lancet Infect. Dis.200222869210.1016/S1473‑3099(02)00182‑211901655
    [Google Scholar]
  24. ToidaI. Development of the Mycobacterium bovis BCG vaccine: Review of the historical and biochemical evidence for a genealogical tree.Tuber. Lung Dis.200080629111162770
    [Google Scholar]
  25. LewisK.N. LiaoR. GuinnK.M. HickeyM.J. SmithS. BehrM.A. ShermanD.R. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation.J. Infect. Dis.2003187111712310.1086/34586212508154
    [Google Scholar]
  26. BehrM.A. SchroederB.G. BrinkmanJ.N. SlaydenR.A. BarryC.E.III A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927.J. Bacteriol.2000182123394339910.1128/JB.182.12.3394‑3399.200010852869
    [Google Scholar]
  27. KrysztopaÿgrzybowskaK LutyÿskaA. Microevolution of BCG substrains.Postepy Hig Med Dosw20167012591266
    [Google Scholar]
  28. KaufmannS.H.E. BaumannS. EddineN.A. Exploiting immunology and molecular genetics for rational vaccine design against tuberculosis.Int. J. Tuberc. Lung Dis.200610101068107917044198
    [Google Scholar]
  29. MolivaJ.I. TurnerJ. TorrellesJ.B. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: Why does BCG fail to protect against tuberculosis?Vaccine201533395035504110.1016/j.vaccine.2015.08.03326319069
    [Google Scholar]
  30. HorwitzM.A. HarthG. DillonB.J. GalićM.S. Recombinant bacillus Calmette–Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model.Proc. Natl. Acad. Sci.20009725138531385810.1073/pnas.25048039711095745
    [Google Scholar]
  31. GillisT.P. TulliusM.V. HorwitzM.A. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.Infect. Immun.20148293900390910.1128/IAI.01499‑1325001602
    [Google Scholar]
  32. PrendergastK.A. CounoupasC. LeottaL. EtoC. BitterW. WinterN. TriccasJ.A. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.Vaccine201634232608261510.1016/j.vaccine.2016.03.08927060378
    [Google Scholar]
  33. ArmitigeL.Y. JagannathC. WangerA.R. NorrisS.J. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on growth in culture and in macrophages.Infect. Immun.200068276777810.1128/IAI.68.2.767‑778.200010639445
    [Google Scholar]
  34. RocheC.M. SmithA. LindseyD.R. MeherA. SchlunsK. AroraA. ArmitigeL.Y. JagannathC. The ΔfbpA attenuated candidate vaccine from Mycobacterium tuberculosis, H37Rv primes for a stronger T-bet dependent Th1 immunity in mice.Tuberculosis201191S1S96S10410.1016/j.tube.2011.10.01822082615
    [Google Scholar]
  35. BroschR. GordonS.V. PymA. EiglmeierK. GarnierT. ColeS.T. Comparative genomics of the mycobacteria.Int. J. Med. Microbiol.2000290214315210.1016/S1438‑4221(00)80083‑111045919
    [Google Scholar]
  36. WangJ. QieY. ZhuB. ZhangH. XuY. WangQ. ChenJ. LiuW. WangH. Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice.Med. Microbiol. Immunol.2009198151110.1007/s00430‑008‑0098‑x18491134
    [Google Scholar]
  37. MahairasG.G. SaboP.J. HickeyM.J. SinghD.C. StoverC.K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis.J. Bacteriol.199617851274128210.1128/jb.178.5.1274‑1282.19968631702
    [Google Scholar]
  38. RenshawP.S. PanagiotidouP. WhelanA. GordonS.V. HewinsonR.G. WilliamsonR.A. CarrM.D. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6·CFP-10 complex.J. Biol. Chem.200227724215982160310.1074/jbc.M20162520011940590
    [Google Scholar]
  39. van PittiusG.N.C. GamieldienJ. HideW. BrownG.D. SiezenR.J. BeyersA.D. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria.Genome Biol.2001210research0044.110.1186/gb‑2001‑2‑10‑research004411597336
    [Google Scholar]
  40. WatersW.R. PalmerM.V. NonneckeB.J. ThackerT.C. SchererC.F.C. EstesD.M. HewinsonR.G. VordermeierH.M. BarnesS.W. FedereG.C. WalkerJ.R. GlynneR.J. HsuT. WeinrickB. BiermannK. LarsenM.H. JacobsW.R.Jr Efficacy and immunogenicity of Mycobacterium bovis ΔRD1 against aerosol M. bovis infection in neonatal calves.Vaccine20092781201120910.1016/j.vaccine.2008.12.01819135497
    [Google Scholar]
  41. BilleskovR. LundbergV.C. AndersenP. DietrichJ. Induction of CD8 T cells against a novel epitope in TB10.4: Correlation with mycobacterial virulence and the presence of a functional region of difference-1.J. Immunol.200717963973398110.4049/jimmunol.179.6.397317785835
    [Google Scholar]
  42. PymA.S. BrodinP. BroschR. HuerreM. ColeS.T. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti.Mol. Microbiol.200246370971710.1046/j.1365‑2958.2002.03237.x12410828
    [Google Scholar]
  43. VossG. CasimiroD. NeyrollesO. WilliamsA. KaufmannS.H.E. McShaneH. HatherillM. FletcherH.A. Progress and challenges in TB vaccine development.F1000 Res.2018719910.12688/f1000research.13588.1
    [Google Scholar]
  44. RowlandR McShaneH Tuberculosis vaccines in clinical trials.Expert Rev Vaccines.2014105645658
    [Google Scholar]
  45. MacleanE. MckennaL. RuhwaldM. Pipeline ReportTuberc Diagnostics2021142
    [Google Scholar]
  46. Study to Check the Efficacy and Safety of Recombinant BCG Vaccine in Prevention of TB Recurrence.Available from: https://clinicaltrials.gov/study/NCT03152903
    [Google Scholar]
  47. ScribaT.J. KaufmannS.H.E. LambertH.P. SanicasM. MartinC. NeyrollesO. Vaccination against tuberculosis with whole-cell mycobacterial vaccines.J. Infect. Dis.2016214565966410.1093/infdis/jiw22827247343
    [Google Scholar]
  48. Evaluation of Efficacy and Safety of VPM1002 in Comparison to BCG in Prevention of Tb Infection in Infants.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01479972
  49. Study to Check the Efficacy and Safety of Recombinant BCG Vaccine in Prevention of TB Recurrence - Tabular View - ClinicalTrials.govAvailable from: https://classic.clinicaltrials.gov/ct2/show/NCT03152903
  50. ShriverEK CranmerLM SpiegelH Impact 2035/HVTN 604 phase I/II randomized, placebo-controlled study of the safety and immunogenicity of VPM1002 vaccination or BCG revaccination against tuberculosis in pre-adolescents living with and without HIV in South Africa.Available from: https://www.impaactnetwork.org/studies/impaact2035hvtn604
  51. Safety and immunogenicity of a Mycobacterium tuberculosis vaccine M72/AS01E in participants with well-controlled HIV.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04556981
  52. Efficacy, Safety and Immunogenicity Evaluation of MTBVAC in Newborns in Sub-Saharan Africa.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04975178
  53. Dose-Defining Safety and Immunogenicity Study of MTBVAC in South African Neonates.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03536117
  54. MTBVAC Study in Adults With and Without Latent Tuberculosis Infection in South Africa.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02933281
  55. Study of the Safety and Efficacy of the Subunit Recombinant Tuberculosis Vaccine GamTBvac.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04975737
  56. Phase II slinical srial of safety and immunogenicity of Recombinant Subunit Tuberculosis Vaccine GamTBvac.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03878004
  57. DAR-901 TB booster vaccine to prevent TB in adolescents.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02712424
  58. MunseriP. SaidJ. AmourM. MagoheA. MateeM. ReesC.A. MackenzieT. TvarohaS. KelloggB.C. MaroI. AlterW.W. AdamsL.V. HorsburghC.R. NakamuraK. ArbeitR.D. PallangyoK. von ReynC.F. DAR-901 vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b trial.Vaccine202038467239724510.1016/j.vaccine.2020.09.05533004239
    [Google Scholar]
  59. Study to evaluate H56:IC31 in preventing rate of TB recurrence.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03512249
  60. Therapeutic vaccination and immune modulation - new treatment strategies for the MDR tuberculosis pandemic.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02503839
  61. JenumS. TonbyK. RueeggC.S. RühwaldM. KristiansenM.P. BangP. OlsenI.C. SellægK. RøstadK. MustafaT. TaskénK. KvaleD. MortensenR. RiiseD.A.M. A Phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients.Nat. Commun.2021121677410.1038/s41467‑021‑27029‑634811370
    [Google Scholar]
  62. Clinical Trial to investigate therapeutic vaccine (RUTI) against tuberculosis (TB).Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04919239
  63. ChAdOx1 85A aerosol versus intramuscular vaccination in healthy adults (TB039).Available from: https://classic.clinicaltrials.gov/ct2/show/NCT01829490
  64. DabijaC.R GrigorescuC PavelCA Tuberculosis and COVID-19: lessons from the Past viral outbreaks and possible future outcomes.Can Respir J20202020140105310.1155/2020/1401053
    [Google Scholar]
  65. EMaBS TB Vaccine Study.Available from: https://classic.clinicaltrials.gov/ct2/show/results/NCT03681860
  66. Aerosol BCG challenge trial in healthy UK adults.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02709278
  67. Investigating Immune Responses to Aerosol BCG Challenge in Healthy UK Adults.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03912207
  68. Phase 1 clinical trial of the safety and immunogenicity of an adenovirus-based TB vaccine administered by aerosol.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02337270
  69. JeyanathanM. FritzD.K. AfkhamiS. AguirreE. HowieK.J. ZganiaczA. GhevaD.A. ThompsonM.R. SilverR.F. CusackR.P. LichtyB.D. O’ByrneP.M. KolbM. MedinaM.F.C. DolovichM.B. SatiaI. GauvreauG.M. XingZ. SmaillF. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans.JCI Insight202273e15565510.1172/jci.insight.15565534990408
    [Google Scholar]
  70. A phase Ib Study of the recombinant Mycobacterium tuberculosis vaccine freeze-dried (AEC/BC02).Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04239313
  71. PulendranB. AhmedR. Immunological mechanisms of vaccination.Nat. Immunol.201112650951710.1038/ni.203921739679
    [Google Scholar]
  72. Reactogenicity, safety and immunogenicity of a TB/FLU-01L tuberculosis vaccine.Available from: https://classic.clinicaltrials.gov/ct2/show/NCT03017378
  73. CollinsH.L. KaufmannS.H.E. Prospects for better tuberculosis vaccines.Lancet Infect. Dis.200111212810.1016/S1473‑3099(01)00018‑411871406
    [Google Scholar]
  74. RobbinsJ.B. SchneersonR. SzuS.C. Hypothesis: How licensed vaccines confer protective immunity.Adv. Exp. Med. Biol.199639716918210.1007/978‑1‑4899‑1382‑1_228718596
    [Google Scholar]
  75. FreedmanG.A. The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: Advances toward a novel vaccine strategy.Tuberculosis2006863-419119710.1016/j.tube.2006.01.00816584923
    [Google Scholar]
  76. KozakiewiczL. PhuahJ. FlynnJ. ChanJ. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.Adv. Exp. Med. Biol.201378322525010.1007/978‑1‑4614‑6111‑1_1223468112
    [Google Scholar]
  77. SolimanC. PierG.B. RamslandP.A. Antibody recognition of bacterial surfaces and extracellular polysaccharides.Curr. Opin. Struct. Biol.202062485510.1016/j.sbi.2019.12.00131874385
    [Google Scholar]
  78. SantanaV.F. BalbinY.V. CalderónJ.C. Polysaccharide-based Vaccines.Glycoscience200826992723
    [Google Scholar]
  79. FreedmanG.A. CasadevallA. DaiZ. JacobsW.R.Jr LiA. MorrisS.L. NavoaJ.A.D. PiperdiS. RobbinsJ.B. SchneersonR. SchwebachJ.R. ShapiroM. Antigenic evidence of prevalence and diversity of Mycobacterium tuberculosis arabinomannan.J. Clin. Microbiol.20044273225323110.1128/JCM.42.7.3225‑3231.200415243086
    [Google Scholar]
  80. CostelloA.M. KumarA. NarayanV. AkbarM.S. AhmedS. ZeidA.C. RookG.A. StanfordJ. MorenoC. Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis?Trans. R. Soc. Trop. Med. Hyg.199286668669210.1016/0035‑9203(92)90192‑F1287946
    [Google Scholar]
  81. SeibertF.B. The interplay of an immune substance with tuberculopolysaccharide and its antibody in tuberculosis.J. Infect. Dis.19581031526010.1093/infdis/103.1.5213575861
    [Google Scholar]
  82. DeloguG. PuscedduC. BuaA. FaddaG. BrennanM.J. ZanettiS. Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure.Mol. Microbiol.200452372573310.1111/j.1365‑2958.2004.04007.x15101979
    [Google Scholar]
  83. BasuS. PathakS.K. BanerjeeA. PathakS. BhattacharyyaA. YangZ. TalaricoS. KunduM. BasuJ. Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-α.J. Biol. Chem.200728221039105010.1074/jbc.M60437920017095513
    [Google Scholar]
  84. MinervaM. De MaioF. CamassaS. BattahB. IvanaP. ManganelliR. SanguinettiM. SaliM. DeloguG. Evaluation of PE_PGRS33 as a potential surface target for humoral responses against Mycobacterium tuberculosis.Pathog. Dis.2017758ftx10010.1093/femspd/ftx10028911035
    [Google Scholar]
  85. AviñaG.P. VelazquezC. EspitiaC. VillaL.F. EscobarG.A. A PE_PGRS33 protein of Mycobacterium tuberculosis: An ideal target for future tuberculosis vaccine design.Expert Rev. Vaccines201514569971110.1586/14760584.2015.101599525693607
    [Google Scholar]
  86. ChaitraM.G. ShailaM.S. NayakR. Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE_PGRS 33 protein of Mycobacterium tuberculosis.J. Med. Microbiol.200756446647410.1099/jmm.0.46928‑017374885
    [Google Scholar]
  87. CohenI. ParadaC. GíoA.E. EspitiaC. The PGRS domain from PE_PGRS33 of Mycobacterium tuberculosis is target of humoral immune response in mice and humans.Front. Immunol.2014523610.3389/fimmu.2014.0023624904584
    [Google Scholar]
  88. KramarskaE. SquegliaF. De MaioF. DeloguG. BerisioR. PE_PGRS33, an important virulence factor of Mycobacterium tuberculosis and potential target of host humoral immune response.Cells202110116110.3390/cells1001016133467487
    [Google Scholar]
  89. JoostenS.A. van MeijgaardenK.E. van WeerenP.C. KaziF. GelukA. SavageN.D.L. DrijfhoutJ.W. FlowerD.R. HanekomW.A. KleinM.R. OttenhoffT.H.M. Mycobacterium tuberculosis peptides presented by HLA-E molecules are targets for human CD8 T-cells with cytotoxic as well as regulatory activity.PLoS Pathog.201062e100078210.1371/journal.ppat.100078220195504
    [Google Scholar]
  90. KaufmannS.H.E. FortuneS. PepponiI. RuhwaldM. SchragerL.K. OttenhoffT.H.M. TB biomarkers, TB correlates and human challenge models: New tools for improving assessment of new TB vaccines.Tuberculosis201699S1S8S1110.1016/j.tube.2016.05.01027402312
    [Google Scholar]
  91. PietersJ. Coronin 1 in innate immunity.Subcell. Biochem.20084811612310.1007/978‑0‑387‑09595‑0_1118925376
    [Google Scholar]
  92. SetoS TsujimuraK HoriiT Mycobacterial survival in alveolar macrophages as a result of coronin-1a inhibition of autophagosome formation.Role Gene. Dis.2013216117010.1016/B978‑0‑12‑405877‑4.00010‑X
    [Google Scholar]
  93. VieiraO.V. BotelhoR.J. GrinsteinS. Phagosome maturation: aging gracefully.Biochem. J.2002366368970410.1042/bj2002069112061891
    [Google Scholar]
  94. VergneI. ChuaJ. SinghS.B. DereticV. Cell biology of Mycobacterium tuberculosis phagosome.Annu. Rev. Cell Dev. Biol.200420136739410.1146/annurev.cellbio.20.010403.11401515473845
    [Google Scholar]
  95. FrattiR.A. ChuaJ. VergneI. DereticV. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest.Proc. Natl. Acad. Sci.200310095437544210.1073/pnas.073761310012702770
    [Google Scholar]
  96. FrattiR.A. BackerJ.M. GruenbergJ. CorveraS. DereticV. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest.J. Cell Biol.2001154363164410.1083/jcb.20010604911489920
    [Google Scholar]
  97. de ArmentiaMML AmayaC ColomboMI Rab GTPases and the autophagy pathway: bacterial targets for a suitable biogenesis and trafficking of their own vacuoles.Cells2016511
    [Google Scholar]
  98. JayachandranR. GatfieldJ. MassnerJ. AlbrechtI. ZanolariB. PietersJ. RNA interference in J774 macrophages reveals a role for coronin 1 in mycobacterial trafficking but not in actin-dependent processes.Mol. Biol. Cell20081931241125110.1091/mbc.e07‑07‑064018162581
    [Google Scholar]
  99. SinhaS. GuptaG. BiswasS. GuptaK. SinghP.P. JainR. SharmaS.K. DasB. Coronin-1 levels in patients with tuberculosis.Indian J. Med. Res.2021154686687010.4103/ijmr.IJMR_4343_2035662092
    [Google Scholar]
  100. GatfieldJ. AlbrechtI. ZanolariB. SteinmetzM.O. PietersJ. Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules.Mol. Biol. Cell20051662786279810.1091/mbc.e05‑01‑004215800061
    [Google Scholar]
  101. JayachandranR. SundaramurthyV. CombaluzierB. MuellerP. KorfH. HuygenK. MiyazakiT. AlbrechtI. MassnerJ. PietersJ. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin.Cell20071301375010.1016/j.cell.2007.04.04317632055
    [Google Scholar]
  102. FengC.G. ZhengL. JankovicD. BáficaA. CannonsJ.L. WatfordW.T. ChaussabelD. HienyS. CasparP. SchwartzbergP.L. LenardoM.J. SherA. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-γ-induced cell death.Nat. Immunol.20089111279128710.1038/ni.165318806793
    [Google Scholar]
  103. SinghSB DavisAS TaylorGA Human IRGM induces autophagy to eliminate intracellular mycobacteria.Science200631314381441
    [Google Scholar]
  104. TaylorG.A. FengC.G. SherA. p47 GTPases: Regulators of immunity to intracellular pathogens.Nat. Rev. Immunol.20044210010910.1038/nri127015040583
    [Google Scholar]
  105. MacMickingJ.D. Immune control of phagosomal bacteria by p47 GTPases.Curr. Opin. Microbiol.200581748210.1016/j.mib.2004.12.01215694860
    [Google Scholar]
  106. GutierrezM.G. MasterS.S. SinghS.B. TaylorG.A. ColomboM.I. DereticV. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages.Cell2004119675376610.1016/j.cell.2004.11.03815607973
    [Google Scholar]
  107. MacMickingJ TaylorG MckinneyJ Immune control of tuberculosis by IFN-gamma-inducible LRG-47.Science2003302654699
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638285518240601075811
Loading
/content/journals/cddt/10.2174/0115701638285518240601075811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test