Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Efforts aimed at enhancing patient survival have focused on early detection and diagnosis, followed by prompt treatment of potentially malignant disorders, aiming to halt their advancement into oral cancer. Recent research has shed light on the pivotal role of the Wnt/B-catenin signaling pathway in the pathogenesis of potentially malignant oral conditions. This pathway undergoes a progressive activation process across various degrees of epithelial dysplasia, including mild, moderate, and severe dysplasia. Beta-catenin (B-catenin) triggers the activation of genes associated with crucial cellular processes, which include cell growth, viability, differentiation, and migration.

Aims

In the present study, we aimed to design a novel drug with 3 bioactive compounds through analysis, assess its efficacy against B-catenin, and develop a new pharmacophore with an emphasis on B-catenin inhibition.

Materials and Methods

Based on prior literature, three molecules possessing potent beta-catenin-blocking properties were selected, namely rosmarinic acid, zosterin, and stigmasterol. To evaluate their binding affinities, molecular docking studies were conducted using the Lamarckian Genetic Algorithm implemented in AutoDock Tools 1.5.7. Initially, AutoGrid was employed to construct a grid box for docking purposes. The estimated binding poses of each compound were subjected to clustering analysis. The interactions between the compounds and beta-catenin were visualized and explored using PyMOL software.

Results

Stigmasterol displayed the most substantial binding energy with a value of -3.86 kcal/mol, followed by rosmarinic acid and zosterin.

Conclusion

Bioactive components can be used for beta-catenin pathway blocking. Future research should be carried out to assess these substances in more clinically relevant cancer models.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947335634241007045749
2024-10-14
2025-12-05
Loading full text...

Full text loading...

References

  1. HaddadR.I. ShinD.M. Recent advances in head and neck cancer.N. Engl. J. Med.2008359111143115410.1056/NEJMra0707975 18784104
    [Google Scholar]
  2. SD. RamaniP. DobleM. RamasubramanianA. Ferroptosis mediated novel drug design approach in the treatment of oral squamous cell carcinoma.Asian Pac. J. Cancer Prev.20232472321232710.31557/APJCP.2023.24.7.2321 37505762
    [Google Scholar]
  3. PriyadharshiniG. RamalingamK. RamaniP. KrishnanM. Longitudinal assessment of the quality of life in oral squamous cell carcinoma patients.Cureus2024165e6059610.7759/cureus.60596 38894763
    [Google Scholar]
  4. ChoongN. VokesE. Expanding role of the medical oncologist in the management of head and neck cancer.CA Cancer J. Clin.2008581325310.3322/CA.2007.0004 18096865
    [Google Scholar]
  5. PandiarD. SutharshanG.S. KrishnanR.P. Morphometric analysis of papillary synovial metaplasia-like changes in oral mucoceles.Oral Dis.20232310.1111/odi.14777 37869873
    [Google Scholar]
  6. PandiarD. NayanarS.K. NairV. Papillary thyroid carcinoma arising in thyroglossal duct cyst: A case report with long term follow-up.Oral Oncol.202314310643910.1016/j.oraloncology.2023.106439 37290382
    [Google Scholar]
  7. YuwanatiM. RamadossR. KudoY. RamaniP. Senthil MuruganM. Prevalence of oral submucous fibrosis among areca nut chewers: A systematic review and meta‐analysis.Oral Dis.20232951920192610.1111/odi.14235 35503720
    [Google Scholar]
  8. MisraS.R. DasR. KarthikeyanR. Quality of life in patients with oral squamous cell carcinoma: A critical assessment tool, sadly ignored!Oral Oncol.202314510652810.1016/j.oraloncology.2023.106528 37499328
    [Google Scholar]
  9. PandiarD. KannanN. KrishnanR.P. Radiation induced oral sarcomatoid carcinoma: A case report and an insight into pathogenesis.Oral Oncol.202314410649910.1016/j.oraloncology.2023.106499 37442057
    [Google Scholar]
  10. KannanN. PandiarD. SubramanianR. KrishnanR.P. SC. Helicobacter pylori positive oral squamous cell carcinoma demonstrate higher pathological tumor staging and poorer overall survival.J. Stomatol. Oral Maxillofac. Surg.2024125410195210.1016/j.jormas.2024.101952 38906379
    [Google Scholar]
  11. SD. RamalingamK. RamaniP. KrishnanM. A concordance between clinical and pathological tumor staging of oral squamous cell carcinoma: An institutional study.Cureus2024166e6158410.7759/cureus.61584 38962622
    [Google Scholar]
  12. ThiagalingamS. FoyR.L. ChengK. LeeH.J. ThiagalingamA. PonteJ.F. Loss of heterozygosity as a predictor to map tumor suppressor genes in cancer: Molecular basis of its occurrence.Curr. Opin. Oncol.2002141657210.1097/00001622‑200201000‑00012 11790983
    [Google Scholar]
  13. PriyadarshiniG. SukumaranG. DilipanE. RamaniP. Targeting oral cancer: In silico docking studies of phytochemicals on oncogenic molecular markers.Asian Pac. J. Cancer Prev.2562069207510.31557/APJCP.2024.25.6.2069 38918669
    [Google Scholar]
  14. CruciatC.M. NiehrsC. Secreted and transmembrane wnt inhibitors and activators.Cold Spring Harb. Perspect. Biol.201353a01508110.1101/cshperspect.a015081 23085770
    [Google Scholar]
  15. MacDonaldB.T. TamaiK. HeX. Wnt/beta-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  16. GordonM.D. NusseR. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors.J. Biol. Chem.200628132224292243310.1074/jbc.R600015200 16793760
    [Google Scholar]
  17. EzhilarasanD. LakshmiT. SubhaM. The ambiguous role of sirtuins in head and neck squamous cell carcinoma.Oral Dis.20211110.1111/odi.13798 33570800
    [Google Scholar]
  18. SaravananM. SampathS. ArockiarajJ. The use of advanced transoral robotic surgery in the treatment of oropharynx squamous cell carcinoma: A modern alternative for open surgery.Oral Oncol.202314510652210.1016/j.oraloncology.2023.106522 37499329
    [Google Scholar]
  19. LuoY. MaZ. XuX. QiH. ChengZ. ChenL. Anticancer effects of rosmarinic acid in human oral cancer cells is mediated via endoplasmic reticulum stress, apoptosis, G2/M cell cycle arrest and inhibition of cell migration.J BUON202025212451250 32521932
    [Google Scholar]
  20. JieF. YangX. YangB. LiuY. WuL. LuB. Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation.Biomed. Pharmacother.202215311331710.1016/j.biopha.2022.113317 35772378
    [Google Scholar]
  21. Ramos-GarcíaP. González-MolesM.Á. Prognostic and clinicopathological significance of the aberrant expression of β-catenin in oral squamous cell carcinoma: A systematic review and meta-analysis.Cancers (Basel)202214347910.3390/cancers14030479 35158747
    [Google Scholar]
  22. YapijakisC. KalogeraS. PapakostaV. VassiliouS. The hamster model of sequential oral carcinogenesis: An update.In Vivo20193361751175510.21873/invivo.11665 31662499
    [Google Scholar]
  23. VimalrajS. SekaranS. Exploring the potential of MiRNAs as predictive biomarkers for radioresistance in nasopharyngeal carcinoma.Oral Oncol.202314510652110.1016/j.oraloncology.2023.106521 37467682
    [Google Scholar]
  24. GheenaS. EzhilarasanD. Personalized mRNA cancer vaccines with immune checkpoint inhibitors: A promising therapeutic approach in oral cancer patients.Oral Oncol.202313710628210.1016/j.oraloncology.2022.106282 36563494
    [Google Scholar]
  25. BehrensJ. JerchowB.A. WürteleM. Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta.Science1998280536359659910.1126/science.280.5363.596 9554852
    [Google Scholar]
  26. AberleH. BauerA. StappertJ. KispertA. KemlerR. β-catenin is a target for the ubiquitin–proteasome pathway.EMBO J.199716133797380410.1093/emboj/16.13.3797 9233789
    [Google Scholar]
  27. IkedaS. KishidaS. YamamotoH. MuraiH. KoyamaS. KikuchiA. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta -catenin and promotes GSK-3beta -dependent phosphorylation of beta -catenin.EMBO J.19981751371138410.1093/emboj/17.5.1371 9482734
    [Google Scholar]
  28. PopovA.M. LiamkinG.P. ArtiukovA.A. LoenkoIuN. EliakovG.B. The pharmacokinetics of zosterin - A pectin from the eelgrass Zostera asiatica.Dokl. Akad. Nauk SSSR19903151232235 2097121
    [Google Scholar]
  29. AwadA.B. WilliamsH. FinkC.S. Phytosterols reduce in vitro metastatic ability of MDA-MB-231 human breast cancer cells.Nutr. Cancer200140215716410.1207/S15327914NC402_12 11962251
    [Google Scholar]
  30. BradfordP.G. AwadA.B. Phytosterols as anticancer compounds.Mol. Nutr. Food Res.200751216117010.1002/mnfr.200600164 17266177
    [Google Scholar]
  31. WoyengoT.A. RamprasathV.R. JonesP.J.H. Anticancer effects of phytosterols.Eur. J. Clin. Nutr.200963781382010.1038/ejcn.2009.29 19491917
    [Google Scholar]
  32. BakrimS. BenkhairaN. BouraisI. Health benefits and pharmacological properties of stigmasterol.Antioxidants20221110191210.3390/antiox11101912 36290632
    [Google Scholar]
  33. SelvarajJ. RekhaU.V. JhS.F. Molecular docking data of E3 ubiquitin-protein ligase WWP1 with compounds from a medicinal plant Justicia adhatoda L.Bioinformation202117116216610.6026/97320630017162 34393432
    [Google Scholar]
  34. ArifR. BukhariS.A. MustafaG. AhmedS. AlbeshrM.F. Network pharmacology and experimental validation to explore the potential mechanism of Nigella sativa for the treatment of breast cancer.Pharmaceuticals (Basel)202417561710.3390/ph17050617 38794187
    [Google Scholar]
  35. NazemiM. KhalediM. GolshanM. Cytotoxicity activity and druggability studies of sigmasterol isolated from marine sponge Dysidea avara against oral epithelial cancer cell (KB/C152) and T-lymphocytic leukemia cell line (Jurkat/E6-1).Asian Pac. J. Cancer Prev.2020214997100310.31557/APJCP.2020.21.4.997 32334461
    [Google Scholar]
  36. OyinloyeB.E. AdekiyaT.A. ArulebaR.T. OjoO.A. AjiboyeB.O. Structure-based docking studies of glut4 towards exploring selected phytochemicals from Solanum xanthocarpum as a therapeutic target for the treatment of cancer.Curr. Drug Discov. Technol.201916440641610.2174/1570163815666180801152110 30068281
    [Google Scholar]
  37. AdewoleK.E. IsholaA.A. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: An in-silico study.J. Recept. Signal Transduct. Res.201939879710.1080/10799893.2019.1625062 31215288
    [Google Scholar]
  38. Website NadeemM. Therapeutic potential of rosmarinic acid: A comprehensive review.Appl. Sci. (Basel)2019915313910.3390/app9153139
    [Google Scholar]
  39. LeeC.H. TsaoY.H. WengY.P. WangI.C. ChenY.P. HungP.F. Therapeutic effects of perilla phenols in oral squamous cell carcinoma.Int. J. Mol. Sci.202324191493110.3390/ijms241914931 37834377
    [Google Scholar]
  40. MahmoudM.A. OkdaT.M. OmranG.A. Abd-AlhaseebM.M. Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation.J. Appl. Biomed.202119420220910.32725/jab.2021.024 34907739
    [Google Scholar]
  41. UtispanK. NiyomthamN. YingyongnarongkulB. KoontongkaewS. Ethanolic extract of Ocimum sanctum leaves reduced invasion and matrix metalloproteinase activity of head and neck cancer cell lines.Asian Pac. J. Cancer Prev.202021236337010.31557/APJCP.2020.21.2.363 32102512
    [Google Scholar]
  42. AnusuyaC. ManoharanS. Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis.J. Environ. Pathol. Toxicol. Oncol.201130319921110.1615/JEnvironPatholToxicolOncol.v30.i3.30 22126613
    [Google Scholar]
  43. Baldasquin-CaceresB. Gomez-GarciaF.J. López-JornetP. Castillo-SanchezJ. Vicente-OrtegaV. Chemopreventive potential of phenolic compounds in oral carcinogenesis.Arch. Oral Biol.201459101101110710.1016/j.archoralbio.2014.06.007 25033381
    [Google Scholar]
  44. BaligaM.S. JimmyR. ThilakchandK.R. Ocimum sanctum L (holy basil or tulsi) and its phytochemicals in the prevention and treatment of cancer.Nutr. Cancer201365suppl 1263510.1080/01635581.2013.785010 23682780
    [Google Scholar]
  45. GloaguenV. BrudieuxV. ClossB. Structural characterization and cytotoxic properties of an apiose-rich pectic polysaccharide obtained from the cell wall of the marine phanerogam Zostera marina.J. Nat. Prod.20107361087109210.1021/np100092c 20465284
    [Google Scholar]
  46. ZaporozhetsT.S. Neutrophil activation by sea hydrobiont biopolymers.Antibiot. Khimioter.200348937 15002173
    [Google Scholar]
  47. ZaporozhetsT.S. BesednovaN.N. MolchanovaV.N. ZviagintsevaT.N. Comparative immunologic activity of marine bioglycans.Antibiot. Khimioter.2001467610 11697245
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947335634241007045749
Loading
/content/journals/cctr/10.2174/0115733947335634241007045749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test