Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Oral contraceptives (OCs) are widely used to prevent pregnancy, particularly among reproductive-age women. Although undesired physiological consequences, such as increased susceptibility to cancer, have been suggested, the exact molecular mechanism is not well elucidated. Thereby, the current study aimed to assess the effects of OCs on the inflammatory markers and and gene-specific DNA methylation in the serum of OCs-exposed women.

Methods

The current cross-sectional study involved 70 adult women, 35 of whom had used oral contraceptive pills (OCP, 0.03 mg ethinyl estradiol, and 0.15 mg levonorgestrel) to prevent pregnancy, and 35 of whom had used condoms. The promoter methylation status of the two mentioned tumor suppressor genes was assessed by methylation-specific PCR. Moreover, serum levels of IL-1, IL-6, and TNF-α were evaluated using the ELISA method.

Results

The findings revealed a significant difference in cytokines between groups ( <0.001). However, no significant differences were revealed regarding TNF-α between the two groups. Additionally, the frequency of promoter hypermethylation of and in OCP users was significantly higher ( <0.05).

Conclusion

The current findings suggested that OCP usage could increase serum levels of inflammatory markers and promote the hypermethylation of two suppressor genes. Hence, further studies are encouraged to reveal the association between OCP usage and cancer through hypermethylation of and and induction of inflammation.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947310701240726043841
2024-08-06
2026-02-13
Loading full text...

Full text loading...

References

  1. KrysiakR. KowalczeK. OkopieńB. Cardiometabolic effects of cabergoline and combined oral contraceptive pills in young women with hyperprolactinemia: A pilot study.J. Clin. Med.2023129320810.3390/jcm1209320837176648
    [Google Scholar]
  2. EdwardsA.C. LönnS.L. CrumpC. MościckiE.K. SundquistJ. KendlerK.S. SundquistK. Oral contraceptive use and risk of suicidal behavior among young women.Psychol. Med.20225291710171710.1017/S003329172000347533084550
    [Google Scholar]
  3. DanielsK. AbmaJ.C. Current Contraceptive Status Among Women Aged 15-49: United States, 2017-2019.NCHS Data Brief20203881833151146
    [Google Scholar]
  4. PahnkeR. Mau-MoellerA. JungeM. WendtJ. WeymarM. HammA.O. LischkeA. Oral Contraceptives Impair Complex Emotion Recognition in Healthy Women.Front. Neurosci.201912104110.3389/fnins.2018.0104130804733
    [Google Scholar]
  5. SkibaM.A. IslamR.M. BellR.J. DavisS.R. Hormonal contraceptive use in Australian women: Who is using what?Aust. N. Z. J. Obstet. Gynaecol.201959571772410.1111/ajo.1302131250431
    [Google Scholar]
  6. KalyanaramanN. Emerging and Future Challenges of Hormonal Contraceptives.J. Genet. Genomics201821142
    [Google Scholar]
  7. RahmawatiD.L. RahayuD.E. HardjitoK. Correlation between Oral Contraceptive Use and the Incidence of Cervical Cancer. Poltekita.Jurnal Ilmu Kesehatan.2023164497504
    [Google Scholar]
  8. Casado-EspadaN.M. de AlarcónR. de la Iglesia-LarradJ.I. Bote-BonaecheaB. MontejoÁ.L. Hormonal contraceptives, female sexual dysfunction, and managing strategies: a review.J. Clin. Med.20198690810.3390/jcm806090831242625
    [Google Scholar]
  9. BuggioL. BarbaraG. FacchinF. GhezziL. DridiD. VercelliniP. The influence of hormonal contraception on depression and female sexuality: a narrative review of the literature.Gynecol. Endocrinol.202238319320110.1080/09513590.2021.201669334913798
    [Google Scholar]
  10. KanadysW. BarańskaA. MalmM. BłaszczukA. Polz-DacewiczM. JaniszewskaM. JędrychM. Use of oral contraceptives as a potential risk factor for breast cancer: A systematic review and meta-analysis of case-control studies up to 2010.Int. J. Environ. Res. Public Health2021189463810.3390/ijerph1809463833925599
    [Google Scholar]
  11. JiL.W. JingC.X. ZhuangS.L. PanW.C. HuX.P. Effect of age at first use of oral contraceptives on breast cancer risk.Medicine (Baltimore)20199836e1571910.1097/MD.000000000001571931490359
    [Google Scholar]
  12. BonfiglioR. Di PietroM. The impact of oral contraceptive use on breast cancer risk: state of the art and future perspectives in the era of 4P medicine.Seminars in Cancer BiologyElsevier2021
    [Google Scholar]
  13. RookusM.A. BrohetR.M. AndrieuN. AntoniouA.C. Chang-ClaudeJ. EastonD.F. PeockS. NoguèsC. van LeeuwenF.E. GoldgarD.E. Oral contraceptives and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS).Breast Cancer Res.20057S2P1.1010.1186/bcr1097
    [Google Scholar]
  14. MoslehiR. FreedmanE. ZeinomarN. VenerosoC. LevineP.H. Importance of hereditary and selected environmental risk factors in the etiology of inflammatory breast cancer: a case-comparison study.BMC Cancer201616133410.1186/s12885‑016‑2369‑z27229687
    [Google Scholar]
  15. FowkeJ.H. ShuX.O. DaiQ. JinF. CaiQ. GaoY.T. ZhengW. Oral contraceptive use and breast cancer risk: modification by NAD(P)H:quinone oxoreductase (NQO1) genetic polymorphisms.Cancer Epidemiol. Biomarkers Prev.20041381308131510.1158/1055‑9965.1308.13.815298951
    [Google Scholar]
  16. ZampigaV. CanginiI. BandiniE. AzzaliI. RavegnaniM. RavaioliA. ManciniS. TebaldiM. TedaldiG. PiriniF. VeneroniL. FrassinetiG.L. FalciniF. DanesiR. CalistriD. ArcangeliV. Prevalence of a BRCA2 Pathogenic Variant in Hereditary-Breast-and-Ovarian-Cancer-Syndrome Families with Increased Risk of Pancreatic Cancer in a Restricted Italian Area.Cancers (Basel)2023157213210.3390/cancers1507213237046793
    [Google Scholar]
  17. ParkJ. HuangD. ChangY.J. LimM.C. MyungS.K. Oral contraceptives and risk of breast cancer and ovarian cancer in women with a BRCA1 or BRCA2 mutation: a meta-analysis of observational studies.Carcinogenesis202243323124210.1093/carcin/bgab10734958358
    [Google Scholar]
  18. BoiaL. PetrallabS. MontibB. TalanicG. SannaaE. PisucMG. Long-term administration of hormonal contraceptives alters hippocampal BDNF and histone H3 post-translational modifications but not learning and memory in female rats.Horm. Behav.202214410521810.1016/j.yhbeh.2022.105218
    [Google Scholar]
  19. RakeshK.S. JagadishS. BalajiK.S. ZameerF. SwaroopT.R. MohanC.D. JayaramaS. RangappaK.S. 3, 5-Disubstituted isoxazole derivatives: Potential inhibitors of inflammation and cancer.Inflammation201639126928010.1007/s10753‑015‑0247‑526363638
    [Google Scholar]
  20. ChenY. HouJ. XiaoZ. ZhaoY. DuF. WuX. LiM. ChenY. ZhangL. ChoC.H. WenQ. HuW. ShenJ. The role of vitamin D in gastrointestinal diseases: inflammation, gastric cancer, and colorectal cancer.Curr. Med. Chem.202229223836385610.2174/092986732866621111116330434766885
    [Google Scholar]
  21. Van RooijenM. HanssonL.O. FrostegårdJ. SilveiraA. HamstenA. BremmeK. Treatment with combined oral contraceptives induces a rise in serum C-reactive protein in the absence of a general inflammatory response.J. Thromb. Haemost.200641778210.1111/j.1538‑7836.2005.01690.x16409455
    [Google Scholar]
  22. IhalainenJ.K. HackneyA.C. TaipaleR.S. Changes in inflammation markers after a 10-week high-intensity combined strength and endurance training block in women: The effect of hormonal contraceptive use.J. Sci. Med. Sport20192291044104810.1016/j.jsams.2019.04.00231186194
    [Google Scholar]
  23. DivaniA.A. LuoX. DattaY.H. FlahertyJ.D. Panoskaltsis-MortariA. Effect of oral and vaginal hormonal contraceptives on inflammatory blood biomarkers.Mediat. Inflamm.2015201537950110.1155/2015/379501
    [Google Scholar]
  24. CauciS. XodoS. BuliganC. ColaninnoC. BarbinaM. BarbinaG. FrancescatoM.P. Oxidative stress is increased in combined oral contraceptives users and is positively associated with high-sensitivity C-reactive protein.Molecules2021264107010.3390/molecules2604107033670593
    [Google Scholar]
  25. Moradi SarabiM. GhareghaniP. KhademiF. ZalF. Oral contraceptive use may modulate global genomic DNA methylation and promoter methylation of APC1 and ESR1. Asian pacific journal of cancer prevention.APJCP20171892361236628950679
    [Google Scholar]
  26. SarabiM.M. NaghibalhossainiF. The impact of polyunsaturated fatty acids on DNA methylation and expression of DNMTs in human colorectal cancer cells.Biomed. Pharmacother.2018101949910.1016/j.biopha.2018.02.07729477476
    [Google Scholar]
  27. BarańskaA. BłaszczukA. KanadysW. MalmM. DropK. Polz-DacewiczM. Oral contraceptive use and breast cancer risk assessment: a systematic review and meta-analysis of case-control studies, 2009–2020.Cancers (Basel)20211322565410.3390/cancers1322565434830807
    [Google Scholar]
  28. Castro-MuñozL. UlloaE. SahlgrenC. LizanoM. De La Cruz-HernándezE. Contreras-ParedesA. Modulating epigenetic modifications for cancer therapy (Review).Oncol. Rep.20234935910.3892/or.2023.849636799181
    [Google Scholar]
  29. BhootraS. JillN. ShanmugamG. RakshitS. SarkarK. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective.Med. Oncol.20234027110.1007/s12032‑022‑01943‑136602616
    [Google Scholar]
  30. YangX. YanL. DavidsonN.E. DNA methylation in breast cancer.Endocr. Relat. Cancer20018211512710.1677/erc.0.008011511446343
    [Google Scholar]
  31. LiuA. LiX. HaoZ. CaoJ. LiH. SunM. ZhangZ. LiangR. ZhangH. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene.Toxicol. Ind. Health202238312713810.1177/0748233721106923335193440
    [Google Scholar]
  32. ElstrodtF. HollestelleA. NagelJ.H.A. GorinM. WasielewskiM. van den OuwelandA. MerajverS.D. EthierS.P. SchutteM. BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.Cancer Res.2006661414510.1158/0008‑5472.CAN‑05‑285316397213
    [Google Scholar]
  33. LønningP.E. NikolaienkoO. PanK. KurianA.W. EikesdalH.P. PettingerM. AndersonG.L. PrenticeR.L. ChlebowskiR.T. KnappskogS. Constitutional BRCA1 methylation and risk of incident triple-negative breast cancer and high-grade serous ovarian cancer.JAMA Oncol.20228111579158710.1001/jamaoncol.2022.384636074460
    [Google Scholar]
  34. Blanc-DurandF. TangR. PommierM. NashviM. CotteretS. GenestieC. Le FormalA. PautierP. MichelsJ. KfouryM. HervéR. MengueS. WafoE. EliesA. MiailheG. UzanJ. RouleauE. LearyA. Clinical Relevance of BRCA1 Promoter Methylation Testing in Patients with Ovarian Cancer.Clin. Cancer Res.202329163124312910.1158/1078‑0432.CCR‑22‑332837067532
    [Google Scholar]
  35. RuscitoI. GasparriM.L. De MarcoM.P. CostanziF. BesharatA.R. PapadiaA. KuehnT. GentiliniO.D. BellatiF. CasertaD. The clinical and pathological profile of BRCA1 gene methylated breast cancer women: a meta-analysis.Cancers (Basel)2021136139110.3390/cancers1306139133808555
    [Google Scholar]
  36. MoelansC.B. Verschuur-MaesA.H.J. van DiestP.J. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer.J. Pathol.2011225222223110.1002/path.293021710692
    [Google Scholar]
  37. AlkamY. MitomiH. NakaiK. HimuroT. SaitoT. TakahashiM. ArakawaA. YaoT. SaitoM. Protein expression and methylation of DNA repair genes hMLH1, hMSH2, MGMT and BRCA1 and their correlation with clinicopathological parameters and prognosis in basal‐like breast cancer.Histopathology201363571372510.1111/his.1222024004112
    [Google Scholar]
  38. GuthikondaK. ZhangH. NolanV.G. Soto-RamírezN. ZiyabA.H. EwartS. ArshadH.S. PatilV. HollowayJ.W. LockettG.A. KarmausW. Oral contraceptives modify the effect of GATA3 polymorphisms on the risk of asthma at the age of 18 years via DNA methylation.Clin. Epigenetics2014611710.1186/1868‑7083‑6‑1725250096
    [Google Scholar]
  39. CampesiI. SannaM. ZinelluA. CarruC. RubattuL. BulzomiP. SeghieriG. TonoloG. PalermoM. RosanoG. MarinoM. FranconiF. Oral contraceptives modify DNA methylation and monocyte-derived macrophage function.Biol. Sex Differ.201231410.1186/2042‑6410‑3‑422284681
    [Google Scholar]
  40. ShamesD. MinnaJ. GazdarA. DNA methylation in health, disease, and cancer.Curr. Mol. Med.2007718510210.2174/15665240777994041317311535
    [Google Scholar]
  41. RuderE.H. LaiyemoA.O. GraubardB.I. HollenbeckA.R. SchatzkinA. CrossA.J. Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort.Am. J. Gastroenterol.201110671340135010.1038/ajg.2011.3821407185
    [Google Scholar]
  42. FanS. TangJ. LiN. ZhaoY. AiR. ZhangK. WangM. DuW. WangW. Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers.NPJ Genom. Med.201941210.1038/s41525‑019‑0077‑830729033
    [Google Scholar]
  43. BellaviaD. CostaV. De LucaA. CordaroA. FiniM. GiavaresiG. CaradonnaF. RaimondiL. The binomial “inflammation-epigenetics” in breast cancer progression and bone metastasis: IL-1β actions are influenced by TET inhibitor in MCF-7 cell line.Int. J. Mol. Sci.202223231542210.3390/ijms23231542236499741
    [Google Scholar]
  44. ValinluckV. SowersL.C. Inflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers.Cancer Res.200767125583558610.1158/0008‑5472.CAN‑07‑084617575120
    [Google Scholar]
  45. VezzaniB. CarinciM. PreviatiM. GiacovazziS. Della SalaM. GafàR. LanzaG. WieckowskiM.R. PintonP. GiorgiC. Epigenetic regulation: A link between inflammation and carcinogenesis.Cancers (Basel)2022145122110.3390/cancers1405122135267528
    [Google Scholar]
  46. PiotrowskiI. KulcentyK. SuchorskaW. Interplay between inflammation and cancer.Rep. Pract. Oncol. Radiother.202025342242710.1016/j.rpor.2020.04.00432372882
    [Google Scholar]
  47. ChinnasamyS. ZameerF. MuthuchelianK. Molecular and biological mechanisms of apoptosis and its detection techniques.Journal of Oncological Sciences202061496410.37047/jos.2020‑73477
    [Google Scholar]
  48. XuZ. LiL. QianY. SongY. QinL. DuanY. WangM. LiP. JiangB. MaC. ShaoC. GongY. Upregulation of IL-6 in CUL4B-deficient myeloid-derived suppressive cells increases the aggressiveness of cancer cells.Oncogene201938305860587210.1038/s41388‑019‑0847‑x31235785
    [Google Scholar]
  49. EspositoA. FerraresiA. SalwaA. VidoniC. DhanasekaranD.N. IsidoroC. Resveratrol contrasts IL-6 pro-growth effects and promotes autophagy-mediated cancer cell dormancy in 3D ovarian cancer: role of miR-1305 and of its target ARH-I.Cancers2022149214210.3390/cancers1409214235565270
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947310701240726043841
Loading
/content/journals/cctr/10.2174/0115733947310701240726043841
Loading

Data & Media loading...

Supplements

Supp1: The data related to the promoter hypermethylation of BRCA genes. Supp2: The data related to the ELISA technique and the levels of inflammatory markers.


  • Article Type:
    Research Article
Keyword(s): cancer; Gene; inflammation; interleukin; methylation; pregnancy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test