Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Liver disease, responsible for two million annual deaths, causes Chronic Liver Disease (CLD) and cirrhosis, causing roughly a million deaths yearly. Treatment options for liver injury induced by hepatotoxicity vary, including medication (N-acetylcysteine, corticosteroids, and ursodeoxycholic acid), lifestyle changes, and sometimes liver transplant. However, effectiveness varies, and some treatments carry risks and side effects, highlighting the need for improved therapeutic approaches. (MK) is known for its hepatoprotective, antioxidant, anti-inflammatory, anti-microbial, nephroprotective, hepatoprotective, gastroprotective, cardioprotective, neuroprotective, wound-healing, anti-cancerous and immunomodulatory effects, . This review highlights the effectiveness of MK against liver damage induced by heavy metals, drug abuse, xenobiotics, . A comprehensive search across multiple databases like PubMed, Google Scholar, and others for articles on various hepatotoxicants and hepatoprotective activity of MK was conducted. The researchers applied specific search terms and limits, resulting in 149 eligible articles for final analysis, meeting predetermined inclusion criteria and excluding irrelevant studies. According to the available literature, the phytochemical components of MK, such as flavonoids, tannins, and alkaloids present in various extracts, play a crucial role in reversing the hepatotoxic effects by modifying oxidative and ER stresses, re-establishing the hepatic biochemical markers and enzymes involved in metabolism denoting ameliorative activity, and controlling the expression of pro-inflammatory cytokines. To conclude, this review highlights that MK has great potential as a natural hepatoprotective agent, providing a versatile defense against a range of injuries caused by heavy metals, xenobiotics, and common hepatotoxic agents.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638310869240628060001
2024-07-08
2025-08-13
Loading full text...

Full text loading...

References

  1. SinghD. ChoW.C. UpadhyayG. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview.Front. Physiol.2016636310.3389/fphys.2015.0036326858648
    [Google Scholar]
  2. Al-AttarA.M. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice.Saudi J. Biol. Sci.201118439540110.1016/j.sjbs.2011.07.00423961152
    [Google Scholar]
  3. LahonK. DasS. Hepatoprotective activity of Ocimum sanctum alcoholic leaf extract against paracetamol-induced liver damage in Albino rats.Pharmacognosy Res.201131131810.4103/0974‑8490.7911021731390
    [Google Scholar]
  4. BollM. LutzW.D. BeckerE. StampflA. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites.Z. Naturforsch. C J. Biosci.2001567-864965910.1515/znc‑2001‑7‑82611531102
    [Google Scholar]
  5. KhanM.R. AhmedD. Protective effects of Digera muricata (L.) Mart. on testis against oxidative stress of carbon tetrachloride in rat.Food Chem. Toxicol.20094761393139910.1016/j.fct.2009.03.02019327381
    [Google Scholar]
  6. KhanM.R. RizviW. KhanG.N. KhanR.A. ShaheenS. Carbon tetrachloride-induced nephrotoxicity in rats: Protective role of Digera muricata.J. Ethnopharmacol.20091221919910.1016/j.jep.2008.12.00619118616
    [Google Scholar]
  7. KumarG. BanuG.S. PandianM.R. Evaluation of the antioxidant activity of Trianthema portulacastrum L.Indian J. Pharmacol.200537533110.4103/0253‑7613.16861
    [Google Scholar]
  8. RecknagelR.O. GlendeE.A.Jr DolakJ.A. WallerR.L. Mechanisms of carbon tetrachloride toxicity.Pharmacol. Ther.198943113915410.1016/0163‑7258(89)90050‑82675128
    [Google Scholar]
  9. GhanyM. HoofnagleJ.H. Approach to the patient with liver disease.Harrison’s Principles of Internal Medicine.16th ed KasperD.L. BraunwaldE. FauciA.S. HauserS.L. LongoD.L. JamesonJ.L. New YorkMcGraw Hill200518081813
    [Google Scholar]
  10. SaleemT.M. ChettyC.M. RamkanthS.V. RajanV.S. KumarK.M. GauthamanK. Hepatoprotective herbs: A review.Int J Res Pharm Sci.20101115
    [Google Scholar]
  11. VudaM. D’SouzaR. UpadhyaS. KumarV. RaoN. KumarV. BoillatC. MungliP. Hepatoprotective and antioxidant activity of aqueous extract of Hybanthus enneaspermus against CCl4-induced liver injury in rats.Exp. Toxicol. Pathol.2012647-885585910.1016/j.etp.2011.03.00621478003
    [Google Scholar]
  12. MichaelM.D. KulkarniR.N. PosticC. PrevisS.F. ShulmanG.I. MagnusonM.A. KahnC.R. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction.Mol. Cell200061879710.1016/S1097‑2765(05)00015‑810949030
    [Google Scholar]
  13. BodakheS.H. RamA. Hepatoprotective properties of Bauhinia variegata bark extract.Yakugaku Zasshi200712791503150710.1248/yakushi.127.150317827931
    [Google Scholar]
  14. SaukkonenJ.J. CohnD.L. JasmerR.M. SchenkerS. JerebJ.A. NolanC.M. PeloquinC.A. GordinF.M. NunesD. StraderD.B. BernardoJ. VenkataramananR. SterlingT.R. An official ATS statement: Hepatotoxicity of antituberculosis therapy.Am. J. Respir. Crit. Care Med.2006174893595210.1164/rccm.200510‑1666ST17021358
    [Google Scholar]
  15. OkaiyetoK. NwodoU. MabinyaL. OkohA. A review on some medicinal plants with hepatoprotective effects.Pharmacogn. Rev.2018122418619910.4103/phrev.phrev_52_17
    [Google Scholar]
  16. CorsiniA. BortoliniM. Drug-induced liver injury: The role of drug metabolism and transport.J. Clin. Pharmacol.201353546347410.1002/jcph.2323436293
    [Google Scholar]
  17. LavanchyD. The global burden of hepatitis C.Liver Int.200929s1Suppl. 1748110.1111/j.1478‑3231.2008.01934.x19207969
    [Google Scholar]
  18. WaxmanA. WHO global strategy on diet, physical activity and health.Food Nutr. Bull.200425329230210.1177/15648265040250031015460274
    [Google Scholar]
  19. NavarroV.J. SeniorJ.R. Drug-related hepatotoxicity.N. Engl. J. Med.2006354773173910.1056/NEJMra05227016481640
    [Google Scholar]
  20. WillettK.L. RothR.A. WalkerL. Workshop overview: Hepatotoxicity assessment for botanical dietary supplements.Toxicol. Sci.20047914910.1093/toxsci/kfh07514976355
    [Google Scholar]
  21. PapayJ.I. ClinesD. RafiR. YuenN. BrittS.D. WalshJ.S. HuntC.M. Drug-induced liver injury following positive drug rechallenge.Regul. Toxicol. Pharmacol.2009541849010.1016/j.yrtph.2009.03.00319303041
    [Google Scholar]
  22. CrawfordJ.M. Basic mechanisms in hepatopathology. AlastairDB. StefanGH. MacSween’s pathology of the liverElsevier Health Sciences200775117
    [Google Scholar]
  23. SanyalA.J. AGA technical review on nonalcoholic fatty liver disease.Gastroenterology200212351705172510.1053/gast.2002.3657212404245
    [Google Scholar]
  24. DominiczakM.H. Lipids and Lipoproteins. BaynesJW. DominiczakMH. Medical Biochemistry.PhiladephiaElsevier Mosby2005234242
    [Google Scholar]
  25. RehmJ MathersC PopovaS ThavorncharoensapM TeerawattananonY PatraJ Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders.Lancet.2009373968222232233
    [Google Scholar]
  26. MorganM.Y. The prognosis and outcome of alcoholic liver disease.Alcohol Alcohol. Suppl.199423353438974353
    [Google Scholar]
  27. AsraniS.K. DevarbhaviH. EatonJ. KamathP.S. Burden of liver diseases in the world.J. Hepatol.201970115117110.1016/j.jhep.2018.09.01430266282
    [Google Scholar]
  28. JanveY. KakadiyaJ. RajaM. An updated review on medicinal plants with hepato-protective activity.J. Nat. Rem.20232023475510.18311/jnr/2023/30924
    [Google Scholar]
  29. Sathesh KumarS. Ravi KumarB. Krishna MohanG. Hepatoprotective effect of Trichosanthes cucumerina Var cucumerina L. on carbon tetrachloride induced liver damage in rats.J. Ethnopharmacol.2009123234735010.1016/j.jep.2009.02.02319429383
    [Google Scholar]
  30. PartapS. TewariU. SharmaK. JhaK.K. Hepatoprotective activity of whole plant extract of Leptadenia pyrotechnica against paracetamol induced damage in rats.J. Drug Deliv. Ther.201441363910.22270/jddt.v4i1.743
    [Google Scholar]
  31. AjboyeT.O. YakubuM.T. SalauA.K. OladijiA.T. AkanjiM.A. OkogunJ.I. Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage.Pharm. Biol.201048121361137010.3109/13880209.2010.48324720815700
    [Google Scholar]
  32. MurrayK.F. HadzicN. WirthS. BassettM. KellyD. Drug-related hepatotoxicity and acute liver failure.J. Pediatr. Gastroenterol. Nutr.200847439540510.1097/MPG.0b013e318170946418852631
    [Google Scholar]
  33. BrindA.M. Drugs that damage the liver.Medicine2007351263010.1053/j.mpmed.2006.10.00517220753
    [Google Scholar]
  34. KaplowitzN. Drug-induced liver injury.Clin. Infect. Dis.200438Suppl. 2S44S4810.1086/38144614986274
    [Google Scholar]
  35. ChangC.Y. SchianoT.D. Review article: Drug hepatotoxicity.Aliment. Pharmacol. Ther.200725101135115110.1111/j.1365‑2036.2007.03307.x17451560
    [Google Scholar]
  36. LangmanG. HallP.D.L.M. ToddG. Role of non-alcoholic steatohepatitis in methotrexate-induced liver injury.J. Gastroenterol. Hepatol.200116121395140110.1046/j.1440‑1746.2001.02644.x11851839
    [Google Scholar]
  37. AliM.I. KumarM. A recent update on hepatoprotective potential of herbal plant.Int. J. Environ. Sci. Technol.201512550
    [Google Scholar]
  38. PandeyB. BaralR. KaundinnyayanaA. PantaS. Promising hepatoprotective agents from the natural sources: A study of scientific evidence.Egypt. Liv. J.20231311410.1186/s43066‑023‑00248‑w
    [Google Scholar]
  39. CheemerlaS. BalakrishnanM. Global epidemiology of chronic liver disease.Clin. Liver Dis.202117536537010.1002/cld.106134136143
    [Google Scholar]
  40. SepanlouS.G. SafiriS. BisignanoC. IkutaK.S. MeratS. SaberifirooziM. PoustchiH. TsoiD. ColombaraD.V. AbdoliA. AdedoyinR.A. AfaridehM. AgrawalS. AhmadS. AhmadianE. AhmadpourE. AkinyemijuT. AkunnaC.J. AlipourV. Almasi-HashianiA. AlmulhimA.M. Al-RaddadiR.M. Alvis-GuzmanN. AnberN.H. AngusC. AnoushiravaniA. ArablooJ. ArayaE.M. AsmelashD. AtaeiniaB. AtaroZ. AtoutM.M.W. AusloosF. AwasthiA. BadawiA. BanachM. Bejarano RamirezD.F. BhagavathulaA.S. BhalaN. BhattacharyyaK. BiondiA. BollaS.R. BoloorA. BorzìA.M. ButtZ.A. CámeraL.L.A.A. Campos-NonatoI.R. CarvalhoF. ChuD-T. ChungS-C. CortesiP.A. CostaV.M. CowieB.C. DaryaniA. de CourtenB. DemozG.T. DesaiR. DharmaratneS.D. DjalaliniaS. DoH.T. DorostkarF. DrakeT.M. DubeyM. DuncanB.B. EffiongA. EftekhariA. ElsharkawyA. EtemadiA. FarahmandM. FarzadfarF. FernandesE. FilipI. FischerF. GebremedhinK.B.B. GetaB. GilaniS.A. GillP.S. GutirrezR.A. HaileM.T. Haj-MirzaianA. HamidS.S. HasankhaniM. HasanzadehA. HashemianM. HassenH.Y. HayS.I. HayatK. HeidariB. HenokA. HoangC.L. HostiucM. HostiucS. HsiehV.C. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. Jafari BalalamiN. JamesS.L. JeemonP. JhaR.P. JonasJ.B. JozwiakJ.J. KabirA. KasaeianA. KassayeH.G. KefaleA.T. KhalilovR. KhanM.A. KhanE.A. KhaterA. KimY.J. KoyanagiA. La VecchiaC. LimL-L. LopezA.D. LorkowskiS. LotufoP.A. LozanoR. Magdy Abd El RazekM. MaiH.T. ManafiN. ManafiA. MansourniaM.A. MantovaniL.G. MazzagliaG. MehtaD. MendozaW. MenezesR.G. MengeshaM.M. MeretojaT.J. MestrovicT. MiazgowskiB. MillerT.R. MirrakhimovE.M. MithraP. MoazenB. MoghadaszadehM. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. Montero-ZamoraP.A. MoradiG. NaimzadaM.D. NayakV. NegoiI. NguyenT.H. Ofori-AsensoR. OhI-H. OlagunjuT.O. PadubidriJ.R. PakshirK. PanaA. PathakM. PourshamsA. RabieeN. RadfarA. RafieiA. RamezanzadehK. RanaS.M.M. RawafS. RawafD.L. ReinerR.C.Jr RoeverL. RoomR. RoshandelG. SafariS. SamyA.M. SanabriaJ. SartoriusB. SchmidtM.I. SenthilkumaranS. ShaikhM.A. SharifM. SharifiA. ShigematsuM. SinghJ.A. SoheiliA. SuleriaH.A.R. TeklehaimanotB.F. TesfayB.E. VacanteM. Vahedian-AzimiA. ValdezP.R. VasankariT.J. VuG.T. WaheedY. WeldegwergsK.G. WerdeckerA. WestermanR. WondafrashD.Z. WondmienehA.B. YeshitilaY.G. YonemotoN. YuC. ZaidiZ. ZarghiA. Zelber-SagiS. ZewdieK.A. ZhangZ-J. ZhaoX-J. NaghaviM. MalekzadehR. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet Gastroenterol. Hepatol.20205324526610.1016/S2468‑1253(19)30349‑831981519
    [Google Scholar]
  41. YounossiZ.M. GolabiP. PaikJ.M. HenryA. Van DongenC. HenryL. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review.Hepatology20237741335134710.1097/HEP.000000000000000436626630
    [Google Scholar]
  42. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  43. KrishnakanthaT.P. LokeshB.R. Scavenging of superoxide anions by spice principles.Indian J. Biochem. Biophys.19933021331348394839
    [Google Scholar]
  44. JannuV. BaddamP.G. BoorgulaA.K. JambulaS.R. A review on hepatoprotective plants.Int J Drug Dev Res.20124318
    [Google Scholar]
  45. WahidA. HamedA.N. EltahirH.M. AbouziedM.M. Hepatoprotective activity of ethanolic extract of Salix subserrata against CCl4- induced chronic hepatotoxicity in rats.BMC Complement. Altern. Med.201616126310.1186/s12906‑016‑1238‑227473536
    [Google Scholar]
  46. LuY. CederbaumA.I. CYP2E1 and oxidative liver injury by alcohol.Free Radic. Biol. Med.200844572373810.1016/j.freeradbiomed.2007.11.00418078827
    [Google Scholar]
  47. RamaiahS.K. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters.Food Chem. Toxicol.20074591551155710.1016/j.fct.2007.06.00717658209
    [Google Scholar]
  48. PoliG. Pathogenesis of liver fibrosis: Role of oxidative stress.Mol. Aspects Med.2000213499810.1016/S0098‑2997(00)00004‑210978499
    [Google Scholar]
  49. ClawsonG.A. Mechanisms of carbon tetrachloride hepatotoxicity.Pathol. Immunopathol. Res.19898210411210.1159/0001571412662164
    [Google Scholar]
  50. LiuS.L. Degli EspostiS. YaoT. DiehlA.M. ZernM.A. Vitamin E therapy of acute CCl4-induced hepatic injury in mice is associated with inhibition of nuclear factor kappa B binding.Hepatology1995225147414817590666
    [Google Scholar]
  51. CzajaM.J. XuJ. AltE. Prevention of carbon tetrachloride-induced rat liver injury by soluble tumor necrosis factor receptor.Gastroenterology199510861849185410.1016/0016‑5085(95)90149‑37768392
    [Google Scholar]
  52. BollM. WeberL.W.D. BeckerE. StampflA. Pathogenesis of carbon tetrachloride-induced hepatocyte injury bioactivation of CC14 by cytochrome P450 and effects on lipid homeostasis.Z. Naturforsch. C J. Biosci.2001561-211112110.1515/znc‑2001‑1‑21811302200
    [Google Scholar]
  53. BollM. WeberL.W.D. BeckerE. StampflA. Hepatocyte damage induced by carbon tetrachloride: inhibited lipoprotein secretion and changed lipoprotein composition.Z. Naturforsch. C J. Biosci.2001563-428329010.1515/znc‑2001‑3‑41911371022
    [Google Scholar]
  54. ManfoF.P. NantiaE.A. KueteV. Hepatotoxicity and hepatoprotective effects of African medicinal plants.Toxicological Survey of African Medicinal Plants.1st ed KueteV. Elsevier201432335510.1016/B978‑0‑12‑800018‑2.00011‑X
    [Google Scholar]
  55. GoraR. BaxlaS. KerkettaP. PatnaikS. RoyB. Hepatoprotective activity of Tephrosia purpurea against arsenic induced toxicity in rats.Indian J. Pharmacol.201446219720010.4103/0253‑7613.12931724741193
    [Google Scholar]
  56. SantraA. MaitiA. DasS. LahiriS. CharkabortyS.K. Guha MazumderD.N. Guha MazumderD. Hepatic damage caused by chronic arsenic toxicity in experimental animals.J. Toxicol. Clin. Toxicol.200038439540510.1081/CLT‑10010094910930056
    [Google Scholar]
  57. PanX. DaiY. LiX. NiuN. LiW. LiuF. ZhaoY. YuZ. Inhibition of arsenic induced-rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation.Toxicol. Appl. Pharmacol.2011254332333110.1016/j.taap.2011.04.02221605584
    [Google Scholar]
  58. MatsuzawaA. IchijoH. Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling.Biochim. Biophys. Acta, Gen. Subj.20081780111325133610.1016/j.bbagen.2007.12.01118206122
    [Google Scholar]
  59. GhatakS. BiswasA. DhaliG.K. ChowdhuryA. BoyerJ.L. SantraA. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice.Toxicol. Appl. Pharmacol.20112511596910.1016/j.taap.2010.11.01621134390
    [Google Scholar]
  60. ChoudhuryS. GhoshS. MukherjeeS. GuptaP. BhattacharyaS. AdhikaryA. ChattopadhyayS. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.J. Nutr. Biochem.201638254010.1016/j.jnutbio.2016.09.00127723467
    [Google Scholar]
  61. FriedmanS.L. Mechanisms of hepatic fibrogenesis.Gastroenterology200813461655166910.1053/j.gastro.2008.03.00318471545
    [Google Scholar]
  62. GuilbertC. AnnisM.G. DongZ. SiegelP.M. MillerW.H.Jr MannK.K. Arsenic trioxide overcomes rapamycin-induced feedback activation of AKT and ERK signaling to enhance the anti-tumor effects in breast cancer.PLoS One2013812e8599510.1371/journal.pone.008599524392034
    [Google Scholar]
  63. EguchiR. FujimoriY. TakedaH. TabataC. OhtaT. KuribayashiK. FukuokaK. NakanoT. Arsenic trioxide induces apoptosis through JNK and ERK in human mesothelioma cells.J. Cell. Physiol.2011226376276810.1002/jcp.2239720799280
    [Google Scholar]
  64. FloraS.J.S. MehtaA. GuptaR. Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice.Chem. Biol. Interact.2009177322723310.1016/j.cbi.2008.08.01718834867
    [Google Scholar]
  65. SuzukiT. TsukamotoI. Arsenite induces apoptosis in hepatocytes through an enhancement of the activation of Jun N-terminal kinase and p38 mitogen-activated protein kinase caused by partial hepatectomy.Toxicol. Lett.2006165325726410.1016/j.toxlet.2006.05.00416797887
    [Google Scholar]
  66. PrakashC. KumarV. Chronic arsenic exposure-induced oxidative stress is mediated by decreased mitochondrial biogenesis in rat liver.Biol. Trace Elem. Res.20161731879510.1007/s12011‑016‑0622‑626767369
    [Google Scholar]
  67. JurczukM. BrzóskaM.M. Moniuszko-JakoniukJ. Hepatic and renal concentrations of vitamins E and C in lead- and ethanol-exposed rats. An assessment of their involvement in the mechanisms of peroxidative damage.Food Chem. Toxicol.20074581478148610.1016/j.fct.2007.02.00717383787
    [Google Scholar]
  68. LiuC.M. MaJ.Q. SunY.Z. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead.Exp. Toxicol. Pathol.201264657558210.1016/j.etp.2010.11.01621146379
    [Google Scholar]
  69. XuJ. LianL. WuC. WangX. FuW. XuL. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice.Food Chem. Toxicol.20084651488149410.1016/j.fct.2007.12.01618226849
    [Google Scholar]
  70. OmobowaleT.O. OyagbemiA.A. AkinrindeA.S. SabaA.B. DaramolaO.T. OgunpoluB.S. OlopadeJ.O. Failure of recovery from lead induced hepatoxicity and disruption of erythrocyte antioxidant defence system in Wistar rats.Environ. Toxicol. Pharmacol.20143731202121110.1016/j.etap.2014.03.00224814264
    [Google Scholar]
  71. WangC. LiangJ. ZhangC. BiY. ShiX. ShiQ. Effect of ascorbic Acid and thiamine supplementation at different concentrations on lead toxicity in liver.Ann. Occup. Hyg.200751656356917878260
    [Google Scholar]
  72. MujaibelL.M. KilarkajeN. Mitogen-activated protein kinase signaling and its association with oxidative stress and apoptosis in lead-exposed hepatocytes.Environ. Toxicol.201530551352910.1002/tox.2192824293362
    [Google Scholar]
  73. BernhoftR.A. Cadmium toxicity and treatment.Scient.Wor.J.201320131710.1155/2013/39465223844395
    [Google Scholar]
  74. NordbergG.F. Historical perspectives on cadmium toxicology.Toxicol. Appl. Pharmacol.2009238319220010.1016/j.taap.2009.03.01519341754
    [Google Scholar]
  75. DkhilM.A. Al-QuraishyS. DiabM.M.S. OthmanM.S. ArefA.M. Abdel MoneimA.E. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.Food Chem. Toxicol.2014749810610.1016/j.fct.2014.09.01325265456
    [Google Scholar]
  76. WangJ. ZhuH. LiuX. LiuZ. Oxidative stress and Ca(2+) signals involved on cadmium-induced apoptosis in rat hepatocyte.Biol. Trace Elem. Res.2014161218018910.1007/s12011‑014‑0105‑625123461
    [Google Scholar]
  77. ZhuM.K. LiH.Y. BaiL.H. WangL.S. ZouX.T. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations.Poult. Sci.20209963215322810.1016/j.psj.2019.12.07332475458
    [Google Scholar]
  78. GoY.M. SutliffR.L. ChandlerJ.D. KhalidurR. KangB.Y. AnaniaF.A. OrrM. HaoL. FowlerB.A. JonesD.P. Low-dose cadmium causes metabolic and genetic dysregulation associated with fatty liver disease in mice.Toxicol. Sci.2015147252453410.1093/toxsci/kfv14926187450
    [Google Scholar]
  79. RenuK. ChakrabortyR. MyakalaH. KotiR. FamurewaA.C. MadhyasthaH. VellingiriB. GeorgeA. Valsala GopalakrishnanA. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) induced hepatotoxicity : A review.Chemosphere202127112973510.1016/j.chemosphere.2021.12973533736223
    [Google Scholar]
  80. VerfaillieT. RubioN. GargA.D. BultynckG. RizzutoR. DecuypereJ-P. PietteJ. LinehanC. GuptaS. SamaliA. AgostinisP. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress.Cell Death Differ.201219111880189110.1038/cdd.2012.7422705852
    [Google Scholar]
  81. ZhaoY. YanJ. LiA.P. ZhangZ.L. LiZ.R. GuoK.J. ZhaoK.C. RuanQ. GuoL. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats.Toxicol. Lett.2019310313810.1016/j.toxlet.2019.04.00730974164
    [Google Scholar]
  82. ZhangY. XiaoF. LiuX. LiuK. ZhouX. ZhongC. Cr(VI) induces cytotoxicity in vitro through activation of ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction via the PI3K/Akt signaling pathway.Toxicol. In Vitro 20174123224410.1016/j.tiv.2017.03.00328323103
    [Google Scholar]
  83. ChangX. LiuF. TianM. ZhaoH. HanA. SunY. Nickel oxide nanoparticles induce hepatocyte apoptosis via activating endoplasmic reticulum stress pathways in rats.Environ. Toxicol.201732122492249910.1002/tox.2249228945320
    [Google Scholar]
  84. GirishC. PradhanS.C. Indian herbal medicines in the treatment of liver diseases: problems and promises.Fundam. Clin. Pharmacol.201226218018910.1111/j.1472‑8206.2011.01011.x22136107
    [Google Scholar]
  85. PolimatiH. PragadaR.R. ThuanN.H. TatipamulaV.B. Hepatoprotective potential of bioflavonoids.Stud. Nat. Prod. Chem.20227225928510.1016/B978‑0‑12‑823944‑5.00014‑4
    [Google Scholar]
  86. ShahM.D. IqbalM. Antioxidant activity, phytochemical analysis and total polyphenolics content of essential oil, methanol extract and methanol fractions from Commelina nudiflora.Int. J. Pharm. Pharm. Sci.2018108364310.22159/ijpps.2018v10i8.25922
    [Google Scholar]
  87. LeeK.G. ShibamotoT. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices.J. Agric. Food Chem.200250174947495210.1021/jf025568112166987
    [Google Scholar]
  88. Bülent KöseY. İşcanG. DemirciB. BaşerK.H.C. ÇelikS. Antimicrobial activity of the essential oil of Centaurea aladagensis.Fitoterapia200778325325410.1016/j.fitote.2006.12.00217329038
    [Google Scholar]
  89. AppendinoG. OttinoM. MarquezN. BianchiF. GianaA. BalleroM. SternerO. FiebichB.L. MunozE. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-pyrone from Helichrysum italicum ssp. microphyllum.J. Nat. Prod.200770460861210.1021/np060581r17315926
    [Google Scholar]
  90. De LucaV. SalimV. AtsumiS.M. YuF. Mining the biodiversity of plants: A revolution in the making.Science201233660891658166110.1126/science.121741022745417
    [Google Scholar]
  91. MaqboolM. RasoolS. DarM.A. BashirR. KhanM. Hepatotoxicity and hepatoprotective agents: A mini review.PharmaTutor.2019793440
    [Google Scholar]
  92. MendozaN. SilvaE.M. Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance.Phytochemicals: Source of antioxidants and role in disease prevention. AsaoT. AsaduzzamanM. United KingdomIntechOpen201815
    [Google Scholar]
  93. SinghP. Floristic diversity of India: An overview. Biodiversity of the Himalaya: Jammu and Kashmir State. DarG. KhurooA. SingaporeSpringer2020416910.1007/978‑981‑32‑9174‑4_3
    [Google Scholar]
  94. LiM. LuoQ. TaoY. SunX. LiuC. Pharmacotherapies for drug-induced liver injury: A current literature review.Front. Pharmacol.20221280624910.3389/fphar.2021.80624935069218
    [Google Scholar]
  95. AdewusiE.A. AfolayanA.J. A review of natural products with hepatoprotective activity.J. Med. Plants Res.201041313181334
    [Google Scholar]
  96. SinghA. BhatT.K. SharmaO.P. Clinical biochemistry of hepatotoxicity.J Clinic Toxicol S.2011421610495
    [Google Scholar]
  97. Venmathi MaranB.A. IqbalM. GangadaranP. AhnB.C. RaoP.V. ShahM.D. Hepatoprotective potential of Malaysian medicinal plants: A review on phytochemicals, oxidative stress, and antioxidant mechanisms.Molecules2022275153310.3390/molecules2705153335268634
    [Google Scholar]
  98. ArmanM. ChowdhuryK.A.A. BariM.S. KhanM.F. HuqM.M.A. HaqueM.A. CapassoR. Hepatoprotective potential of selected medicinally important herbs: evidence from ethnomedicinal, toxicological and pharmacological evaluations.Phytochem. Rev.20222161863188610.1007/s11101‑022‑09812‑5
    [Google Scholar]
  99. KshirsagarA.D. MohiteR. AggrawalA.S. SuralkarU.R. Hepatoprotective medicinal plants of Ayurveda : A review.Asian J. Pharm. Clin. Res.20114318
    [Google Scholar]
  100. UgwuC.E. SuruS.M. Medicinal plants with hepatoprotective potentials against carbon tetrachloride-induced toxicity: A review.Egypt. Liv. J.20211118810.1186/s43066‑021‑00161‑0
    [Google Scholar]
  101. AliS.A. ShariefN.H. MohamedY.S. Hepatoprotective activity of some medicinal plants in Sudan.Evid. Based Complement. Alternat. Med.2019201911610.1155/2019/219631531929810
    [Google Scholar]
  102. ChenY.C. LiawC.C. ChengY.B. LinY.C. ChenC.H. HuangY.T. LiouS.S. ChenS.Y. ChienC.T. LeeG.C. ShenY.C. Anti-liver fibrotic lignans from the fruits of Schisandra arisanensis and Schisandra sphenanthera.Bioorg. Med. Chem. Lett.201323388088510.1016/j.bmcl.2012.11.04023265871
    [Google Scholar]
  103. UivarosiV. MunteanuA. Flavonoid complexes as promising anticancer metallodrugs. Flavonoids-from biosynthesis to human health. GoncalaC.J. London, UKIntechOpen201730533710.5772/67879
    [Google Scholar]
  104. QuJ. HuangP. ZhangL. QiuY. QiH. LengA. ShangD. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship.Int. J. Biol. Macromol.2020161243410.1016/j.ijbiomac.2020.05.19632485257
    [Google Scholar]
  105. AniqaA. KaurS. SadwalS. A review of the anti-cancer potential of Murraya koenigii (curry tree) and its active constituents.Nutr. Cancer2022741122610.1080/01635581.2021.188250933587002
    [Google Scholar]
  106. SamantaS.K. KandimallaR. GogoiB. DuttaK.N. ChoudhuryP. DebP.K. DeviR. PalB.C. TalukdarN.C. Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine.Pharmacol. Res.201812922723610.1016/j.phrs.2017.11.02429175114
    [Google Scholar]
  107. SainiS.C. ReddyG.B. A review on curry leaves (Murraya koenigii): Versatile multi-potential medicinal plant.Am J Phytomed Clin Ther.2015304363368
    [Google Scholar]
  108. BalakrishnanR. VijayrajaD. JoS.H. GanesanP. Su-KimI. ChoiD.K. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds.Antioxidants20209210110.3390/antiox902010131991665
    [Google Scholar]
  109. TanM.A. SharmaN. AnS.S.A. multi-target approach of Murraya koenigii leaves in treating neurodegenerative diseases.Pharmaceuticals202215218810.3390/ph1502018835215300
    [Google Scholar]
  110. GahlawatD.K. JakharS. DahiyaP. Murraya koenigii (L.) Spreng: An ethnobotanical, phytochemical and pharmacological review.J. Pharmacogn. Phytochem.201433109119
    [Google Scholar]
  111. HemaR. KumaravelS. AlagusundaramK. GC/MS determination of bioactive components of Murraya Koenigii. J. Am. Sci.2011718083
    [Google Scholar]
  112. JainV. MominM. LaddhaK. Murraya koenigii: An updated review.Int. J. Ayurv. Herb. Med.201224607627
    [Google Scholar]
  113. Azhagu MadhavanS. SaV. RaS. SbR. Phytochemical screening and GC–MS analysis of bioactive compounds present in ethanolic leaf extract Murraya koenigii.Bull Env Pharmacol Life Sci.202110158164
    [Google Scholar]
  114. IgaraCE OmoboyowaDA AhuchaoguAA OrjiNU NdukweMK Phytochemical and nutritional profile of Murraya koenigii (Linn) Spreng leaf.J Pharmacogn Phytochem.2016550709
    [Google Scholar]
  115. AbeysingheD.T. AlwisD.D.D.H. KumaraK.A.H. ChandrikaU.G. Nutritive importance and therapeutics uses of three different varieties (Murraya koenigii, Micromelum minutum, and Clausena indica) of curry leaves: An updated review.Evid. Based Complement. Alternat. Med.2021202112310.1155/2021/552325234754314
    [Google Scholar]
  116. RaoB.R. Curry Leaf (Murraya koenigii) Oils.Essential Oils in Food Preservation, Flavor and Safety. VictorR.P. Academic Press2016385394
    [Google Scholar]
  117. YogeshK. JhaS.N. YadavD.N. Antioxidant activities of Murraya koenigii (L.) spreng berry extract: Application in refrigerated (4±1 c) stored meat homogenates.Agric. Res.20121218318910.1007/s40003‑012‑0018‑6
    [Google Scholar]
  118. NishanM. SubramanianP. Murraya koenigii (curry leave): A review on its potential.Int. J. Pharm. Tech. Res.201574566572
    [Google Scholar]
  119. MaQ.G. WangY.G. LiuW.M. WeiR.R. YangJ.B. WangA.G. JiT.F. TianJ. SuY.L. Hepatoprotective sesquiterpenes and rutinosides from Murraya koenigii (L.) Spreng.J. Agric. Food Chem.201462184145415110.1021/jf500503424749720
    [Google Scholar]
  120. MaQ. TianJ. YangJ. WangA. JiT. WangY. SuY. Bioactive carbazole alkaloids from Murraya koenigii (L.) Spreng.Fitoterapia2013871610.1016/j.fitote.2013.03.00323500386
    [Google Scholar]
  121. WeiR. MaQ. ZhongG. SuY. YangJ. WangA. JiT. GuoH. WangM. JiangP. WuH. Structural characterization, hepatoprotective and antihyperlipidemic activities of alkaloid derivatives from Murraya koenigii. Phytochem. Lett.20203513514010.1016/j.phytol.2019.11.001
    [Google Scholar]
  122. GuptaR.S. SinghD. Protective nature of Murraya koenigii leaves against hepatosupression through antioxidant status in experimental rats.Pharmacologyonline200712232242
    [Google Scholar]
  123. MitraE. GhoshA.K. GhoshD. Ameliorative effect of aqueous curry leaf Murraya koenigii extract against cadmium-induced oxidative stress in rat liver: Involvement of antioxidant mechanisms.Int. J. Pharm. Pharm. Sci.201352570583
    [Google Scholar]
  124. PhatakR.S. KhanwelkarC.C. MatuleS.M. HendreA.S. DatkhileK.D. Antioxidant activity of Murraya koenigii leaves methanolic and aqueous extracts on oxidative stress in high fat-fructose fed rats.Pravara Med. Rev.2021133
    [Google Scholar]
  125. AnsariJ.A. HaqS.A. BaigM.A. ShaikhA.S. Antioxidant and hepatoprotective activity of Murraya koenigii L. against CCl4-induced hepatotoxicity in rats.Int J Adv Pharm Med Bioallied Sci.20153116
    [Google Scholar]
  126. HoW.Y. BehB.K. LimK.L. MohamadN.E. YusofH.M. KyH. TanS.W. JamaluddinA. LongK. LimC.L. AlitheenN.B. YeapS.K. Antioxidant and hepatoprotective effects of the food seasoning curry leaves Murraya koenigii (L.) Spreng. (Rutaceae).RSC Adv.2015512210058910059710.1039/C5RA19154H
    [Google Scholar]
  127. ShahP. SinghS.P. GuptaA.K. KumarA. Combined hepatoprotective activity of Murraya koenigii and Phyllanthus niruri extracts against paracetamol induced hepatotoxicity in alcoholic rats.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.201888265566510.1007/s40011‑016‑0800‑5
    [Google Scholar]
  128. SangaleP. PatilR. Hepatoprotective activity of alkaloid fractions from ethanol extract of Murraya koenigii leaves in experimental animals.J. Pharm. Sci. Pharmacol.201731283310.1166/jpsp.2017.1073
    [Google Scholar]
  129. GhoshD. FirdausS.B. MitraE.L. Hepatoprotective activity of aqueous leaf extract of Murraya koenigii against lead-induced hepatotoxicity in male wistar rat.Int. J. Pharm. Pharm. Sci.201351285295
    [Google Scholar]
  130. SathayeS.A. AminP.D. MehtaV.B. Hepatoprotective activity of Murraya koenigii against ethanol-induced liver toxicity model in experimental animals.Int. J. Pharma Bio Sci.201231430438
    [Google Scholar]
  131. SalweK.J. RM. ManoJ. ManimekalaiK. Hepatoprotective and antioxidant activity of Murraya Koenigii leaves extract against paracetamol induced hepatotoxicity in Rats.Int. J. Basic Clin. Pharmacol.2017661274128110.18203/2319‑2003.ijbcp20172044
    [Google Scholar]
  132. DesaiS.N. PatelD.K. DevkarR.V. PatelP.V. RamachandranA.V. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: An in vivo study.Food Chem. Toxicol.201250231031410.1016/j.fct.2011.10.06322067293
    [Google Scholar]
  133. Reddy BM. CkD. BvsL. Protective effect of aqueous extract of leaves of Murraya koenigii, against aluminum chloride-induced oxidative stress in rat liver and kidney.Asian J. Pharm. Clin. Res.20201369810210.22159/ajpcr.2020.v13i6.37383
    [Google Scholar]
  134. DebosreeG. SyedB.F. ElinaM. MonalisaD. DebasishB. Protective effect of aqueous leaf extract of Murraya koenigi against lead induced oxidative stress in rat liver, heart and kidney: A dose response study.Asian J. Pharm. Clin. Res.2012545459
    [Google Scholar]
  135. ShindeM. MohanM. Protective efficacy of Murraya koenigii aqueous extract against monosodium glutamate-induced hepatotoxicity in Wistar rats.Indian J. Nat. Prod. Resour.2022132188196
    [Google Scholar]
  136. PhatakR.S. MatuleS.M. Reno-hepatoprotective effects of Murraya koenigii leaves chloroform extract (mkce) against lead-induced oxidative stress in mice.Int. J. Pharm. Sci. Res.201781041064112
    [Google Scholar]
  137. ParimiB.N. MopuriR. MerigaB. The protective effect of Murraya koenigii leaves against carbon tetrachloride-induced hepatic damage in rats.J. Coast. Life Med.201424313318
    [Google Scholar]
  138. ArulselvanP. SubramanianS. Ultrastructural and biochemical abnormalities in the liver of streptozotocin-diabetic rats: protective effects of Murraya koenigii.J Pharmacol. Toxicol.20083319020210.3923/jpt.2008.190.202
    [Google Scholar]
  139. ShahP. SinghS.P. KumarA. Combined effect of hydroethanolic extracts of Murraya koenigii and Phyllanthus niruri leaves on paracetamol and ethanol-induced toxicity in HepG2 cell line.Curr. Sci.201510971320132610.18520/cs/v109/i7/1320‑1344
    [Google Scholar]
  140. SathayeS. BagulY. GuptaS. KaurH. RedkarR. Hepatoprotective effects of aqueous leaf extract and crude isolates of Murraya koenigii against in vitro ethanol-induced hepatotoxicity model.Exp. Toxicol. Pathol.201163658759110.1016/j.etp.2010.04.01220488686
    [Google Scholar]
  141. PhatakR.S. MatuleS.M. Ameliorated activity of Murraya koenigii leaves chloroform extract (MKCE) against lead induced hepatic dysfunctions in mice.Int. J. Pharm. Sci. Res.20178626192623
    [Google Scholar]
  142. FatmiN. FatimaN. ShahzadaM.Z. SharmaS. KumarR. Ameliorative effect of Murraya Koenigii on arsenic induced toxicity in swiss albino mice.Austin J. Pharmacol. Ther.2017531097
    [Google Scholar]
  143. SrividyaL. AnreddyR.N. PrasadswamyT. Hepatoprotective activity of hydroalcoholic extract of Murraya koeinigii leaves against CCl4-induced hepatotoxicity in rats.Adv Clin Toxicol201721000118
    [Google Scholar]
  144. PandeM.S. GuptaS.P. PathakA. Hepatoprotective activity of Murraya koenigii Linn bark.J Herb Med Toxicol.2009316971
    [Google Scholar]
  145. HusnaF SuyatnaFD ArozalW PurwaningsihEH SaniY Restoration of pro-inflammatory cytokines and histopathological changes in pancreas and liver of hyperglycemic rats by Murraya koenigii leaves extract.J Appl Pharm Sci.202010100815
    [Google Scholar]
  146. DevarbhaviH. AsraniS.K. ArabJ.P. NarteyY.A. PoseE. KamathP.S. Global burden of liver disease: 2023 update.J. Hepatol.202379251653710.1016/j.jhep.2023.03.01736990226
    [Google Scholar]
  147. YounossiZ.M. WongG. AnsteeQ.M. HenryL. The global burden of liver disease.Clin. Gastroenterol. Hepatol.20232181978199110.1016/j.cgh.2023.04.01537121527
    [Google Scholar]
  148. MishraP. FaruquiT. AkhtarS. NadeemI. KhanI. WabaidurS.M. KaziM. RahimM. RafiZ. KhanS. Antiproliferative activity of gold and silver nanoparticles fabricated using bark extract of Murraya koenigii.J. Drug Deliv. Sci. Technol.20238910501410.1016/j.jddst.2023.105014
    [Google Scholar]
  149. AnY. GuoY. WuH. HuangY. XieD. QinJ. Conceivable protective role of Murraya koenigii leaf extract loaded poly (D, L-lactic- co-glycolic acid)-gold-nanoparticles on the gestational diabetes mellitus of rats induced by Streptozotocin.Sci. Adv. Mater.2020121879210.1166/sam.2020.3569
    [Google Scholar]
  150. Ankush JadhavP. JadhavS. KambleS. ChavanP. Formulation and evaluation of nanosponges containing Murraya koenigii extract for burn wound healing.Am. J. PharmTech. Res.20199118221410.46624/ajptr.2019.v9.i1.014
    [Google Scholar]
  151. KamarajC. BalasubramaniG. SivaC. RajaM. BalasubramanianV. RajaR.K. TamilselvanS. BenelliG. PerumalP. Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii : Antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines).J. Cluster Sci.20172831667168410.1007/s10876‑017‑1180‑6
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638310869240628060001
Loading
/content/journals/cddt/10.2174/0115701638310869240628060001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test