Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Introduction

Breast cancer is the leading cause of death among women worldwide, and treatments often have severe physiological and aesthetic side effects. Researchers are exploring minimally invasive techniques, such as Microwave Ablation therapy (MWA), to mitigate these effects.

Methods

This study has investigated the impact of microwave ablation therapy on breast tissue with segmental microcalcifications, which can show breast cancer presence. This research work has used a coaxial dual-slot antenna model to apply microwave radiation and compare thermal and reflection parameters between homogeneous and heterogeneous breast tissues.

Results

The results have shown homogeneous models to yield a power reflection below 17% and achieve the desired ablation temperature of 50°C in less than 250 seconds of therapy time. However, heterogeneous models have achieved a power reflection above 18% and achieved the desired ablation temperature in less than 250 seconds. This suggests that considering variation in dielectric properties within a homogeneous breast model can be more effective than considering tissue segmentation.

Conclusion

Further research needs to optimize the antenna for each homogeneous breast density, considering other malignant tissues, which can potentially improve the effectiveness of microwave ablation therapy in treating breast cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947299809240804192844
2024-08-12
2025-09-02
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. BinkleyJ.M. HarrisS.R. LevangieP.K. Patient perspectives on breast cancer treatment side effects and the prospective surveillance model for physical rehabilitation for women with breast cancer.Cancer20121188Suppl.2207221610.1002/cncr.27469 22488695
    [Google Scholar]
  3. SingletaryS.E. Minimally invasive techniques in breast cancer treatment.Semin. Surg. Oncol.200120324625010.1002/ssu.1040 11523110
    [Google Scholar]
  4. RadjenovićB. SaboM. ŠoltesL. PrnovaM. ČičakP. Radmilović-RadjenovićM. On efficacy of microwave ablation in the thermal treatment of an early-stage hepatocellular carcinoma.Cancers 20211322578410.3390/cancers13225784 34830937
    [Google Scholar]
  5. ZhengK. YuX. HuY. Clinical guideline for microwave ablation of bone tumors in extremities.Orthop. Surg.20201241036104410.1111/os.12749 32776475
    [Google Scholar]
  6. HuangH. ZhangL. MoserM.A.J. ZhangW. ZhangB. A review of antenna designs for percutaneous microwave ablation.Phys. Med.20218425426410.1016/j.ejmp.2021.03.010 33773908
    [Google Scholar]
  7. Guerrero LópezG.D. Cepeda RubioM.F.J. Hernández JácquezJ.I. Computational FEM model, Phantom and ex vivo swine breast validation of an optimized double-slot microcoaxial antenna designed for minimally invasive breast tumor ablation: Theoretical and experimental comparison of temperature, size of lesion, and swr, preliminary data.Comput. Math. Methods Med.2017201711110.1155/2017/1562869 29375651
    [Google Scholar]
  8. Segura FélixK. Guerrero LópezG.D. Cepeda RubioM.F.J. Computational FEM model and phantom validation of microwave ablation for segmental microcalcifications in breasts using a coaxial double-slot antenna.BioMed Res. Int.2021202111010.1155/2021/8858822 33688503
    [Google Scholar]
  9. GasP. Modelling the tumor temperature distribution in anatomically correct female breast phantom.Przegl. Elektrotech.20201214815110.15199/48.2020.02.35
    [Google Scholar]
  10. GasP. MiaskowskiA. SubramanianM. In silico study on tumor-size-dependent thermal profiles inside an anthropomorphic female breast phantom subjected to multi-dipole antenna array.Int. J. Mol. Sci.202021859710.3390/ijms21228597
    [Google Scholar]
  11. MashalA. GaoF. HagnessS.C. Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments.Microw. Opt. Technol. Lett.20115381896190210.1002/mop.26128 21866208
    [Google Scholar]
  12. RuvioG. SolimeneR. CuccaroA. Multimodal breast phantoms for microwave, ultrasound, mammography, magnetic resonance and computed tomography imaging.Sensors 2020208240010.3390/s20082400 32340281
    [Google Scholar]
  13. WahabA.A. SalimM.I.M. AhamatM.A. ManafN.A. YunusJ. LaiK.W. Thermal distribution analysis of three-dimensional tumor-embedded breast models with different breast density compositions.Med. Biol. Eng. Comput.20165491363137310.1007/s11517‑015‑1403‑7 26463520
    [Google Scholar]
  14. BaumgartnerC. HasgallP.A. Di GennaroF. NeufeldE. LloydB. GosselinM.C. PayneD. KlingenböckA. KusterN. NeufeldE LloydB GosselinMC PayneD KlingenböckA KusterN IT’IS database for thermal and electromagnetic parameters of biological tissues Version 4.2, April 06, 202410.13099/VIP21000‑04‑2.itis.swiss/database
    [Google Scholar]
  15. Said CamilleriJ. FarrugiaL. CurtoS. Review of thermal and physiological properties of human breast tissue.Sensors 20222210389410.3390/s22103894 35632302
    [Google Scholar]
  16. MartellosioA. BellomiM. PasianM. Dielectric properties characterization from 0.5 to 50 ghz of breast cancer tissues.IEEE Trans. Microw. Theory Tech.2017653998101110.1109/TMTT.2016.2631162
    [Google Scholar]
  17. Arancibia HernándezP.L. Taub EstradaT. López PizarroA. Díaz CisternasM.L. Sáez TapiaC. Calcificaciones mamarias: Descripción y clasificación según la 5.a edición BI-RADS.Rev. Chil. Radiol.2016222809110.1016/j.rchira.2016.06.004
    [Google Scholar]
  18. HackingC NiknejadM YapJ Breast imaging-reporting and data system (BI-RADS) assessment category 5. Reference article, Radiopaedia.org(Accessed on 05 May 2025)10.53347/rID‑46172
    [Google Scholar]
  19. IrvingJ. MarioC. FranciscoV. GeshelG. Microwave ablation: State-of-the-art review.OncoTargets Ther.20151627162710.2147/OTT.S81734
    [Google Scholar]
  20. KrenacsT. MeggyeshaziN. ForikaG. Modulated electro-hyperthermia-induced tumor damage mechanisms revealed in cancer models.Int. J. Mol. Sci.20202117627010.3390/ijms21176270 32872532
    [Google Scholar]
  21. Ortega-PalaciosR. Trujillo-RomeroC.J. Cepeda-RubioM.F.J. LeijaL. Vera HernándezA. Heat transfer study in breast tumor phantom during microwave ablation: modeling and experimental results for three different antennas.Electronics 20209353510.3390/electronics9030535
    [Google Scholar]
  22. SysoevS. KislitsyA. Modeling of microwave heating and oil filtration in stratum.Numerical Simulations - Applications, Examples and Theory. InTech201110.5772/12849
    [Google Scholar]
  23. JinJ. RileyD.J. Finite element analysis of antennas and arrays.1st edHoboken, NJWiley200810.1002/9780470409732
    [Google Scholar]
  24. GasP. Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis.Biocybern. Biomed. Eng.2017371789310.1016/j.bbe.2016.10.001
    [Google Scholar]
  25. IT’IS Database for thermal and electromagnetic parameters of biological tissues Version 4.1. (Accessed on 22 Feb 2022); 202210.13099/VIP21000‑04‑1
    [Google Scholar]
  26. ChenP.H. GhoshE.T. SlanetzP.J. EisenbergR.L. Segmental breast calcifications.AJR Am. J. Roentgenol.20121995W532-4210.2214/AJR.11.8198 23096196
    [Google Scholar]
  27. HuilgolN. Hyperthermia.InTech201310.5772/2993
    [Google Scholar]
  28. RhimH. GoldbergS.N. DoddG.D.II Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors.Radiographics200121Spec NoSuppl. 1S17S3510.1148/radiographics.21.suppl_1.g01oc11s17 11598245
    [Google Scholar]
  29. HuangY. BoyleK. Antennas: From Theory to Practice.Wiley200810.1002/9780470772911
    [Google Scholar]
  30. BalanisC.A. Modern antenna handbook.Hoboken, NJWiley200810.1002/9780470294154
    [Google Scholar]
  31. In: 2017 14th international conference on electrical engineering, computing science and automatic control (CCE); 2017 Oct 18-20; Mexico City, Mexico. Mexico City: IEEE20171710.1109/ICEEE.2017.8108865
    [Google Scholar]
  32. ParuchM. Mathematical modeling of breast tumor destruction using fast heating during radiofrequency ablation.Materials 201913113610.3390/ma13010136 31905651
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947299809240804192844
Loading
/content/journals/cctr/10.2174/0115733947299809240804192844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test