Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Radiopharmaceutical therapy is a novel targeted cancer treatment approach that is presently being investigated and developed. Radiation is administered in radiopharmaceutical therapy by selectively binding drugs to target cancer cells. Since most radioactive materials used in radiation therapy emit photons, it is possible to monitor the movement of drugs in a non-invasive manner. Compared to other systemic cancer treatments, Radiopharmaceutical therapy has shown effectiveness with minimal adverse effects. Radiopharmaceutical treatment has shown a promising safety profile and potential effectiveness against various types of cancers. Additionally, it has been successful in distinguishing between cancerous and non-cancerous tissues. Radiopharmaceutical therapy offers numerous advantages compared to other techniques. Radiopharmaceuticals are chemical substances containing a radioactive isotope that can release radiation. This radiation can be identified and employed for medical imaging or as a therapy for cancer. Several cancer treatment methods utilize radiopharmaceuticals, such as radioimmunotherapy, radiolabeled peptides, radiolabeled small molecules, bone-targeted radiopharmaceuticals, and others. This review aims to comprehensively analyze the fundamental principles, recent advancements in clinical practice, and an in-depth understanding of radiotherapy in cancer management.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947303281240522131837
2024-05-31
2025-09-02
Loading full text...

Full text loading...

References

  1. GoldsmithS.J. Targeted radionuclide therapy: a historical and personal review.Semin. Nucl. Med.2020501879710.1053/j.semnuclmed.2019.07.006 31843064
    [Google Scholar]
  2. SgourosG. BodeiL. McDevittM.R. NedrowJ.R. Radiopharmaceutical therapy in cancer: clinical advances and challenges.Nat. Rev. Drug Discov.202019958960810.1038/s41573‑020‑0073‑9 32728208
    [Google Scholar]
  3. VelikyanI. Radionuclides for imaging and therapy in oncology. In:Cancer Theranostics.Academic Press201428532510.1016/B978‑0‑12‑407722‑5.00017‑7
    [Google Scholar]
  4. FunehC.N. BridouxJ. ErtveldtT. Optimizing the safety and efficacy of bio-radiopharmaceuticals for cancer therapy.Pharmaceutics2023155137810.3390/pharmaceutics15051378 37242621
    [Google Scholar]
  5. GabrielM. Radionuklidtherapien jenseits von Jod-131.Wien. Med. Wochenschr.201216219-2043043910.1007/s10354‑012‑0128‑6 22815123
    [Google Scholar]
  6. HillegondsD.J. FranklinS. SheltonD.K. VijayakumarS. VijayakumarV. The management of painful bone metastases with an emphasis on radionuclide therapy.J. Natl. Med. Assoc.2007997785794 17668645
    [Google Scholar]
  7. AsadianS. MirzaeiH. KalantariB.A. β-radiating radionuclides in cancer treatment, novel insight into promising approach.Pharmacol. Res.202016010507010.1016/j.phrs.2020.105070 32659429
    [Google Scholar]
  8. MacKeeG.M. X-Rays and Radium in the Treatment of Diseases of the Skin.Ann. Intern. Med.19472630830810.7326/0003‑4819‑26‑2‑308_1
    [Google Scholar]
  9. Sainz-EstebanA. BaumR.P. Successful treatment of metastasized pancreatic vasoactive intestinal polypeptide-secreting tumor unresponsive to high-dose octreotide by peptide receptor radionuclide therapy using 90Y DOTATATE.Clin. Nucl. Med.2013381299699710.1097/RLU.0b013e3182a7596b 24212444
    [Google Scholar]
  10. TanH.Y. YeongC.H. WongY.H. Neutron-activated theranostic radionuclides for nuclear medicine.Nucl. Med. Biol.202090-91556810.1016/j.nucmedbio.2020.09.005 33039974
    [Google Scholar]
  11. Edward ColemanR. Single photon emission computed tomography and positron emission tomography in cancer imaging.Cancer199167S41261127010.1002/1097‑0142(19910215)67:4+<1261:AID‑CNCR2820671524>3.0.CO;2‑L 1991287
    [Google Scholar]
  12. TurkingtonT.G. ColemanR.E. Clinical oncologic positron emission tomography: An introduction.Semin. Roentgenol.200237210210910.1016/S0037‑198X(02)80029‑3 12134363
    [Google Scholar]
  13. KhorasaniA. Shahbazi-GahroueiD. SafariA. Recent metal nanotheranostics for cancer diagnosis and therapy: a review.Diagnostics (Basel)202313583310.3390/diagnostics13050833 36899980
    [Google Scholar]
  14. ZhouZ. GuanB. XiaH. ZhengR. XuB. Particle radiotherapy in the era of radioimmunotherapy.Cancer Lett.202356721626810.1016/j.canlet.2023.216268 37331583
    [Google Scholar]
  15. DuranteM. LoefflerJ.S. Charged particles in radiation oncology.Nat. Rev. Clin. Oncol.201071374310.1038/nrclinonc.2009.183 19949433
    [Google Scholar]
  16. SunQ. LiJ. DingZ. LiuZ. Radiopharmaceuticals heat anti-tumor immunity.Theranostics202313276778610.7150/thno.79806 36632233
    [Google Scholar]
  17. a Yao MattissonI BäckströmS EkengardE el al. Characterization and efficacy of a nanomedical radiopharmaceutical for cancer treatment.ACS Omega20238223572366
    [Google Scholar]
  18. b TamamN. SuliemanA. BradleyD.A. Evaluation of patients doses at medical imaging departments.Radiat. Phys. Chem.2023203110541
    [Google Scholar]
  19. CherryS.R. SorensonJ.A. PhelpsM.E. Physics in nuclear medicine.3rd edPhiladelphiaSaunders2003
    [Google Scholar]
  20. SolankiK. Operational guidance on hospital radiopharmacy: A safe and effective approach.ViennaInternational Atomic Energy Agency2008
    [Google Scholar]
  21. UnterrainerM. EzeC. IlhanH. Recent advances of PET imaging in clinical radiation oncology.Radiat. Oncol.20201518810.1186/s13014‑020‑01519‑1 32317029
    [Google Scholar]
  22. GareevK.G. ShevtsovM. Editorial: Radiotheranostics: From basic research to clinical application.Front. Med. (Lausanne)202310117121810.3389/fmed.2023.1171218 37025958
    [Google Scholar]
  23. LangbeinT. WeberW.A. EiberM. Future of theranostics: an outlook on precision oncology in nuclear medicine.J. Nucl. Med.201960Suppl. 213S19S10.2967/jnumed.118.220566 31481583
    [Google Scholar]
  24. GiovanellaL TuncelM AghaeeA CampenniA PetranoviP De VirgilioA Theranostics of thyroid cancer. Semin Nucl Med2024S0001-299824000114 38503602
  25. BodeiL. KwekkeboomD.J. KiddM. ModlinI.M. KrenningE.P. Radiolabeled somatostatin analogue therapy of gastroenteropancreatic cancer.Semin. Nucl. Med.201646322523810.1053/j.semnuclmed.2015.12.003 27067503
    [Google Scholar]
  26. FioccoC. FarooqF. KaveneyA. Acute disseminated intravascular coagulation precipitated by 177Lu-dotatate in metastatic midgut neuroendocrine tumor: A Case Report.J. Gastrointest. Cancer202354413701372
    [Google Scholar]
  27. CornfordP. BellmuntJ. BollaM. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer.Eur. Urol.201771463064210.1016/j.eururo.2016.08.002 27591931
    [Google Scholar]
  28. HerrmannK. SchwaigerM. LewisJ.S. Radiotheranostics: A roadmap for future development.Lancet Oncol.2020213e146e15610.1016/S1470‑2045(19)30821‑6 32135118
    [Google Scholar]
  29. FilippiL. UrsoL. BianconiF. Radiomics and theranostics with molecular and metabolic probes in prostate cancer: toward a personalized approach.Expert Rev. Mol. Diagn.202323324325510.1080/14737159.2023.2192351 36927210
    [Google Scholar]
  30. BhujwallaZ.M. KakkadS. ChenZ. Theranostics and metabolotheranostics for precision medicine in oncology.J. Magn. Reson.201829114115110.1016/j.jmr.2018.03.004 29705040
    [Google Scholar]
  31. XiangL. QiaoY. NieD. Deep auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI.Neurocomputing201726740641610.1016/j.neucom.2017.06.048 29217875
    [Google Scholar]
  32. RajputS. Kumar SharmaP. MalviyaR. Fluid mechanics in circulating tumour cells: Role in metastasis and treatment strategies.Med. Drug Disc.20231810015810.1016/j.medidd.2023.100158
    [Google Scholar]
  33. JeelaniS. Jagat ReddyR.C. MaheswaranT. AsokanG.S. DanyA. AnandB. Theranostics: A treasured tailor for tomorrow.J. Pharm. Bioallied Sci.201465Suppl. 1610.4103/0975‑7406.137249 25210387
    [Google Scholar]
  34. KelkarS.S. ReinekeT.M. Theranostics: combining imaging and therapy.Bioconjug. Chem.201122101879190310.1021/bc200151q 21830812
    [Google Scholar]
  35. BallingerJ.R. Theranostic radiopharmaceuticals: established agents in current use.Br. J. Radiol.20189110912017096910.1259/bjr.20170969 29474096
    [Google Scholar]
  36. NickolsN. AnandA. JohnssonK. aPROMISE: a novel automated PROMISE platform to standardize evaluation of tumor burden in 18F-DCFPyL images of veterans with prostate cancer.J. Nucl. Med.202263223323910.2967/jnumed.120.261863 34049980
    [Google Scholar]
  37. JohnssonK. BrynolfssonJ. SahlstedtH. Analytical performance of aPROMISE: automated anatomic contextualization, detection, and quantification of [18F]DCFPyL (PSMA) imaging for standardized reporting.Eur. J. Nucl. Med. Mol. Imaging20224931041105110.1007/s00259‑021‑05497‑8 34463809
    [Google Scholar]
  38. VallabhajosulaS. KilleenR.P. OsborneJ.R. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors.Semin. Nucl. Med.201040422024110.1053/j.semnuclmed.2010.02.004 20513446
    [Google Scholar]
  39. KomalS. NadeemS. FaheemZ. Localization Mechanisms of Radiopharmaceuticals.Medical Isotopes202010.5772/intechopen.94099
    [Google Scholar]
  40. VallabhajosulaS. OwunwanneA. Basis of Radiopharmaceutical Localization. The Pathophysiologic Basis of Nuclear Medicine2014456810.1007/978‑3‑540‑47953‑6_2
    [Google Scholar]
  41. ElgazzarAH Basis of radiopharmaceutical localization. In synopsis of pathophysiology in nuclear medicine2023Jun28pp. 37-50Cham: Springer International Publishing.
  42. ErcanM.T. CaglarM. Therapeutic radiopharmaceuticals.Curr. Pharm. Des.200061110851121 10903384
    [Google Scholar]
  43. GrigsbyP.W. BaglanK. SiegelB.A. Surveillance of patients to detect recurrent thyroid carcinoma.Cancer199985494595110.1002/(SICI)1097‑0142(19990215)85:4<945:AID‑CNCR24>3.0.CO;2‑I 10091774
    [Google Scholar]
  44. WernerS.C. CoelhoB. QuimbyE.H. Ten year results of I-131 therapy of hyperthyroidism.Bull. N. Y. Acad. Med.19573311783806 13472301
    [Google Scholar]
  45. SheaA.G. IdrissouM.B. TorresA.I. Immunological effects of radiopharmaceutical therapy.Front. Nucl. Med.20244133136410.3389/fnume.2024.1331364
    [Google Scholar]
  46. PostemaE.J. BoermanO.C. OyenW.J. RaemaekersJ.M. CorstensF.H. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma.Eur. J. Nucl. Med.200128111725173510.1007/s002590100570 11702116
    [Google Scholar]
  47. HdeibA. SloanA. Targeted radioimmunotherapy: the role of 131 I-chTNT-1/B mAb (Cotara ®) for treatment of high-grade gliomas.Future Oncol.20128665966910.2217/fon.12.58 22764763
    [Google Scholar]
  48. LierschT. MellerJ. KulleB. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results.J. Clin. Oncol.200523276763677010.1200/JCO.2005.18.622 16170184
    [Google Scholar]
  49. AzinovicI. DeNardoG.L. LambornK.R. Survival benefit associated with human anti-mouse antibody (HAMA) in patients with B-cell malignancies.Cancer Immunol. Immunother.200655121451145810.1007/s00262‑006‑0148‑4 16496145
    [Google Scholar]
  50. RajputS. SharmaP.K. MalviyaR. Biomarkers and treatment strategies for breast cancer recurrence.Curr. Drug Targets202324151209122010.2174/0113894501258059231103072025 38164731
    [Google Scholar]
  51. VallabhajosulaS. Molecular imaging and targeted therapy: Radiopharmaceuticals and clinical applications.ChamSpringer Nature2023708
    [Google Scholar]
  52. KoziorowskiJ. BallingerJ. Theragnostic radionuclides: A clinical perspective.Q. J. Nucl. Med. Mol. Imaging2021654306314 34881851
    [Google Scholar]
  53. BrittenR.A. LimoliC.L. New radiobiological principles for the cns arising from space radiation research.Life2023136129310.3390/life13061293 37374076
    [Google Scholar]
  54. GholamiY.H. MaschmeyerR. KuncicZ. Radio-enhancement effects by radiolabeled nanoparticles.Sci. Rep.2019911434610.1038/s41598‑019‑50861‑2 31586146
    [Google Scholar]
  55. KaramJ. ConstanzoJ. PichardA. Rapid communication: insights into the role of extracellular vesicles during Auger radioimmunotherapy.Int. J. Radiat. Biol.202399110911810.1080/09553002.2021.1955999 34270378
    [Google Scholar]
  56. ElliyantiA. Radiopharmaceuticals in modern cancer therapy. Radiopharmaceuticals - current research for better diagnosis and therapy.IntechOpen202210.5772/intechopen.99334
    [Google Scholar]
  57. HamadA. AzizH. KamelI.R. DiazD.A. PawlikT.M. Yttrium-90 radioembolization: Current indications and outcomes.J. Gastrointest. Surg.202327360461410.1007/s11605‑022‑05559‑8 36547759
    [Google Scholar]
  58. FilippiL. SchillaciO. CianniR. BagniO. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma.Future Oncol.201814980981810.2217/fon‑2017‑0443 29251517
    [Google Scholar]
  59. WaldmannT.A. WhiteJ.D. CarrasquilloJ.A. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac.Blood861140634075
    [Google Scholar]
  60. LusterM. PfestroffA. HnscheidH. VerburgF.A. Radioiodine Therapy.Semin. Nucl. Med.201747212613410.1053/j.semnuclmed.2016.10.002 28237001
    [Google Scholar]
  61. KendiA.T. MoncayoV.M. NyeJ.A. GaltJ.R. HalkarR. SchusterD.M. Radionuclide therapies in molecular imaging and precision medicine.PET Clin.20171219310310.1016/j.cpet.2016.08.006 27863570
    [Google Scholar]
  62. KassisA.I. AdelsteinS.J. Radiobiologic principles in radionuclide therapy.J. Nucl. Med.2005461Suppl. 14S12S 15653646
    [Google Scholar]
  63. SalihS. AlkatheeriA. AlomaimW. ElliyantiA. Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges.Molecules20222716523110.3390/molecules27165231 36014472
    [Google Scholar]
  64. PougetJ.P. Navarro-TeulonI. BardièsM. Clinical radioimmunotherapy—the role of radiobiology.Nat. Rev. Clin. Oncol.201181272073410.1038/nrclinonc.2011.160 22064461
    [Google Scholar]
  65. JiaZ. WangW. Yttrium-90 radioembolization for unresectable metastatic neuroendocrine liver tumor: A systematic review.Eur. J. Radiol.2018100232910.1016/j.ejrad.2018.01.012 29496075
    [Google Scholar]
  66. NisaL. SavelliG. GiubbiniR. Yttrium-90 DOTATOC therapy in GEP-NET and other SST2 expressing tumors: A selected review.Ann. Nucl. Med.2011252758510.1007/s12149‑010‑0444‑0 21107762
    [Google Scholar]
  67. KangL. LiC. RosenkransZ.T. CD38‐Targeted Theranostics of Lymphoma with 89Zr/177Lu-Labeled Daratumumab.Adv. Sci.2021810200187910.1002/advs.202001879 34026426
    [Google Scholar]
  68. da SilvaT.N. van VelthuysenM.L.F. van EijckC.H.J. TeunissenJ.J. HoflandJ. de HerderW.W. Successful neoadjuvant peptide receptor radionuclide therapy for an inoperable pancreatic neuroendocrine tumour.Endocrinol. Diabetes Metab. Case Rep.20182018118001510.1530/EDM‑18‑0015 29675259
    [Google Scholar]
  69. SartorO. Overview of samarium sm 153 lexidronam in the treatment of painful metastatic bone disease.Rev. Urol.20046Suppl. 10S3S12 16985930
    [Google Scholar]
  70. SgourosG. Alpha-particles for targeted therapy.Adv. Drug Deliv. Rev.200860121402140610.1016/j.addr.2008.04.007 18541332
    [Google Scholar]
  71. Manafi-FaridR. MasoumiF. DivbandG. Targeted palliative radionuclide therapy for metastatic bone pain.J. Clin. Med.202098262210.3390/jcm9082622 32806765
    [Google Scholar]
  72. Guerra LiberalF.D.C. O’SullivanJ.M. McMahonS.J. PriseK.M. Targeted alpha therapy: Current clinical applications.Cancer Biother. Radiopharm.202035640441710.1089/cbr.2020.3576 32552031
    [Google Scholar]
  73. JurcicJ.G. LevyM. ParkJ. Trial in progress: A phase I/II study of lintuzumab-Ac225 in older patients with untreated acute myeloid leukemia.Clin. Lymphoma Myeloma Leuk.201717S27710.1016/j.clml.2017.07.056
    [Google Scholar]
  74. KleynhansJ. SathekgeM. EbenhanT. Obstacles and recommendations for clinical translation of nanoparticle system-based targeted alpha-particle therapy.Materials20211417478410.3390/ma14174784 34500873
    [Google Scholar]
  75. FilippiL. ChiaravallotiA. SchillaciO. CianniR. BagniO. Theranostic approaches in nuclear medicine: current status and future prospects.Expert Rev. Med. Devices202017433134310.1080/17434440.2020.1741348 32157920
    [Google Scholar]
  76. ThambooTp. TanK.B. WangS.C. Salto-TellezM. Extra-hepatic embolisation of Y-90 microspheres from selective internal radiation therapy (SIRT) of the liver.Pathology2003354351353 12959774
    [Google Scholar]
  77. BodeyR.K. EvansP.M. FluxG.D. Application of the linear-quadratic model to combined modality radiotherapy.Int. J. Radiat. Oncol. Biol. Phys.200459122824110.1016/j.ijrobp.2003.12.031 15093920
    [Google Scholar]
  78. WidelM. PrzybyszewskiW.M. Cieslar-PobudaA. SaenkoY.V. Rzeszowska-WolnyJ. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation.Mutat. Res.20127311-211712410.1016/j.mrfmmm.2011.12.007 22210495
    [Google Scholar]
  79. DewarajaY.K. SchipperM.J. RobersonP.L. 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling.J. Nucl. Med.20105171155116210.2967/jnumed.110.075176 20554734
    [Google Scholar]
  80. DewarajaY.K. FreyE.C. SgourosG. MIRD pamphlet No. 23: Quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.J. Nucl. Med.20125381310132510.2967/jnumed.111.100123 22743252
    [Google Scholar]
  81. DewarajaY.K. LjungbergM. GreenA.J. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications.J. Nucl. Med.201354122182218810.2967/jnumed.113.122390 24130233
    [Google Scholar]
  82. DieudonnéA. HobbsR.F. BolchW.E. SgourosG. GardinI. Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.J. Nucl. Med.201051101600160710.2967/jnumed.110.077149 20847175
    [Google Scholar]
  83. HobbsR.F. JentzenW. BaechlerS. PrideauxA. BockischA. SgourosG. Salivary gland Monte Carlo-based 3D-Radiobiological Dosimetry (3D-RD) in thyroid cancer patients from I-124 PET Images.Eur. J. Nucl. Med. Mol. Imaging200835S345S5
    [Google Scholar]
  84. Lawhn-HeathC. HopeT.A. MartinezJ. Dosimetry in radionuclide therapy: The clinical role of measuring radiation dose.Lancet Oncol.2022232e75e8710.1016/S1470‑2045(21)00657‑4 35114134
    [Google Scholar]
  85. LjungbergM. Sjِgreen Gleisner K. Personalized dosimetry for radionuclide therapy using molecular imaging tools.Biomedicines2016442510.3390/biomedicines4040025 28536392
    [Google Scholar]
  86. HobbsR.F. McNuttT. BaechlerS. A treatment planning method for sequentially combining radiopharmaceutical therapy and external radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.20118041256126210.1016/j.ijrobp.2010.08.022
    [Google Scholar]
  87. HobbsR.F. BaechlerS. FuD.X. A model of cellular dosimetry for macroscopic tumors in radiopharmaceutical therapy.Med. Phys.2011386Part12892290310.1118/1.3576051 21815364
    [Google Scholar]
  88. HobbsR.F. SongH. HusoD.L. H Sundel M, Sgouros G. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry.Phys. Med. Biol.201257134403442410.1088/0031‑9155/57/13/4403 22705986
    [Google Scholar]
  89. HobbsR.F. WahlR.L. FreyE.C. Radiobiologic optimization of combination radiopharmaceutical therapy applied to myeloablative treatment of non-Hodgkin lymphoma.J. Nucl. Med.20135491535154210.2967/jnumed.112.117952 23918734
    [Google Scholar]
  90. KolbertK.S. PentlowK.S. PearsonJ.R. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software.J. Nucl. Med.2007481143149 17204711
    [Google Scholar]
  91. PaquetF. BaileyM.R. LeggettR.W. HarrisonJ.D. Assessment and interpretation of internal doses: Uncertainty and variability.Ann. ICRP201645Suppl. 120221410.1177/0146645316633595 27044362
    [Google Scholar]
  92. SpielmannV. LiW.B. ZanklM. OehU. HoeschenC. Uncertainty quantification in internal dose calculations for seven selected radiopharmaceuticals.J. Nucl. Med.201657112212810.2967/jnumed.115.160713 26564320
    [Google Scholar]
  93. SantoroL. PitalotL. TrauchessecD. Clinical implementation of PLANET® Dose for dosimetric assessment after [177Lu]Lu-DOTA-TATE: Comparison with Dosimetry Toolkit® and OLINDA/EXM® V1.0.EJNMMI Res.20211111710.1186/s13550‑020‑00737‑8 33394212
    [Google Scholar]
  94. StabinM.G. SharkeyR.M. SiegelJ.A. RADAR commentary: Evolution and current status of dosimetry in nuclear medicine.J. Nucl. Med.20115271156116110.2967/jnumed.111.088666 21680699
    [Google Scholar]
  95. ZeimpekisK.G. MercolliL. ContiM. SariH. RomingerA. RathkeH. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: image quality, tumor, liver and lung dosimetry.Eur. J. Nucl. Med. Mol. Imaging20245172100211310.1007/s00259‑024‑06650‑9 38347299
    [Google Scholar]
  96. BucalauA.M. ColletteB. TancrediI. Clinical impact of 99mTc-MAA SPECT/CT-based personalized predictive dosimetry in selective internal radiotherapy: a real-life single-center experience in unresectable HCC patients.Eur. J. Hybrid Imaging2023711210.1186/s41824‑023‑00171‑8 37414964
    [Google Scholar]
  97. MartinM. HocqueletA. DebordeauxF. Comparison of perfused volume segmentation between cone-beam CT and 99mTc-MAA SPECT/CT for treatment dosimetry before selective internal radiation therapy using 90Y-glass microspheres.Diagn. Interv. Imaging20211021455210.1016/j.diii.2020.09.003 33032960
    [Google Scholar]
  98. NiemierkoA. Reporting and analyzing dose distributions: A concept of equivalent uniform dose.Med. Phys.199724110311010.1118/1.598063 9029544
    [Google Scholar]
  99. ParkerC. NilssonS. HeinrichD. Alpha emitter radium-223 and survival in metastatic prostate cancer.N. Engl. J. Med.2013369321322310.1056/NEJMoa1213755 23863050
    [Google Scholar]
  100. PrideauxA.R. SongH. HobbsR.F. Three-dimensional radiobiologic dosimetry: Application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry.J. Nucl. Med.20074861008101610.2967/jnumed.106.038000 17504874
    [Google Scholar]
  101. SenthamizhchelvanS. HobbsR.F. SongH. Tumor dosimetry and response for 153Sm-ethylenediamine tetramethylene phosphonic acid therapy of high-risk osteosarcoma.J. Nucl. Med.201253221522410.2967/jnumed.111.096677 22251554
    [Google Scholar]
  102. SgourosG. FreyE. WahlR. HeB. PrideauxA. HobbsR. Three-dimensional imaging-based radiobiological dosimetry.Semin. Nucl. Med.200838532133410.1053/j.semnuclmed.2008.05.008 18662554
    [Google Scholar]
  103. StrosbergJ. El-HaddadG. WolinE. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors.N. Engl. J. Med.2017376212513510.1056/NEJMoa1607427 28076709
    [Google Scholar]
  104. KratochwilC. HaberkornU. GieselF.L. 225Ac-PSMA-617 for therapy of prostate cancer.Semin. Nucl. Med.202050213314010.1053/j.semnuclmed.2020.02.004 32172798
    [Google Scholar]
  105. BasuS. ParghaneR.V. Kamaldeep, Chakrabarty S. Peptide receptor radionuclide therapy of neuroendocrine tumors.Semin. Nucl. Med.202050544746410.1053/j.semnuclmed.2020.05.004 32768008
    [Google Scholar]
  106. KunikowskaJ. KrlickiL. Targeted and emitter therapy of neuroendocrine tumors.Semin. Nucl. Med.202050217117610.1053/j.semnuclmed.2019.11.003 32172802
    [Google Scholar]
  107. JiaA.Y. KiessA.P. LiQ. AntonarakisE.S. Radiotheranostics in advanced prostate cancer: Current and future directions.Prostate Cancer Prostatic Dis.2024271112110.1038/s41391‑023‑00670‑6 37069330
    [Google Scholar]
  108. KuA. FaccaV.J. CaiZ. ReillyR.M. Auger electrons for cancer therapy – A review.EJNMMI Radiopharm. Chem.2019412710.1186/s41181‑019‑0075‑2 31659527
    [Google Scholar]
  109. RajputS. SharmaP.K. MalviyaR. Herbal Drugs Inducing Autophagy for the Management of Cancer: Mechanism and Utilization.Curr. Pharm. Biotechnol.2023202310.2174/1389201024666230428114740 37132135
    [Google Scholar]
  110. LiuJ. LiuY. LinY. LiangJ. Radioactive iodine-refractory differentiated thyroid cancer and redifferentiation therapy.Endocrinol. Metab.201934321522510.3803/EnM.2019.34.3.215 31565873
    [Google Scholar]
  111. SchugC. GuptaA. UrnauerS. A novel approach for image-guided 131I therapy of pancreatic ductal adenocarcinoma using mesenchymal stem cell-mediated NIS gene delivery.Mol. Cancer Res.201917131032010.1158/1541‑7786.MCR‑18‑0185 30224540
    [Google Scholar]
  112. BayoumiN.A. El-KolalyM.T. Utilization of nanotechnology in targeted radionuclide cancer therapy: monotherapy, combined therapy and radiosensitization.Radiochim. Acta2021109645947510.1515/ract‑2020‑0098
    [Google Scholar]
  113. MirshojaeiS.F. AhmadiA. Morales-AvilaE. Ortiz-ReynosoM. Reyes-PerezH. Radiolabelled nanoparticles: Novel classification of radiopharmaceuticals for molecular imaging of cancer.J. Drug Target.20162429110110.3109/1061186X.2015.1048516 26061297
    [Google Scholar]
  114. TingG. ChangC.H. WangH.E. LeeT.W. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy.J. Biomed. Biotechnol.2010201011710.1155/2010/953537 20811605
    [Google Scholar]
  115. FarzinL. SheibaniS. MoassesiM.E. ShamsipurM. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions.J. Biomed. Mater. Res. A2019107125128510.1002/jbm.a.36550 30358098
    [Google Scholar]
  116. ChangC.H. ChangM.C. ChangY.J. ChenL.C. LeeT.W. TingG. Translating research for the radiotheranostics of nanotargeted 188Re-Liposome.Int. J. Mol. Sci.2021228386810.3390/ijms22083868 33918011
    [Google Scholar]
  117. SalvanouE.A. StellasD. TsoukalasC. A proof-of-concept study on the therapeutic potential of au nanoparticles radiolabeled with the alpha-emitter actinium-225.Pharmaceutics202012218810.3390/pharmaceutics12020188 32098286
    [Google Scholar]
  118. WongC.H. SiahK.W. LoA.W. Estimation of clinical trial success rates and related parameters.Biostatistics201920227328610.1093/biostatistics/kxx069 29394327
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947303281240522131837
Loading
/content/journals/cctr/10.2174/0115733947303281240522131837
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test