Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Vulvar cancer is a rare disease of mostly premenstrual women. Although it is a rare disease, vulvar cancer is on the rise among women of reproductive age. Long non-coding RNAs (lncRNAs) are RNAs with more than 200 nucleotides that are not involved in the production of proteins. LncRNAs are actively associated with disease progression in various diseases. However, although the focus or literature on the role of lncRNAs in the progression of different cancers has elucidated their pathophysiology at least partly, vulvar cancer has received much less attention. The present study showed that the majority of lncRNAs studied so far are miRNAs. Some of these miRNAs have been shown to be upregulated, while others have been shown to be downregulated in vulvar cancer. Furthermore, some hypotheses have been introduced to explain the role of these lncRNAs, including their role in targeting p53, HPV, and HMGA2. In this article, we reviewed the role of lncRNAs in the progression, metastasis, development of chemoresistance, diagnosis, and treatment of vulvar cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947307273240718082900
2024-07-23
2025-12-05
Loading full text...

Full text loading...

References

  1. AlkatoutI. GüntherV. SchubertM. WeigelM. GarbrechtN. JonatW. MundhenkeC. Vulvar cancer: Epidemiology, clinical presentation, and management options.Int. J. Womens Health2015730531310.2147/IJWH.S6897925848321
    [Google Scholar]
  2. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2016.CA Cancer J. Clin.201666173010.3322/caac.2133226742998
    [Google Scholar]
  3. HolleczekB. SehouliJ. BarinoffJ. Vulvar cancer in Germany: Increase in incidence and change in tumour biological characteristics from 1974 to 2013.Acta Oncol.201857332433010.1080/0284186X.2017.136051328799431
    [Google Scholar]
  4. MerloS. Modern treatment of vulvar cancer.Radiol. Oncol.202054437137610.2478/raon‑2020‑005332960779
    [Google Scholar]
  5. DellingerT.H. HakimA.A. LeeS.J. WakabayashiM.T. MorganR.J. HanE.S. Surgical management of vulvar cancer.J. Natl. Compr. Canc. Netw.201715112112810.6004/jnccn.2017.000928040722
    [Google Scholar]
  6. WeinbergD. Gomez-MartinezR.A. Vulvar Cancer.Obstet. Gynecol. Clin. North Am.201946112513510.1016/j.ogc.2018.09.00830683259
    [Google Scholar]
  7. WoelberL PrieskeK EulenburgC Oliveira-FerrerL de GregorioN KlapdorR p53 and p16 expression profiles in vulvar cancer: A translational analysis by the Arbeitsgemeinschaft Gynäkologische Onkologie Chemo and Radiotherapy in Epithelial Vulvar Cancer study group.Am J Obstet Gynecol.20212246595.e1e11
    [Google Scholar]
  8. HombachS. KretzM. Non-coding RNAs: Classification, biology and functioning.Adv. Exp. Med. Biol.201693731710.1007/978‑3‑319‑42059‑2_127573892
    [Google Scholar]
  9. MatsuiM. CoreyD.R. Non-coding RNAs as drug targets.Nat. Rev. Drug Discov.201716316717910.1038/nrd.2016.11727444227
    [Google Scholar]
  10. PennisiE. ENCODE project writes eulogy for junk DNA.Science20123376099115961
    [Google Scholar]
  11. GulìaC. BaldassarraS. SignoreF. RigonG. PizzutiV. GaffiM. BrigantiV. PorrelloA. PiergentiliR. Role of Non-Coding RNAs in the Etiology of Bladder Cancer.Genes (Basel)201781133910.3390/genes811033929165379
    [Google Scholar]
  12. Pop-BicaC. GuleiD. Cojocneanu-PetricR. BraicuC. PetrutB. Berindan-NeagoeI. Understanding the role of non-coding RNAs in bladder cancer: From dark matter to valuable therapeutic targets.Int. J. Mol. Sci.2017187151410.3390/ijms1807151428703782
    [Google Scholar]
  13. YanH. BuP. Non-coding RNA in cancer.Essays Biochem.202165462563910.1042/EBC2020003233860799
    [Google Scholar]
  14. VosP.D. LeedmanP.J. FilipovskaA. RackhamO. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer.Cell. Mol. Life Sci.201976193745375210.1007/s00018‑019‑03163‑931165201
    [Google Scholar]
  15. ZengQ. WanH. ZhaoS. XuH. TangT. OwareK.A. QuS. Role of PIWI ‐interacting RNAs on cell survival: Proliferation, apoptosis, and cycle.IUBMB Life20207291870187810.1002/iub.233232697419
    [Google Scholar]
  16. WangN. YuY. XuB. ZhangM. LiQ. MiaoL. Pivotal prognostic and diagnostic role of the long non‑coding RNA colon cancer‑associated transcript 1 expression in human cancer (Review).Mol. Med. Rep.201919277178230535444
    [Google Scholar]
  17. ZhaoW. AnY. LiangY. XieX.W. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer.Eur. Rev. Med. Pharmacol. Sci.201418131930193625010625
    [Google Scholar]
  18. InamuraK. Major tumor suppressor and Oncogenic Non-Coding RNAs: Clinical relevance in lung cancer.Cells2017621210.3390/cells602001228486418
    [Google Scholar]
  19. YanaiharaN. CaplenN. BowmanE. SeikeM. KumamotoK. YiM. StephensR.M. OkamotoA. YokotaJ. TanakaT. CalinG.A. LiuC.G. CroceC.M. HarrisC.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.Cancer Cell20069318919810.1016/j.ccr.2006.01.02516530703
    [Google Scholar]
  20. YuS.L. ChenH.Y. ChangG.C. ChenC.Y. ChenH.W. SinghS. ChengC.L. YuC.J. LeeY.C. ChenH.S. SuT.J. ChiangC.C. LiH.N. HongQ.S. SuH.Y. ChenC.C. ChenW.J. LiuC.C. ChanW.K. ChenW.J. LiK.C. ChenJ.J.W. YangP.C. MicroRNA signature predicts survival and relapse in lung cancer.Cancer Cell2008131485710.1016/j.ccr.2007.12.00818167339
    [Google Scholar]
  21. InamuraK. IshikawaY. MicroRNA in lung cancer: Novel biomarkers and potential tools for treatment.J. Clin. Med.2016533610.3390/jcm503003627005669
    [Google Scholar]
  22. MacDonaghL. GrayS.G. FinnS.P. CuffeS. O’ByrneK.J. BarrM.P. The emerging role of microRNAs in resistance to lung cancer treatments.Cancer Treat. Rev.201541216016910.1016/j.ctrv.2014.12.00925592062
    [Google Scholar]
  23. CeppiP. MudduluruG. KumarswamyR. RapaI. ScagliottiG.V. PapottiM. AllgayerH. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer.Mol. Cancer Res.2010891207121610.1158/1541‑7786.MCR‑10‑005220696752
    [Google Scholar]
  24. TakeyamaY. SatoM. HorioM. HaseT. YoshidaK. YokoyamaT. NakashimaH. HashimotoN. SekidoY. GazdarA.F. MinnaJ.D. KondoM. HasegawaY. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells.Cancer Lett.2010296221622410.1016/j.canlet.2010.04.00820452118
    [Google Scholar]
  25. PasmantE. LaurendeauI. HéronD. VidaudM. VidaudD. BiècheI. Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF.Cancer Res.20076783963396910.1158/0008‑5472.CAN‑06‑200417440112
    [Google Scholar]
  26. ZhangE. KongR. YinD. YouL. SunM. HanL. XuT. XiaR. YangJ. DeW. ChenJ. Long noncoding RNA ANRIL indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of miR-99a/miR-449a.Oncotarget2014582276229210.18632/oncotarget.190224810364
    [Google Scholar]
  27. IranpourM. SoudyabM. GeranpayehL. MirfakhraieR. AzargashbE. MovafaghA. Ghafouri-FardS. Expression analysis of four long noncoding RNAs in breast cancer.Tumour Biol.20163732933294010.1007/s13277‑015‑4135‑226409453
    [Google Scholar]
  28. NaemuraM. MurasakiC. InoueY. OkamotoH. KotakeY. Long Noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells.Anticancer Res.201535105377538226408699
    [Google Scholar]
  29. LiZ. YuX. ShenJ. ANRIL: A pivotal tumor suppressor long non-coding RNA in human cancers.Tumour Biol.20163755657566110.1007/s13277‑016‑4808‑526753962
    [Google Scholar]
  30. JiP. DiederichsS. WangW. BöingS. MetzgerR. SchneiderP.M. TidowN. BrandtB. BuergerH. BulkE. ThomasM. BerdelW.E. ServeH. Müller-TidowC. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer.Oncogene200322398031804110.1038/sj.onc.120692812970751
    [Google Scholar]
  31. GutschnerT. HämmerleM. EißmannM. HsuJ. KimY. HungG. RevenkoA. ArunG. StentrupM. GroßM. ZörnigM. MacLeodA.R. SpectorD.L. DiederichsS. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells.Cancer Res.20137331180118910.1158/0008‑5472.CAN‑12‑285023243023
    [Google Scholar]
  32. PetrovicsG. ZhangW. MakaremM. StreetJ.P. ConnellyR. SunL. SesterhennI.A. SrikantanV. MoulJ.W. SrivastavaS. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients.Oncogene200423260561110.1038/sj.onc.120706914724589
    [Google Scholar]
  33. ChungS. NakagawaH. UemuraM. PiaoL. AshikawaK. HosonoN. TakataR. AkamatsuS. KawaguchiT. MorizonoT. TsunodaT. DaigoY. MatsudaK. KamataniN. NakamuraY. KuboM. Association of a novel long non‐coding RNA in 8q24 with prostate cancer susceptibility.Cancer Sci.2011102124525210.1111/j.1349‑7006.2010.01737.x20874843
    [Google Scholar]
  34. KomiyaA. YasudaK. WatanabeA. FujiuchiY. TsuzukiT. FuseH. The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients.Mol. Clin. Oncol.20131225726210.3892/mco.2013.6924649157
    [Google Scholar]
  35. WightmanB. HaI. RuvkunG. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell199375585586210.1016/0092‑8674(93)90530‑48252622
    [Google Scholar]
  36. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y8252621
    [Google Scholar]
  37. BetelD. WilsonM. GabowA. MarksD.S. SanderC. The microRNA.org resource: Targets and expression.Nucleic Acids Res.200836Database issueD149D15318158296
    [Google Scholar]
  38. FarkhondehT. SamarghandianS. Azimin-NezhadM. SaminiF. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats.Int J Clin Exper Med2015 Feb 15822465247025932190
    [Google Scholar]
  39. EohK. PaekJ. KimS. KimH. LeeH. LeeS. KimY. Long non-coding RNA, steroid receptor RNA activator (SRA), induces tumor proliferation and invasion through the NOTCH pathway in cervical cancer cell lines.Oncol. Rep.20173863481348810.3892/or.2017.602329039612
    [Google Scholar]
  40. GioiaR. DrouinS. OuimetM. CaronM. St-OngeP. RicherC. SinnettD. LncRNAs downregulated in childhood acute lymphoblastic leukemia modulate apoptosis, cell migration, and DNA damage response.Oncotarget2017846806458065010.18632/oncotarget.2081729113332
    [Google Scholar]
  41. Marín-BéjarO. MasA.M. GonzálezJ. MartinezD. AthieA. MoralesX. GaldurozM. RaimondiI. GrossiE. GuoS. RouzautA. UlitskyI. HuarteM. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element.Genome Biol.201718120210.1186/s13059‑017‑1331‑y29078818
    [Google Scholar]
  42. ChuY. OuyangY. WangF. ZhengA. BaiL. HanL. ChenY. WangH. MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1.J. Cell. Biochem.2014115584785310.1002/jcb.2472624288179
    [Google Scholar]
  43. MouK. DingM. HanD. ZhouY. MuX. LiuW. WangL. miR‑590‑5p inhibits tumor growth in malignant melanoma by suppressing YAP1 expression.Oncol. Rep.20184042056206610.3892/or.2018.663330106445
    [Google Scholar]
  44. ShanX. MiaoY. FanR. QianH. ChenP. LiuH. YanX. LiJ. ZhouF. MiR-590-5P inhibits growth of HepG2 cells via decrease of S100A10 expression and Inhibition of the Wnt pathway.Int. J. Mol. Sci.20131448556856910.3390/ijms1404855623598417
    [Google Scholar]
  45. SamarghandianS. Azimi-NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state.Phytother Res2016 Aug;308134553Epub 2016 Jun 9.10.1002/ptr.5638.27279282
    [Google Scholar]
  46. ChiappettaG. AvantaggiatoV. ViscontiR. FedeleM. BattistaS. TrapassoF. MerciaiB.M. FidanzaV. GiancottiV. SantoroM. SimeoneA. FuscoA. High level expression of the HMGI (Y) gene during embryonic development.Oncogene19961311243924468957086
    [Google Scholar]
  47. RogallaP. DrechslerK. FreyG. HennigY. HelmkeB. BonkU. BullerdiekJ. HMGI-C expression patterns in human tissues. Implications for the genesis of frequent mesenchymal tumors.Am. J. Pathol.199614937757798780382
    [Google Scholar]
  48. HetlandT.E. HolthA. KærnJ. FlørenesV.A. TropéC.G. DavidsonB. HMGA2 protein expression in ovarian serous carcinoma effusions, primary tumors, and solid metastases.Virchows Arch.2012460550551310.1007/s00428‑012‑1228‑922476403
    [Google Scholar]
  49. LamouilleS. XuJ. DerynckR. Molecular mechanisms of epithelial–mesenchymal transition.Nat. Rev. Mol. Cell Biol.201415317819610.1038/nrm375824556840
    [Google Scholar]
  50. KristjánsdóttirK. FogartyE.A. GrimsonA. Systematic analysis of the Hmga2 3′ UTR identifies many independent regulatory sequences and a novel interaction between distal sites.RNA20152171346136010.1261/rna.051177.11525999317
    [Google Scholar]
  51. LinY. LiuA.Y. FanC. ZhengH. LiY. ZhangC. WuS. YuD. HuangZ. LiuF. LuoQ. YangC.J. OuyangG. MicroRNA-33b inhibits breast cancer metastasis by targeting HMGA2, SALL4 and Twist1.Sci. Rep.201551999510.1038/srep0999525919570
    [Google Scholar]
  52. LiuY. LiangH. JiangX. miR-1297 promotes apoptosis and inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting HMGA2.Int. J. Mol. Med.20153651345135210.3892/ijmm.2015.234126398017
    [Google Scholar]
  53. AqeilanR. HuebnerK. KaurB. FHIT Suppresses Epithelial-Mesenchymal Transition (EMT) and Metastasis in Lung Cancer through Modulation of MicroRNAs.PLoS Genetics201410e1004652
    [Google Scholar]
  54. AgostiniA. BrunettiM. DavidsonB. TropeC.G. HeimS. PanagopoulosI. MicciF. Expressions of miR-30c and let-7a are inversely correlated with HMGA2 expression in squamous cell carcinoma of the vulva.Oncotarget2016751850588506210.18632/oncotarget.1318727835588
    [Google Scholar]
  55. LiuQ. LvG. QinX. GenY. ZhengS. LiuT. LuX. Role of microRNA let-7 and effect to HMGA2 in esophageal squamous cell carcinoma.Mol. Biol. Rep.20123921239124610.1007/s11033‑011‑0854‑721598109
    [Google Scholar]
  56. ParkS.M. ShellS. RadjabiA.R. SchickelR. FeigC. BoyerinasB. DinulescuD.M. LengyelE. PeterM.E. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2.Cell Cycle20076212585259010.4161/cc.6.21.484517957144
    [Google Scholar]
  57. KolendaT. PrzybyłaW. TeresiakA. MackiewiczA. LamperskaK.M. The mystery of let-7d - a small RNA with great power.Contemp. Oncol. (Pozn.)201418529330110.5114/wo.2014.4446725477749
    [Google Scholar]
  58. WangH. OuyangL. GaoS. Effects of antisense lncRNA PCBP1-AS1 on biological behaviors of vulvar squamous carcinoma cells by regulating TRAF5 and NF-κB expression.Transl. Cancer Res.2019841578159010.21037/tcr.2019.08.1135116901
    [Google Scholar]
  59. WatsonJ.A. BryanK. WilliamsR. PopovS. VujanicG. CoulombA. Boccon-GibodL. GrafN. Pritchard-JonesK. O’SullivanM. miRNA profiles as a predictor of chemoresponsiveness in Wilms’ tumor blastema.PLoS One201381e5341710.1371/journal.pone.005341723308219
    [Google Scholar]
  60. YangX. WuX. miRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p.Oncol. Rep.201635139840810.3892/or.2015.434426498065
    [Google Scholar]
  61. LiX. HuangK. YuJ. Inhibition of microRNA-21 upregulates the expression of programmed cell death 4 and phosphatase tensin homologue in the A431 squamous cell carcinoma cell line.Oncol. Lett.20148120320710.3892/ol.2014.206624959246
    [Google Scholar]
  62. de Melo MaiaB. Lavorato-RochaA.M. RodriguesL.S. Coutinho-CamilloC.M. BaiocchiG. StiepcichM.M. PugaR. de A LimaL. SoaresF.A. RochaR.M. microRNA portraits in human vulvar carcinoma.Cancer Prev. Res. (Phila.)20136111231124110.1158/1940‑6207.CAPR‑13‑012124048714
    [Google Scholar]
  63. YangM. ChenJ. SuF. YuB. SuF. LinL. LiuY. HuangJ.D. SongE. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells.Mol. Cancer201110111710.1186/1476‑4598‑10‑11721939504
    [Google Scholar]
  64. LiuL. ZhangC. LiX. SunW. QinS. QinL. WangX. miR-223 promotes colon cancer by directly targeting p120 catenin.Oncotarget2017838637646377910.18632/oncotarget.1954128969027
    [Google Scholar]
  65. LiangH. YanX. PanY. WangY. WangN. LiL. LiuY. ChenX. ZhangC.Y. GuH. ZenK. MicroRNA-223 delivered by platelet-derived microvesicles promotes lung cancer cell invasion via targeting tumor suppressor EPB41L3.Mol. Cancer20151415810.1186/s12943‑015‑0327‑z25881295
    [Google Scholar]
  66. LaiosA. O’TooleS. FlavinR. MartinC. KellyL. RingM. FinnS.P. BarrettC. LodaM. GleesonN. D’ArcyT. McGuinnessE. SheilsO. SheppardB. O’ LearyJ. Potential role of miR-9 and miR-223 in recurrent ovarian cancer.Mol. Cancer2008713510.1186/1476‑4598‑7‑3518442408
    [Google Scholar]
  67. de Melo MaiaB. RodriguesI.S. AkagiE.M. Soares do AmaralN. LingH. MonroigP. SoaresF.A. CalinG.A. RochaR.M. MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression.Oncotarget2016731492174923110.18632/oncotarget.1024727359057
    [Google Scholar]
  68. PulikkanJ.A. DenglerV. PeramangalamP.S. Peer ZadaA.A. Müller-TidowC. BohlanderS.K. TenenD.G. BehreG. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia.Blood201011591768177810.1182/blood‑2009‑08‑24010120029046
    [Google Scholar]
  69. BirnieK.A. YipY.Y. NgD.C.H. KirschnerM.B. ReidG. PrêleC.M. MuskA.W.B. LeeY.C.G. ThompsonP.J. MutsaersS.E. BadrianB. Loss of miR-223 and JNK Signaling Contribute to Elevated Stathmin in Malignant Pleural Mesothelioma.Mol. Cancer Res.20151371106111810.1158/1541‑7786.MCR‑14‑044225824152
    [Google Scholar]
  70. LiZ. YangY. DuL. DongZ. WangL. ZhangX. ZhouX. ZhengG. QuA. WangC. Overexpression of miR-223 correlates with tumor metastasis and poor prognosis in patients with colorectal cancer.Med. Oncol.2014311125610.1007/s12032‑014‑0256‑525270282
    [Google Scholar]
  71. WeiY. YangJ. YiL. WangY. DongZ. LiuZ. Ou-yangS. WuH. ZhongZ. YinZ. ZhouK. GaoY. YanB. WangZ. MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer.Sci. Rep.201441754610.1038/srep0754625519054
    [Google Scholar]
  72. WoelberL. MahnerS. VoelkerK. EulenburgC.Z. GiesekingF. ChoschzickM. JaenickeF. SchwarzJ. Clinicopathological prognostic factors and patterns of recurrence in vulvar cancer.Anticancer Res.200929254555219331201
    [Google Scholar]
  73. MonkB. BurgerR.A. LinF. ParhamG. VasilevS.A. WilczynskiS.P. Prognostic significance of human papillomavirus DNA in vulvar carcinoma.Obstet. Gynecol.199585570971510.1016/0029‑7844(95)00045‑S7724101
    [Google Scholar]
  74. SamarghandianS. HadjzadehMA. AfshariJT. HosseiniM. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.BMC complementary and alternative medicine2024Dec; 141930679991
    [Google Scholar]
  75. FangZ. ZhaoJ. XieW. SunQ. WangH. QiaoB. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR‐184 expression.Cancer Med.20176122897290810.1002/cam4.125329125238
    [Google Scholar]
  76. PanJ. LiX. WuW. XueM. HouH. ZhaiW. ChenW. Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells.Cancer Lett.20163821647610.1016/j.canlet.2016.08.01527591936
    [Google Scholar]
  77. XuC.G. YangM.F. RenY.Q. WuC.H. WangL.Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells.Eur. Rev. Med. Pharmacol. Sci.201620204362436827831634
    [Google Scholar]
  78. YangY. ZhangR. DuJ. YuanH. LiY. WeiX. DuX. JiangS. HanY. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer.Cancer Cell Int.201818116410.1186/s12935‑018‑0660‑630377411
    [Google Scholar]
  79. XueM. ChenW. XiangA. WangR. ChenH. PanJ. PangH. AnH. WangX. HouH. LiX. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.Mol. Cancer201716114310.1186/s12943‑017‑0714‑828841829
    [Google Scholar]
  80. GaoQ. FangX. ChenY. LiZ. WangM. Exosomal lncRNA UCA1 from cancer‐associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells.J. Obstet. Gynaecol. Res.2021471738710.1111/jog.1441832812305
    [Google Scholar]
  81. RenJ. DingL. ZhangD. ShiG. XuQ. ShenS. WangY. WangT. HouY. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19.Theranostics20188143932394810.7150/thno.2554130083271
    [Google Scholar]
  82. DengX. RuanH. ZhangX. XuX. ZhuY. PengH. ZhangX. KongF. GuanM. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells.Int. J. Cancer202014661700171610.1002/ijc.3260831381140
    [Google Scholar]
  83. ZhongZ. LvM. ChenJ. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma.Sci. Rep.2016613091910.1038/srep3091927484176
    [Google Scholar]
  84. LiangJ. LiuX. XueH. QiuB. WeiB. SunK. MicroRNA‐103a inhibits gastric cancer cell proliferation, migration and invasion by targeting c‐Myb.Cell Prolif.2015481788510.1111/cpr.1215925530421
    [Google Scholar]
  85. QinX. GuoH. WangX. ZhuX. YanM. WangX. XuQ. ShiJ. LuE. ChenW. ZhangJ. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5.Genome Biol.20192011210.1186/s13059‑018‑1604‑030642385
    [Google Scholar]
  86. FangY. ZhouW. RongY. KuangT. XuX. WuW. WangD. LouW. Exosomal miRNA-106b from cancer-associated fibroblast promotes gemcitabine resistance in pancreatic cancer.Exp. Cell Res.2019383111154310.1016/j.yexcr.2019.11154331374207
    [Google Scholar]
  87. WoelberL. KockL. GiesekingF. PetersenC. TrillschF. ChoschzickM. JaenickeF. MahnerS. Clinical management of primary vulvar cancer.Eur. J. Cancer201147152315232110.1016/j.ejca.2011.06.00721733674
    [Google Scholar]
  88. BaiocchiG. RochaR.M. Vulvar cancer surgery.Curr. Opin. Obstet. Gynecol.201426191710.1097/GCO.000000000000003324270518
    [Google Scholar]
  89. ZhangS. ChenL. JungE.J. CalinG.A. Targeting microRNAs with small molecules: From dream to reality.Clin. Pharmacol. Ther.201087675475810.1038/clpt.2010.4620428111
    [Google Scholar]
  90. de Melo MaiaB. LingH. MonroigP. CicconeM. SoaresF.A. CalinG.A. RochaR.M. Design of a miRNA sponge for the miR-17 miRNA family as a therapeutic strategy against vulvar carcinoma.Mol. Cell. Probes201529642042610.1016/j.mcp.2015.08.00226297962
    [Google Scholar]
  91. KluiverJ. GibcusJ.H. HettingaC. AdemaA. RichterM.K.S. HalsemaN. Slezak-ProchazkaI. DingY. KroesenB.J. van den BergA. Rapid generation of microRNA sponges for microRNA inhibition.PLoS One201271e2927510.1371/journal.pone.002927522238599
    [Google Scholar]
  92. ChangC.C. YangY.J. LiY.J. ChenS.T. LinB.R. WuT.S. LinS.K. KuoM.Y.P. TanC.T. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma.Oral Oncol.201349992393110.1016/j.oraloncology.2013.03.43023602254
    [Google Scholar]
  93. GaoX. ZhangR. QuX. ZhaoM. ZhangS. WuH. JianyongL. ChenL. MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma.Leuk. Res.201236121505150910.1016/j.leukres.2012.08.02122959509
    [Google Scholar]
  94. YuG. TangJ. TianM. LiH. WangX. WuT. ZhuJ. HuangS. WanY. Prognostic values of the miR‐17‐92 cluster and its paralogs in colon cancer.J. Surg. Oncol.2012106323223710.1002/jso.2213822065543
    [Google Scholar]
  95. TanzerA. StadlerP.F. Molecular evolution of a microRNA cluster.J. Mol. Biol.2004339232733510.1016/j.jmb.2004.03.06515136036
    [Google Scholar]
  96. GeX.C. WuF. LiW.T. ZhuX.J. LiuJ.W. WangB.L. Upregulation of WEE1 is a potential prognostic biomarker for patients with colorectal cancer.Oncol. Lett.20171364341434810.3892/ol.2017.598428599436
    [Google Scholar]
  97. KimH.Y. ChoY. KangH. YimY.S. KimS.J. SongJ. ChunK.H. Targeting the WEE1 kinase as a molecular targeted therapy for gastric cancer.Oncotarget2016731499024991610.18632/oncotarget.1023127363019
    [Google Scholar]
  98. UchidaD. BegumN-M. AlmoftiA. KawamataH. YoshidaH. SatoM. Frequent downregulation of 14-3-3 σ protein and hypermethylation of 14-3-3 σ gene in salivary gland adenoid cystic carcinoma.Br. J. Cancer20049161131113810.1038/sj.bjc.660200415292943
    [Google Scholar]
  99. LvX.B. LianG.Y. WangH.R. SongE. YaoH. WangM.H. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival.PLoS One201385e6351610.1371/journal.pone.006351623717443
    [Google Scholar]
  100. GeX.S. MaH.J. ZhengX.H. RuanH.L. LiaoX.Y. XueW.Q. ChenY.B. ZhangY. JiaW.H. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF ‐1 expression and activates W nt pathway.Cancer Sci.2013104121675168210.1111/cas.1229624118380
    [Google Scholar]
  101. NiS. ZhaoX. OuyangL. Long non-coding RNA expression profile in vulvar squamous cell carcinoma and its clinical significance.Oncol. Rep.20163652571257810.3892/or.2016.507527633334
    [Google Scholar]
  102. SharmaS. MandalP. SadhukhanT. Roy ChowdhuryR. Ranjan MondalN. ChakravartyB. ChatterjeeT. RoyS. SenguptaS. Bridging links between long noncoding RNA HOTAIR and HPV oncoprotein E7 in cervical cancer pathogenesis.Sci. Rep.2015511172410.1038/srep1172426152361
    [Google Scholar]
  103. LiD. FengJ. WuT. WangY. SunY. RenJ. LiuM. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma.Am. J. Pathol.20131821647010.1016/j.ajpath.2012.08.04223141928
    [Google Scholar]
  104. WuZ.H. WangX.L. TangH.M. JiangT. ChenJ. LuS. QiuG.Q. PengZ.H. YanD.W. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer.Oncol. Rep.201432139540210.3892/or.2014.318624840737
    [Google Scholar]
  105. IshibashiM. KogoR. ShibataK. SawadaG. TakahashiY. KurashigeJ. AkiyoshiS. SasakiS. IwayaT. SudoT. SugimachiK. MimoriK. WakabayashiG. MoriM. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma.Oncol. Rep.201329394695010.3892/or.2012.221923292722
    [Google Scholar]
  106. LuK. LiW. LiuX. SunM. ZhangM. WuW. XieW. HouY. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression.BMC Cancer201313146110.1186/1471‑2407‑13‑46124098911
    [Google Scholar]
  107. del PinoM. Rodriguez-CarunchioL. OrdiJ. Pathways of vulvar intraepithelial neoplasia and squamous cell carcinoma.Histopathology201362116117510.1111/his.1203423190170
    [Google Scholar]
  108. ZhuJ. LiuS. YeF. ShenY. TieY. ZhuJ. WeiL. JinY. FuH. WuY. ZhengX. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells.PLoS One20151010e013979010.1371/journal.pone.013979026444285
    [Google Scholar]
  109. ShiY. LuJ. ZhouJ. TanX. HeY. DingJ. TianY. WangL. WangK. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells.Biochem. Biophys. Res. Commun.2014446244845310.1016/j.bbrc.2014.02.14424631686
    [Google Scholar]
  110. XiS. YangM. TaoY. XuH. ShanJ. InchausteS. ZhangM. MercedesL. HongJ.A. RaoM. SchrumpD.S. Cigarette smoke induces C/EBP-β-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells.PLoS One2010510e1376410.1371/journal.pone.001376421048943
    [Google Scholar]
  111. NieF. MaS. XieM. LiuY. DeW. LiuX. Decreased long noncoding RNA MIR31HG is correlated with poor prognosis and contributes to cell proliferation in gastric cancer.Tumour Biol.20163767693770110.1007/s13277‑015‑4644‑z26692098
    [Google Scholar]
  112. LeeG.L. DobiA. SrivastavaS. Diagnostic performance of the PCA3 urine test.Nat. Rev. Urol.20118312312410.1038/nrurol.2011.1021394175
    [Google Scholar]
  113. HuangX. YuanT. TschannenM. SunZ. JacobH. DuM. LiangM. DittmarR.L. LiuY. LiangM. KohliM. ThibodeauS.N. BoardmanL. WangL. Characterization of human plasma-derived exosomal RNAs by deep sequencing.BMC Genomics201314131910.1186/1471‑2164‑14‑31923663360
    [Google Scholar]
  114. WangZ. FørsundM.S. TropeC.G. NeslandJ.M. HolmR. SlipicevicA. Evaluation of CHK 1 activation in vulvar squamous cell carcinoma and its potential as a therapeutic target in vitro.Cancer Med.2018783955396410.1002/cam4.163829963769
    [Google Scholar]
  115. YangS. ZhaoY. WangL. LiuC. LuY. FangZ. ShiH. ZhangW. WuX. MicroRNA‑4712‑5p promotes proliferation of the vulvar squamous cell carcinoma cell line A431 by targeting PTEN through the AKT/cyclin D1 signaling pathways.Oncol. Rep.20194251689169810.3892/or.2019.732031545465
    [Google Scholar]
  116. YangX.H. GuoF. miR‑3147 serves as an oncomiR in vulvar squamous cell cancer via Smad4 suppression.Mol. Med. Rep.20181756397640410.3892/mmr.2018.869729512734
    [Google Scholar]
  117. ZalewskiK. MisiekM. KowalikA. Bakuła-ZalewskaE. KopczyńskiJ. ZielińskaA. BidzińskiM. RadziszewskiJ. GóźdźS. KowalewskaM. Normalizers for microRNA quantification in plasma of patients with vulvar intraepithelial neoplasia lesions and vulvar carcinoma.Tumour Biol.2017391110.1177/101042831771714029299981
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947307273240718082900
Loading
/content/journals/cctr/10.2174/0115733947307273240718082900
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chemoresistance; lncRNA; miRNA; premenstrual women; Vulvar cancer; vulvar neoplasm
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test