Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Background

Brain tumor incidence is on the rise each year, with more than 130 identified types. Precise segmentation models play a vital role in the diagnosis and treatment of brain tumors. This study specifically investigates the utilization of diffusion-based denoising techniques and thresholding methods for segmenting brain tumors from MRI images.

Objective

The objective of this study is to examine and compare the efficacy of the Perona-malik and Weickert diffusion techniques in denoising brain MRI images. Additionally, the study aims to assess their performance in threshold-based segmentation of brain tumors. Moreover, it also aims to evaluate the compatibility, benefits, and limitations of the Perona-Malik and Weickert diffusion methods in the denoising of brain MRI images and the effect of denoising on segmentation.

Methods

In this study, the Perona-Malik and Weickert diffusion methods are employed to denoise brain MRI images. The denoised images are then subjected to thresholding using both binary and fuzzy approaches, utilizing a triangular membership function. The performance of the diffusion techniques is evaluated using metrics, such as Mean Square Error and Peak Signal to Noise Ratio. Additionally, segmentation models are assessed using metrics such as Dice Similarity Coefficient, Jaccard Similarity Coefficient, and Structural Similarity Measurement Index.

Results

The Perona-Malik and Weickert diffusion methods exhibit compatibility with various types of noise, each having its own set of advantages and limitations. The Weickert diffusion method excels in preserving image structure and texture during thresholding.

Conclusion

The study provides evidence for the effectiveness of diffusion-based denoising techniques in segmenting brain tumors from MRI images. Specifically, the Weickert diffusion method outperforms in preserving essential image characteristics during thresholding. Additionally, fuzzy thresholding proves to be more successful in accurately segmenting brain tumors. These findings contribute to the advancement of precise models for brain tumor segmentation, ultimately enhancing the diagnosis and treatment of these tumors.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947265211230922050928
2024-08-06
2026-02-15
Loading full text...

Full text loading...

References

  1. DograJ. JainS. SoodM. Gradient‐based kernel selection technique for tumour detection and extraction of medical images using graph cut.IET Image Process.2020141849310.1049/iet‑ipr.2018.6615
    [Google Scholar]
  2. LouisD.N. The 2007 WHO classification of tumours of the central nervous system.Acta Neuropathol.200711429710910.1007/s00401‑007‑0243‑4 17618441
    [Google Scholar]
  3. BauerS. WiestR. NolteL.P. ReyesM. A survey of MRI-based medical image analysis for brain tumor studies.Phys. Med. Biol.20135813R97R12910.1088/0031‑9155/58/13/R97 23743802
    [Google Scholar]
  4. Ostrom QuinnT. PatilN. CioffiG. WaiteK. KruchkoC. Branholtz - SloamJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017.Neuro-Oncology202022Supplement_1iv1iv9610.1093/neuonc/noaa200
    [Google Scholar]
  5. LiangZ-P. LauterburP.C. Principles of Magnetic Resonance Imaging: A Signal Processing Perspective.SPIE Optical Engineering Press2000
    [Google Scholar]
  6. BhandariA.K. KumarA. ChaudharyS. SinghG.K. A novel color image multilevel thresholding based segmentation using nature inspired optimization algorithms.Expert Syst. Appl.20166311213310.1016/j.eswa.2016.06.044
    [Google Scholar]
  7. Uplaonkar DeepakS. VirupakShappaPatilN.Modified Otsu thresholding based level set and local directional ternary pattern technique for liver tumor segmentation.Int J Syst Assur Eng Manag202210.1007/s13198‑022‑01637‑x
    [Google Scholar]
  8. GaoZ. XiongH. LiuX. Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.Med. Image Anal.20173712110.1016/j.media.2017.01.004 28104550
    [Google Scholar]
  9. GhoshP. MaliK. DasS.K. Chaotic firefly algorithm-based fuzzy C-means algorithm for segmentation of brain tissues in magnetic resonance images.J. Vis. Commun. Image Represent.201854637910.1016/j.jvcir.2018.04.007
    [Google Scholar]
  10. NgH.P. OngS.H. FoongK.W.C. GohP.S. NowinskiW.L. Medical image segmentation using k-means clustering and improved watershed algorithm.2006 IEEE Southwest Symposium on Image Analysis and Interpretation10.1109/SSIAI.2006.1633722
    [Google Scholar]
  11. YanC. TuY. WangX. STAT: Spatial-temporal attention mechanism for video captioning.IEEE Trans. Multimed.202022122924110.1109/TMM.2019.2924576
    [Google Scholar]
  12. LiR. HuangJ. Fast Regions-of-Interest Detection in Whole Slide Histopathology Images.Patch-Based Techniques in Medical Imaging201512012710.1007/978‑3‑319‑28194‑0_15
    [Google Scholar]
  13. YanC. LiL. ZhangC. LiuB. ZhangY. DaiQ. Cross-modality bridging and knowledge transferring for image understanding.IEEE Trans. Multimed.201921102675268510.1109/TMM.2019.2903448
    [Google Scholar]
  14. YanC. XieH. ChenJ. A fast uyghur text detector for complex background images.IEEE Trans. Multimed.201820123389339810.1109/TMM.2018.2838320
    [Google Scholar]
  15. GaoZ. LiY. SunY. Motion tracking of the carotid artery wall from ultrasound image sequences: A nonlinear state-space approach.IEEE Trans. Med. Imaging201837127328310.1109/TMI.2017.2746879 28866487
    [Google Scholar]
  16. FarhiL. YusufA. RazaR.H. Adaptive stochastic segmentation via energy-convergence for brain tumor in MR images.J. Vis. Commun. Image Represent.20174630331110.1016/j.jvcir.2017.04.013
    [Google Scholar]
  17. AhmedM.N. YamanyS.M. MohamedN. FaragA.A. MoriartyT. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data.IEEE Trans. Med. Imaging200221319319910.1109/42.996338 11989844
    [Google Scholar]
  18. ChenS. ZhangD. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure.IEEE Trans. Syst. Man Cybern. B Cybern.20043441907191610.1109/TSMCB.2004.831165 15462455
    [Google Scholar]
  19. YangM.S. TsaiH.S. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction.Pattern Recognit. Lett.200829121713172510.1016/j.patrec.2008.04.016
    [Google Scholar]
  20. ElazabA. WangC. JiaF. WuJ. LiG. HuQ. Segmentation of brain tissues from magnetic resonance images using adaptively regularized kernel-based fuzzy C -means clustering.Comput. Math. Methods Med.2015201511210.1155/2015/485495 26793269
    [Google Scholar]
  21. LiB.N. ChuiC.K. ChangS. OngS.H. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation.Comput. Biol. Med.201141111010.1016/j.compbiomed.2010.10.007 21074756
    [Google Scholar]
  22. AyachiR. Ben AmorN. Brain tumor segmentation using support vector machines.Lect Notes Comput Sci200955907364710.1007/978‑3‑642‑02906‑6_63
    [Google Scholar]
  23. BauerS. NolteL.P. ReyesM. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization.Lect Notes Comput Sci20116893Pt 33546110.1007/978‑3‑642‑23626‑6_44 22003719
    [Google Scholar]
  24. JabaroutiM. Soltanian-ZadehH. Medical image segmentation using artificial neural networks. In. Suzuki K (Eds.) Artificial Neural Networks - Methodological Advances and Biomedical Applications.201110.5772/16103
    [Google Scholar]
  25. PereiraS. PintoA. AlvesV. SilvaC.A. Brain tumor segmentation using convolutional neural networks in MRI images.IEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.2538465 26960222
    [Google Scholar]
  26. HavaeiM. DavyA. Warde-FarleyD. Brain tumor segmentation with Deep Neural Networks.Med. Image Anal.201735183110.1016/j.media.2016.05.004 27310171
    [Google Scholar]
  27. PrastawaM. BullittE. HoS. GerigG. A brain tumor segmentation framework based on outlier detection*1.Med. Image Anal.20048327528310.1016/j.media.2004.06.007 15450222
    [Google Scholar]
  28. KanasV.G. ZacharakiE.I. DermatasE. BezerianosA. SgarbasK. DavatzikosC. Combining outlier detection with random walker for automatic brain tumor segmentation.IFIP Adv. Inf. Commun. Technol.2012382263510.1007/978‑3‑642‑33412‑2_3
    [Google Scholar]
  29. BauerS. SeilerC. BardynT. BuechlerP. ReyesM. Atlas-based segmentation of brain tumor images using a markov random field-based tumor growth model and non-rigid registration.2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.10.1109/IEMBS.2010.5627302
    [Google Scholar]
  30. van der LijnF. de BruijneM. KleinS. Automated brain structure segmentation based on atlas registration and appearance models.IEEE Trans. Med. Imaging201231227628610.1109/TMI.2011.2168420 21937346
    [Google Scholar]
  31. Lötjönen JyrkiM.P. WolzR. KoikkalainenJ.R. Fast and robust multi-atlas segmentation of brain magnetic resonance images.Neuroimage20104932352236510.1016/j.neuroimage.2009.10.026
    [Google Scholar]
  32. ZhangD. GuoQ. WuG. ShenD. Sparse patch-based label fusion for multi-atlas segmentation.Multimodal Brain Image Analysis20129410210.1007/978‑3‑642‑33530‑3_8
    [Google Scholar]
  33. ZhuZ. HeX. QiG. LiY. CongB. LiuY. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI.Inf. Fusion20239137638710.1016/j.inffus.2022.10.022
    [Google Scholar]
  34. RazaR. Ijaz BajwaU. MehmoodY. AnwarM.W. JamalM.H. Dresu-Net: 3D deep residual u-net based brain tumor segmentation from multimodal MRI.SSRN Electronic J202210.2139/ssrn.4024177
    [Google Scholar]
  35. ChangY. ZhengZ. SunY. ZhaoM. LuY. ZhangY. DPAFNet: A residual dual-path attention-fusion convolutional neural network for multimodal brain tumor segmentation.Biomed. Signal Process. Control20237910403710.1016/j.bspc.2022.104037
    [Google Scholar]
  36. CaoY. ZhouW. ZangM. AnD. FengY. YuB. MBANet: A 3D convolutional neural network with multi-branch attention for brain tumor segmentation from MRI images.Biomed. Signal Process. Control20238010429610.1016/j.bspc.2022.104296
    [Google Scholar]
  37. JenaB. JainS. NayakG.K. SaxenaS. Analysis of depth variation of U-NET architecture for brain tumor segmentation.Multimedia Tools Appl.2023827107231074310.1007/s11042‑022‑13730‑1
    [Google Scholar]
  38. XiaoH. LiL. LiuQ. ZhuX. ZhangQ. Transformers in medical image segmentation: A review.Biomed. Signal Process. Control20238410479110.1016/j.bspc.2023.104791
    [Google Scholar]
  39. KazerooniA.F. ArifS. MadhogarhiaRetal Automated tumor segmentation and brain tissue extraction from multiparametric mri of pediatric brain tumors: A multi-institutional studymedRxiv20232023.01.02.2228403710.1101/2023.01.02.22284037
    [Google Scholar]
  40. SolankiS SinghUP ChouhanSS JainS Brain tumor detection and classification using intelligence techniques: An overview.IEEE Access202311128708610.1109/ACCESS.2023.3242666
    [Google Scholar]
  41. MohammedY.M.A. El GarouaniS. JellouliI. A survey of methods for brain tumor segmentation-based MRI images.J. Comput. Des Eng.202310126629310.1093/jcde/qwac141
    [Google Scholar]
  42. JyothiP. SinghA.R. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review.Artif. Intell. Rev.20235642923296910.1007/s10462‑022‑10245‑x
    [Google Scholar]
  43. GordilloN. MontsenyE. SobrevillaP. State of the art survey on MRI brain tumor segmentation.Magn. Reson. Imaging20133181426143810.1016/j.mri.2013.05.002 23790354
    [Google Scholar]
  44. MazurowskiM.A. ClarkK. CzarnekN.M. ShamsesfandabadiP. PetersK.B. SahaA. Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data.J. Neurooncol.20171331273510.1007/s11060‑017‑2420‑1 28470431
    [Google Scholar]
  45. HoultDI PaulC The sensitivity of the ZEUGMATOGRAPHIC experiment involving human samples.J Magn Reson (1969)19793424253310.1016/0022‑2364(79)90019‑2
    [Google Scholar]
  46. MANJON J, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M. MRI denoising using non-local means.Med. Image Anal.200812451452310.1016/j.media.2008.02.004
    [Google Scholar]
  47. GerigG. KublerO. KikinisR. JoleszF.A. Nonlinear anisotropic filtering of MRI data.IEEE Trans. Med. Imaging199211222123210.1109/42.141646 18218376
    [Google Scholar]
  48. WeickertJ. Anisotropic Diffusion in Image Processing.B. G. Teubner1998
    [Google Scholar]
  49. AhmedS. El-BehaidyW.H. YoussifA.A.A. Medical image denoising system based on stacked convolutional autoencoder for enhancing 2-dimensional gel electrophoresis noise reduction.Biomedical Signal Processing and Control20216910284210.1016/j.bspc.2021.102842
    [Google Scholar]
  50. DiceL.R. Measures of the amount of ecologic association between species.Ecology194526329730210.2307/1932409
    [Google Scholar]
  51. JaccardP. The distribution of the flora in the alpine zone.1.New Phytol.1912112375010.1111/j.1469‑8137.1912.tb05611.x
    [Google Scholar]
  52. WangZ. BovikA.C. SheikhH.R. SimoncelliE.P. Image quality assessment: from error visibility to structural similarity.IEEE Trans. Image Process.200413460061210.1109/TIP.2003.819861 15376593
    [Google Scholar]
  53. PaulT. BandhyopadhyayS. Segmentation of brain tumor from brain mri images reintroducing K – means with advanced dual localization method.Int. J. Eng. Res. Appl.2012
    [Google Scholar]
  54. ZhaoL. WuW. CrossoJ.J. Brain Tumor Segmentation Based on GMM and Active Contour Method with a Model-Aware Edge Map.Available from: http://www.imm.dtu.dk/projects/BRATS2012/ZhaoBRATS2012.pdf 2012
  55. IlhanU. IlhanA. Brain tumor segmentation based on a new threshold approach.Procedia Comput. Sci.201712058058710.1016/j.procs.2017.11.282
    [Google Scholar]
  56. WangG. LiW. ZuluagaM.A. Interactive medical image segmentation using deep learning with image-specific fine tuning.IEEE Trans. Med. Imaging20183771562157310.1109/TMI.2018.2791721 29969407
    [Google Scholar]
  57. AparajeetaJ. NandaP.K. DasN. Modified possibilistic fuzzy C-means algorithms for segmentation of magnetic resonance image.Appl. Soft Comput.20164110411910.1016/j.asoc.2015.12.003
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947265211230922050928
Loading
/content/journals/cctr/10.2174/0115733947265211230922050928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test