Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

In medicine, bioavailability is the percentage of a drug that enters the bloodstream and can be used to treat a patient. It has proven challenging throughout time to develop techniques that allow oral administration of most drugs, regardless of their properties, to achieve therapeutic systemic availability. This will be an impressive feat, considering that over 90% of pharmaceuticals are known to have limitations on their oral bioavailability. Improving bioavailability is crucial for optimizing the efficacy and safety of drugs. This review covers a wide range of techniques, including physical, chemical, and formulation approaches, highlighting their mechanisms, advantages, and limitations. Inhibitions of efflux pumps, inhibition of presystemic metabolism, and innovative drug delivery systems that capitalize on the gastrointestinal regionality of medicines are some of the new techniques that have drawn increased interest. Nanotechnology in pharmaceuticals is also being used in this field. We have collected the literature data from 2009 to 2024 using Science Direct, PubMed/Medline, Scopus, and Google Scholar.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638311058240806100555
2024-08-09
2025-09-25
Loading full text...

Full text loading...

References

  1. BhakayA. RahmanM. DaveR.N. BilgiliE. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–Processing aspects and challenges.Pharmaceutics20181038610.3390/pharmaceutics1003008629986543
    [Google Scholar]
  2. ZhangX. XingH. ZhaoY. MaZ. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs.Pharmaceutics20181037410.3390/pharmaceutics1003007429937483
    [Google Scholar]
  3. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  4. GuptaR JainV NagarJC AnsariA SharmaK SarkarA KhanMS Bioavailability enhancement techniques for poorly soluble drugs: A review.Asian J Pharmaceut Res Develop20208275810.22270/ajprd.v8i2.664
    [Google Scholar]
  5. BertuccoA. VetterG. High pressure process technology: Fundamentals and applications. Industrial Chemistry Library Amsterdam: Elsevier2001
    [Google Scholar]
  6. ChowdaryK.P.R. MadhaviB.L.R. Novel drug delivery technologies for insoluble drugs.Indian Drugs.2005429557564
    [Google Scholar]
  7. KhadkaP RoJ KimH KimI KimJT KimH ChoJM YunG LeeJ Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability.Asian J. Pharmaceut. Sci.201496304316
    [Google Scholar]
  8. ChaumeilJ.C. Micronization: A method of improving the bioavailability of poorly soluble drugs.Methods Find. Exp. Clin. Pharmacol.199820321121510.1358/mf.1998.20.3.4856669646283
    [Google Scholar]
  9. KaurA. SinghG. RanaV. Micronization techniques for improving the bioavailability of poorly soluble drugs.Drug Deliv.201623934403456
    [Google Scholar]
  10. LiW. XuW. ZhangS. LiJ. ZhouJ. TianD. ChengJ. LiH. Supramolecular biopharmaceutical carriers based on host–guest interactions.J. Agric. Food Chem.20227040127461275910.1021/acs.jafc.2c0482236094144
    [Google Scholar]
  11. BabuV.R. AreefullaS.H. MallikarjunV. Solubility and dissolution enhancement: An overview.J. Pharm. Res.201031141145
    [Google Scholar]
  12. SmithA. Nanoparticles for Bioavailability Enhancement of Poorly Soluble Drugs.J. Pharm. Sci.20161053940955
    [Google Scholar]
  13. PatelA. Solid dispersion: An approach to enhance bioavailability of poorly water-soluble drugs.J. Pharm. (Cairo)201793251261
    [Google Scholar]
  14. KumarS. GuptaS. SharmaP.K. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drugs.J. Drug Deliv. Ther.2013334049
    [Google Scholar]
  15. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: Importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/19572722830056
    [Google Scholar]
  16. DhirendraK. LewisS. UdupaN. AtinK. Solid dispersions: A review.Pak. J. Pharm. Sci.200922223424619339238
    [Google Scholar]
  17. AtinK. Enhancement of solubility for poorly water soluble drugs by using solid dsipersion technology.Int. J Pharmaceut Res Bio-Sci201652224774
    [Google Scholar]
  18. JonesB. Self-emulsifying drug delivery systems for improved oral bioavailability of lipophilic compounds.Drug Deliv.20152211624404750
    [Google Scholar]
  19. FahrA Drug delivery strategies for poorly water soluble drug.Informa Healthcare200744403416
    [Google Scholar]
  20. UsmanovaL.S. A study of the formation of magnetically active solid dispersions of phenacetin using atomic and magnetic force microscopy.J Adv Pharm Tech Res2017827
    [Google Scholar]
  21. GershanikT. BenzenoS. BenitaS. Interaction of the self-emulsifying lipid drug delivery system with mucosa of everted rat intestine as a function of surface charge anddropletsize.Pharm. Res.199815686386910.1023/A:10119683139339647351
    [Google Scholar]
  22. ShahN.H. CarvajalM.T. PatelC.I. InfeldM.H. MalickA.W. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs.Int. J. Pharm.19941061152310.1016/0378‑5173(94)90271‑2
    [Google Scholar]
  23. MuellerE.A. KovarikJ.M. Van BreeJ.B. TetzloffW. GrevelJ. KutzK. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation.Pharm Res19941123014
    [Google Scholar]
  24. LoftssonT. BrewsterM.E. Cyclodextrins: A weapon in the fight against poorly soluble drugs.J. Drug Deliv. Sci. Technol.201953101182
    [Google Scholar]
  25. BrownC. Lipid-based formulations for improved oral bioavailability of lipophilic drugs.Int. J. Pharm.20165321112
    [Google Scholar]
  26. PoutonC.W. PorterC.J.H. Lipid-based formulations for oral delivery of poorly water-soluble drugs.Adv. Drug Deliv. Rev.20181423551
    [Google Scholar]
  27. TalekarM. TranT.H. AmijiM. Translational nano-medicines: Targeted therapeutic delivery for cancer and inflammatory diseases.AAPS J.201517481382710.1208/s12248‑015‑9772‑225921939
    [Google Scholar]
  28. BaghelS. CathcartH. O’ReillyN.J. Polymeric nanoparticles for enhanced cancer imaging.Acta Biomater.201515206216
    [Google Scholar]
  29. FontanaF. FigueiredoP. ZhangP. HirvonenJ.T. LiuD. SantosH.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods.Adv. Drug Deliv. Rev.201813132110.1016/j.addr.2018.05.00229738786
    [Google Scholar]
  30. MuraP. MaestrelliF. CirriM. Development and characterization of glyceryl monostearate self-emulsifying formulations for the delivery of acyclovir.Eur. J. Pharm. Sci.2015744350
    [Google Scholar]
  31. JainA. RanY. YalkowskyS.H. Effect of pH-sodium lauryl sulfate combination on solubilization of PG-300995 (an Anti-HIV agent): A technical note.AAPS PharmSciTech200453656710.1208/pt05034515760078
    [Google Scholar]
  32. GrahamH. Effect of pH-adjustment of bupivacaine on onset and duration of epidural analgesia in parturients.Pharm Res Can Anaesth Soc J198633553741
    [Google Scholar]
  33. DanielssonI. LindmanB. The definition of microemulsion.Colloids Surf.19813439139210.1016/0166‑6622(81)80064‑9
    [Google Scholar]
  34. LawrenceM.J. ReesG.D. Microemulsion-based media as novel drug delivery systems.Adv. Drug Deliv. Rev.20004518912110.1016/S0169‑409X(00)00103‑411104900
    [Google Scholar]
  35. HolmR. PorterC.J.H. EdwardsG.A. MüllertzA. KristensenH.G. CharmanW.N. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides.Eur. J. Pharm. Sci.2003201919710.1016/S0928‑0987(03)00174‑X13678797
    [Google Scholar]
  36. PoutonC.W. Lipid formulation for oral administration of drugs, non- emulsifying, self-emulsifying drug delivery systems.Eur. J. Pharm. Sci.200011S93S9810.1016/S0928‑0987(00)00167‑611033431
    [Google Scholar]
  37. PoutonC.W. Formulation of self-microemulsifying delivery system.Advance Drugdeliveryreviews1997254758
    [Google Scholar]
  38. O’DriscollC.M. Lipid-based formulations for intestinal lymphatic delivery.Eur. J. Pharm. Sci.200215540541510.1016/S0928‑0987(02)00051‑912036717
    [Google Scholar]
  39. CharmanW.N. Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts.J. Pharm. Sci.200089896797810.1002/1520‑6017(200008)89:8<967::AID‑JPS1>3.0.CO;2‑R10906720
    [Google Scholar]
  40. PatilS.A. RaneB.R. BakliwalS.R. PawarS.P. Nano suspension: At a glance.Int. J. Pharma Sci.201131947960
    [Google Scholar]
  41. PatravaleV.B. DateA.A. KulkarniR.M. Nanosuspensions: A promising drug delivery strategy.J. Pharm. Pharmacol.201056782784010.1211/002235702369115233860
    [Google Scholar]
  42. MudgilM. GuptaN. NagpalM. PawarP. Nanotechnology: A new approach for Ocular Drug Delivery System.Int. J. Pharm. Pharm. Sci.201242105112
    [Google Scholar]
  43. NagarajuP. A current approach for Drug Delivery System.Int. J. Pharma Sci.201132245259
    [Google Scholar]
  44. KoteshwaraK.B. Nanosuspension: A Novel Drug Delivery Approach.Int J Rapid Appl Pharmaceut.201121162165
    [Google Scholar]
  45. PignatelloR. BucoloC. SpedalieriG. MalteseA. PuglisiG. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application.Biomaterials200223153247325510.1016/S0142‑9612(02)00080‑712102196
    [Google Scholar]
  46. PorterC.J.H. TrevaskisN.L. CharmanW.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs.Nat. Rev. Drug Discov.20076323124810.1038/nrd219717330072
    [Google Scholar]
  47. SinghN. AllawadiD. SinghS. AroraS.S. Techniques for bioavailability enhancement of BCS class II drugs: A review.Int J Pharmaceut Chem Sci.20132210921101
    [Google Scholar]
  48. PatelJ. AmrutiyaJ. BhattP. Nanosizing techniques for improving the oral bioavailability of poorly soluble drugs.Drug Deliv. Transl. Res.201991269285
    [Google Scholar]
  49. AakeröyC.B. SalmonD.J. Cocrystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients.Int. J. Pharm.201956611841198
    [Google Scholar]
  50. KhanJ. RaniS. AhmadM. Salt formation to improve drug solubility.Adv. Pharm. Bull.201664475484
    [Google Scholar]
  51. MaheshwariR.K. Hydrotropy: A promising tool for solubility enhancement: A review.Int. J. Pharm. Sci. Res.201234974990
    [Google Scholar]
  52. MartinA. BustamanteP. ChunA.H.C. Cosolvency: A technique for solubilization of poorly soluble drugs.Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences. 4th edPhiladelphia: Lippincott Williams & Wilkins1993217237
    [Google Scholar]
  53. VerekarR DesaiS AyyanarM NadafS GuravS. Nanocochleates: Revolutionizing lipid-based drug delivery with enhanced bioavailability, a review.Hybrid Advances20246100215
    [Google Scholar]
  54. TrottaF. ZanettiM. CavalliR. Cyclodextrin-based nanosponges as drug carriers.Beilstein J. Org. Chem.2012812091209910.3762/bjoc.8.23523243470
    [Google Scholar]
  55. KrishnamoorthyK. RajappanM. Nanosponges: A novel class of drug delivery system--review. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences.SocieteCanadienne des Sci Pharmaceutiq.2012151103111
    [Google Scholar]
  56. KumarS. RaoR. Analytical tools for cyclodextrin nanosponges in pharmaceutical field: A review.J. Incl. Phenom. Macrocycl. Chem.2019941-2113010.1007/s10847‑019‑00903‑z
    [Google Scholar]
  57. SambhakarS. SaharanR. NarwalS. MalikR. GahlotV. KhalidA. NajmiA. ZoghebimK. HalawiM.A. AlbrattyM. MohanS. Exploring LIPID’s for their Potential to Improves bioavailability of lipophilic drugs candidates: A review.Saudi Pharm. J.20233112101870
    [Google Scholar]
  58. MahalekshmiV BalakrishnanN ParthasarathyV Recent advancement of nanosponges in pharmaceutical formulation for drug delivery systemsJ. Appl. Pharmacuet. Sci.2023133181212344110.7324/JAPS.2023.123441
    [Google Scholar]
  59. ShoaibQ. AbbasN. IrfanM. HussainA. ArshadM.S. HussainS.Z. LatifS. BukhariN.I. Development and evaluation of scaffold-based nanosponge formulation for controlled drug delivery of naproxen and ibuprofen.Trop. J. Pharm. Res.20181781465147410.4314/tjpr.v17i8.2
    [Google Scholar]
  60. LambertJ.D. HongJ. KimD.H. MishinV.M. YangC.S. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice.J. Nutr.200413481948195210.1093/jn/134.8.194815284381
    [Google Scholar]
  61. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑9574509619120
    [Google Scholar]
  62. AzumaK. IppoushiK. ItoH. HigashioH. TeraoJ. Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats.J. Agric. Food Chem.20025061706171210.1021/jf011242111879062
    [Google Scholar]
  63. AgullóV. VillañoD. García-VigueraC. Domínguez-PerlesR. Anthocyanin metabolites in human urine after the intake of new functional beverages.Molecules202025237110.3390/molecules2502037131963236
    [Google Scholar]
  64. SalahM. MansourM. ZogonaD. XuX. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro.Food Res. Int.202013710963510.1016/j.foodres.2020.10963533233214
    [Google Scholar]
  65. SongX. GanK. QinS. ChenL. LiuX. ChenT. LiuH. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure.Sci. Rep.201991636510.1038/s41598‑019‑42909‑031019215
    [Google Scholar]
  66. PedrozoR.C. AntônioE. KhalilN.M. MainardesR.M. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying.Braz. J. Pharm. Sci.202056e1769210.1590/s2175‑97902019000317692
    [Google Scholar]
  67. TangC.H. ChenH.L. DongJ.R. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives.Appl. Sci. (Basel)2023133172610.3390/app13031726
    [Google Scholar]
  68. MeenaJ. GuptaA. AhujaR. SinghM. BhaskarS. PandaA.K. Inorganic nanoparticles for natural product delivery: A review.Environ. Chem. Lett.20201862107211810.1007/s10311‑020‑01061‑2
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638311058240806100555
Loading
/content/journals/cddt/10.2174/0115701638311058240806100555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test