Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Gliomas, a heterogeneous class of brain cancers, pose significant challenges as they are considered incurable. They represent the most recurrent primary intracranial cancer and exhibit distinct clinical and biological characteristics. Traditional treatment options for glioma include radiotherapy, chemotherapy, and surgery; however, the emergence of molecular-targeted therapy has provided a new avenue for improved therapeutic responses. One intriguing oncogene type of long non-coding RNAs (lncRNAs) in glioma is the HOX Transcript Antisense RNA, commonly referred to as HOTAIR. HOTAIR is characterized by its overexpression in various cancers and is situated in the intergenic region between HOXC12 and HOXC11 of the HOXC cluster on chromosome 12. Its upregulation in glioma has been found to be associated with tumor grade and plays a significant role in disease progression. HOTAIR exerts vital functions in glioma, including promoting angiogenesis, modulating glutamine catabolism, and influencing sensitivity to temozolomide (TMZ), a commonly used chemotherapy drug. Knockdown of HOTAIR has been shown to suppress cell invasion, migration, and proliferation, while inducing apoptosis, ultimately leading to tumor repression. HOTAIR achieves its biological effects, by targeting specific microRNAs (miRNAs). In this review study, we have summarized several signaling pathways that are intricately linked to HOTAIR in the context of glioma. Understanding the mechanisms and interactions involving HOTAIR and these signaling pathways may provide valuable insights for the development of targeted therapies and improved management strategies for glioma. This review provides a summary of the potential roles of HOTAIR in glioma, encompassing its effects in commercial cell lines, patient-derived cell lines, animal studies, and clinical trials.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947296461240312051407
2024-03-20
2025-11-04
Loading full text...

Full text loading...

References

  1. GulerE.M. KocS. DumluF.S. BeyaztasH. OzkanB.N. BozaliK. Brain cancer stem cells: Overview and potential targeted therapy.In: Cancer Stem Cells and Signaling Pathways2024351361
    [Google Scholar]
  2. WangL.M. EnglanderZ.K. MillerM.L. BruceJ.N. Malignant Glioma.In: Human brain and spinal cord tumors: From bench to bedside volume 2: The path to bedside managementSpringer202313010.1007/978‑3‑031‑23705‑8_1
    [Google Scholar]
  3. EckerdtF. PlataniasL.C. Emerging role of glioma stem cells in mechanisms of therapy resistance.Cancers20231513345810.3390/cancers1513345837444568
    [Google Scholar]
  4. LuoH. ShustaE.V. Blood–brain barrier modulation to improve glioma drug delivery.Pharmaceutics20201211108510.3390/pharmaceutics1211108533198244
    [Google Scholar]
  5. AbdusalomovA.B. MukhiddinovM. WhangboT.K. Brain tumor detection based on deep learning approaches and magnetic resonance imaging.Cancers20231516417210.3390/cancers1516417237627200
    [Google Scholar]
  6. MinerM.W.G. LiljenbäckH. VirtaJ. KärnäS. ViitanenR. EloP. GardbergM. TeuhoJ. SaipaP. RajanderJ. MansourH.M.A. ClevelandN.A. LowP.S. LiX.G. RoivainenA. High folate receptor expression in gliomas can be detected in vivo using folate-based positron emission tomography with high tumor-to-brain uptake ratio divulging potential future targeting possibilities.Front. Immunol.202314114547310.3389/fimmu.2023.114547337275898
    [Google Scholar]
  7. IusT. SabatinoG. PancianiP.P. FontanellaM.M. RudàR. CastellanoA. BarbagalloG.M.V. BelottiF. BoccalettiR. CatapanoG. CostantinoG. Della PuppaA. Di MecoF. GagliardiF. GarbossaD. GermanòA.F. IacoangeliM. MortiniP. OliviA. PessinaF. PignottiF. PinnaG. RacoA. SalaF. SignorelliF. SarubboS. SkrapM. SpenaG. SommaT. SturialeC. AngileriF.F. EspositoV. Surgical management of Glioma Grade 4: Technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): A systematic review.J. Neurooncol.2023162226729310.1007/s11060‑023‑04274‑x36961622
    [Google Scholar]
  8. EnsignS.F. PorterA.B. Malignant glioma.In: Brain tumors: A pocket guide.Springer202332010.1007/978‑3‑031‑41413‑8_1
    [Google Scholar]
  9. SunJ. JiangK. WangY. LiuY. WangT. DingS. ZhangX. XiongW. ZhengF. YangH. ZhuJ.J. One‐pot synthesis of tumor‐microenvironment responsive degradable nanoflower‐medicine for multimodal cancer therapy with reinvigorating antitumor immunity.Adv. Healthc. Mater.20231231230201610.1002/adhm.20230201637713653
    [Google Scholar]
  10. JiangD. PanY. YaoH. SunJ. XiongW. LiL. ZhengF. SunS. ZhuJ.J. Synthesis of renal-clearable multicolor fluorescent silicon nanodots for tumor imaging and in vivo H2O2 profiling.Anal. Chem.202294259074908010.1021/acs.analchem.2c0130835694855
    [Google Scholar]
  11. YaoL. ZhaoM.M. LuoQ.W. ZhangY.C. LiuT.T. YangZ. LiaoM. TuP. ZengK.W. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity.ACS Nano20221669228923910.1021/acsnano.2c0161935622408
    [Google Scholar]
  12. WangT. JiangK. WangY. XuL. LiuY. ZhangS. XiongW. WangY. ZhengF. ZhuJ-J. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines.Chem. Sci.20241551829183910.1039/D3SC05887E38303939
    [Google Scholar]
  13. DmelloC. ZhaoJ. ChenL. GouldA. CastroB. ArrietaV.A. ZhangD.Y. KimK.S. KanojiaD. ZhangP. MiskaJ. YeeravalliR. HabashyK. SagantyR. KangS.J. FaresJ. LiuC. DunnG. BartomE. SchipmaM.J. HsuP.D. AlghamriM.S. LesniakM.S. HeimbergerA.B. RabadanR. Lee-ChangC. SonabendA.M. Checkpoint kinase 1/2 inhibition potentiates anti-tumoral immune response and sensitizes gliomas to immune checkpoint blockade.Nat. Commun.2023141156610.1038/s41467‑023‑36878‑236949040
    [Google Scholar]
  14. HanS. LiuY. CaiS.J. QianM. DingJ. LarionM. GilbertM.R. YangC. IDH mutation in glioma: Molecular mechanisms and potential therapeutic targets.Br. J. Cancer2020122111580158910.1038/s41416‑020‑0814‑x32291392
    [Google Scholar]
  15. YasinjanF. XingY. GengH. GuoR. YangL. LiuZ. WangH. Immunotherapy: A promising approach for glioma treatment.Front. Immunol.202314125561110.3389/fimmu.2023.125561137744349
    [Google Scholar]
  16. RohJ. ImM. KangJ. YounB. KimW. Long non-coding RNA in glioma: Novel genetic players in temozolomide resistance.Anim. Cells Syst.2023271192810.1080/19768354.2023.217549736819921
    [Google Scholar]
  17. WangY. ZhaoD. WangH. WangS. ZhangH. LiuH. WangK. Long non-coding RNA-LINC00941 promotes the proliferation and invasiveness of glioma cells.Neurosci. Lett.202379513696410.1016/j.neulet.2022.13696436375627
    [Google Scholar]
  18. DuttaA. LiH. AbounaderR. Cryptic lncRNA-encoded ORFs: A hidden source of regulatory proteins.J. Clin. Invest.20231335e16727110.1172/JCI16727136856112
    [Google Scholar]
  19. MalakotiF. TarghazehN. KarimzadehH. MohammadiE. AsadiM. AsemiZ. AlemiF. Multiple function of lncRNA MALAT1 in cancer occurrence and progression.Chem. Biol. Drug Des.202310151113113710.1111/cbdd.1400634918470
    [Google Scholar]
  20. ShiW. SethiG. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment.J. Cell. Physiol.2023238588089510.1002/jcp.3099236924057
    [Google Scholar]
  21. PiperiC. MarkouliM. GargalionisA.N. PapavassiliouK.A. PapavassiliouA.G. Deciphering glioma epitranscriptome: focus on RNA modifications.Oncogene202342282197220610.1038/s41388‑023‑02746‑y37322070
    [Google Scholar]
  22. GareevI. RamirezM.J.E. NurmukhametovR. IvlievD. ShumadalovaA. IlyasovaT. BeilerliA. WangC. The role and clinical relevance of long non-coding RNAs in glioma.Noncoding RNA Res.20238456257010.1016/j.ncrna.2023.08.00537602320
    [Google Scholar]
  23. GoenkaA. TiekD.M. SongX. IglesiaR.P. LuM. HuB. ChengS.Y. The role of non-coding RNAs in glioma.Biomedicines2022108203110.3390/biomedicines1008203136009578
    [Google Scholar]
  24. ZhouQ. LiuZ.Z. WuH. KuangW.L. LncRNA H19 promotes cell proliferation, migration, and angiogenesis of glioma by regulating Wnt5a/β-catenin pathway via targeting miR-342.Cell. Mol. Neurobiol.20224241065107710.1007/s10571‑020‑00995‑z33161527
    [Google Scholar]
  25. KciukM. YahyaE.B. MohamedM.M.I. AbdulsamadM.A. AllaqA.A. GielecińskaA. KontekR. Insights into the role of LncRNAs and miRNAs in glioma progression and their potential as novel therapeutic targets.Cancers20231513329810.3390/cancers1513329837444408
    [Google Scholar]
  26. AngelopoulouE. PaudelY.N. PiperiC. Critical role of HOX transcript antisense intergenic RNA (HOTAIR) in gliomas.J. Mol. Med.202098111525154610.1007/s00109‑020‑01984‑x32978667
    [Google Scholar]
  27. WeiY. ZhouK. WangC. DuX. XiaoQ. ChenC. Adsorption of miR-218 by lncRNA HOTAIR regulates PDE7A and affects glioma cell proliferation, invasion, and apoptosis.Int. J. Clin. Exp. Pathol.202013122973298333425098
    [Google Scholar]
  28. KeJ. YaoY. ZhengJ. WangP. LiuY. MaJ. LiZ. LiuX. LiZ. WangZ. XueY. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326.Oncotarget2015626219342194910.18632/oncotarget.429026183397
    [Google Scholar]
  29. MaX. LiZ. LiT. ZhuL. LiZ. TianN. Long non-coding RNA HOTAIR enhances angiogenesis by induction of VEGFA expression in glioma cells and transmission to endothelial cells via glioma cell derived-extracellular vesicles.Am. J. Transl. Res.20179115012502129218099
    [Google Scholar]
  30. LiuL. CuiS. WanT. LiX. TianW. ZhangR. LuoL. ShiY. Long non‐coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR‐126‐5p.J. Cell. Physiol.201823396822683110.1002/jcp.2643229319172
    [Google Scholar]
  31. BhanA. HussainI. AnsariK.I. KasiriS. BashyalA. MandalS.S. Antisense transcript long noncoding RNA (lncRNA) HOTAIR is transcriptionally induced by estradiol.J. Mol. Biol.2013425193707372210.1016/j.jmb.2013.01.02223375982
    [Google Scholar]
  32. PriceR.L. BhanA. MandalS.S. HOTAIR beyond repression: In protein degradation, inflammation, DNA damage response, and cell signaling.DNA Repair202110510314110.1016/j.dnarep.2021.10314134183273
    [Google Scholar]
  33. RajuG.S.R. PavitraE. BandaruS.S. VaraprasadG.L. NagarajuG.P. MallaR.R. HuhY.S. HanY.K. HOTAIR: A potential metastatic, drug-resistant and prognostic regulator of breast cancer.Mol. Cancer20232216510.1186/s12943‑023‑01765‑336997931
    [Google Scholar]
  34. MozdaraniH. EzzatizadehV. ParvanehR.R. The emerging role of the long non-coding RNA HOTAIR in breast cancer development and treatment.J. Transl. Med.202018115210.1186/s12967‑020‑02320‑032245498
    [Google Scholar]
  35. BhattiG.K. KhullarN. SidhuI.S. NavikU.S. ReddyA.P. ReddyP.H. BhattiJ.S. Emerging role of non‐coding RNA in health and disease.Metab. Brain Dis.20213661119113410.1007/s11011‑021‑00739‑y33881724
    [Google Scholar]
  36. HajjariM. SalavatyA. HOTAIR: An oncogenic long non-coding RNA in different cancers.Cancer Biol. Med.20151211925859406
    [Google Scholar]
  37. KuoF.C. NevilleM.J. SabaratnamR. Wesolowska-AndersenA. PhillipsD. WittemansL.B.L. van DamA.D. LohN.Y. TodorčevićM. DentonN. KentistouK.A. JoshiP.K. ChristodoulidesC. LangenbergC. CollasP. KarpeF. PinnickK.E. HOTAIR interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution.Cell Rep.202240411113610.1016/j.celrep.2022.11113635905723
    [Google Scholar]
  38. ShiY. HuangQ. KongX. ZhaoR. ChenX. ZhaiY. XiongL. Current knowledge of long non-coding RNA HOTAIR in breast cancer progression and its application.Life202111648310.3390/life1106048334073224
    [Google Scholar]
  39. AmândioA.R. NecsuleaA. JoyeE. MascrezB. DubouleD. Hotair is dispensible for mouse development.PLoS Genet.20161212e100623210.1371/journal.pgen.100623227977683
    [Google Scholar]
  40. BiswasS. FengB. ChenS. LiuJ. Aref-EshghiE. GonderJ. NgoV. SadikovicB. ChakrabartiS. The long non-coding RNA HOTAIR is a critical epigenetic mediator of angiogenesis in diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.2021623202010.1167/iovs.62.3.2033724292
    [Google Scholar]
  41. AmiconeL. MarchettiA. CicchiniC. The lncRNA HOTAIR: A pleiotropic regulator of epithelial cell plasticity.J. Exp. Clin. Cancer Res.202342114710.1186/s13046‑023‑02725‑x37308974
    [Google Scholar]
  42. RamyaV. ShyamK.P. AngelmaryA. KadalmaniB. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20241869115942910.1016/j.bbalip.2023.15942937967739
    [Google Scholar]
  43. LiY. SunW. LiJ. DuR. XingW. YuanX. ZhongG. ZhaoD. LiuZ. JinX. PanJ. LiY. LiQ. KanG. HanX. LingS. SunX. LiY. HuR-mediated nucleocytoplasmic translocation of HOTAIR relieves its inhibition of osteogenic differentiation and promotes bone formation.Bone Res.20231115310.1038/s41413‑023‑00289‑237872163
    [Google Scholar]
  44. LuoC. WeiL. QianF. BoL. GaoS. YangG. MaoC. LncRNA HOTAIR regulates autophagy and proliferation mechanisms in premature ovarian insufficiency through the miR-148b-3p/ATG14 axis.Cell Death Discov.20241014410.1038/s41420‑024‑01811‑z38267415
    [Google Scholar]
  45. ChenH. LiX. ChenW. WuT. LiuS. LncRNA HOTAIR inhibits miR-19a-3p to alleviate foam cell formation and inflammatory response in atherosclerosis.Int. J. Med. Sci.202421352152910.7150/ijms.9031538250607
    [Google Scholar]
  46. ZhuC. WangX. WangY. WangK. Functions and underlying mechanisms of lncRNA HOTAIR in cancer chemotherapy resistance.Cell Death Discov.20228138310.1038/s41420‑022‑01174‑336100611
    [Google Scholar]
  47. WangJ. LiuX. LiP. WangJ. ShuY. ZhongX. GaoZ. YangJ. JiangY. ZhouX. YangG. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway.J. Biol. Chem.20222981210263010.1016/j.jbc.2022.102630
    [Google Scholar]
  48. ZhangJ.X. HanL. BaoZ.S. WangY.Y. ChenL.Y. YanW. YuS.Z. PuP.Y. LiuN. YouY.P. JiangT. KangC.S. Chinese Glioma Cooperative Group HOTAIR, a cell cycle–associated long noncoding RNA and a strong predictor of survival, is preferentially expressed in classical and mesenchymal glioma.Neuro-oncol.201315121595160310.1093/neuonc/not13124203894
    [Google Scholar]
  49. JiangY. ZhangQ. BaoJ. DuC. WangJ. TongQ. LiuC. Schisandrin B inhibits the proliferation and invasion of glioma cells by regulating the HOTAIR–micoRNA-125a–mTOR pathway.Neuroreport20172829310010.1097/WNR.000000000000071727977512
    [Google Scholar]
  50. ChenY.A. BianY. ZhaoS. KongF. LiX.G. Suppression of PDCD4 mediated by the long non-coding RNA HOTAIR inhibits the proliferation and invasion of glioma cells.Oncol. Lett.20161265170517610.3892/ol.2016.532328105224
    [Google Scholar]
  51. FangK. LiuP. DongS. GuoY. CuiX. ZhuX. LiX. JiangL. LiuT. WuY. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells.Int. J. Oncol.201649250951810.3892/ijo.2016.357127277755
    [Google Scholar]
  52. ZhangL. HeA. ChenB. BiJ. ChenJ. GuoD. QianY. WangW. ShiT. ZhaoZ. ShiJ. AnW. AttenelloF. LuW. A HOTAIR regulatory element modulates glioma cell sensitivity to temozolomide through long-range regulation of multiple target genes.Genome Res.202030215516310.1101/gr.251058.11931953347
    [Google Scholar]
  53. Xavier-MagalhãesA. GonçalvesC.S. FogliA. LourençoT. PojoM. PereiraB. RochaM. LopesM.C. CrespoI. RebeloO. TãoH. LimaJ. MoreiraR. PintoA.A. JonesC. ReisR.M. CostelloJ.F. ArnaudP. SousaN. CostaB.M. The long non-coding RNA HOTAIR is transcriptionally activated by HOXA9 and is an independent prognostic marker in patients with malignant glioma.Oncotarget2018921157401575610.18632/oncotarget.2459729644006
    [Google Scholar]
  54. ShiJ. LvS. WuM. WangX. DengY. LiY. LiK. ZhaoH. ZhuX. YeM. HOTAIR‐EZH2 inhibitor AC1Q3QWB upregulates CWF19L1 and enhances cell cycle inhibition of CDK4/6 inhibitor palbociclib in glioma.Clin. Transl. Med.202010118219810.1002/ctm2.2132508030
    [Google Scholar]
  55. HuangK. SunJ. YangC. WangY. ZhouB. KangC. HanL. WangQ. HOTAIR upregulates an 18-gene cell cycle-related mRNA network in glioma.Int. J. Oncol.20175041271127810.3892/ijo.2017.390128350082
    [Google Scholar]
  56. BianE.B. MaC.C. HeX.J. WangC. ZongG. WangH.L. ZhaoB. Epigenetic modification of miR-141 regulates SKA2 by an endogenous ‘sponge’ HOTAIR in glioma.Oncotarget2016721306103062510.18632/oncotarget.889527121316
    [Google Scholar]
  57. SunG. WangY. ZhangJ. LinN. YouY. MiR‐15b/HOTAIR/p53 form a regulatory loop that affects the growth of glioma cells.J. Cell. Biochem.201811964540454710.1002/jcb.2659129323737
    [Google Scholar]
  58. WangG. LiZ. TianN. HanL. FuY. GuoZ. TianY. miR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expression.Oncol. Lett.201612287988610.3892/ol.2016.474327446363
    [Google Scholar]
  59. Xavier-MagalhãesA. OliveiraA.I. de CastroJ.V. PojoM. GonçalvesC.S. LourençoT. Viana-PereiraM. CostaS. LinharesP. VazR. NabiçoR. AmorimJ. PintoA.A. ReisR.M. CostaB.M. Effects of the functional HOTAIR rs920778 and rs12826786 genetic variants in glioma susceptibility and patient prognosis.J. Neurooncol.20171321273410.1007/s11060‑016‑2345‑028083786
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947296461240312051407
Loading
/content/journals/cctr/10.2174/0115733947296461240312051407
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): angiogenesis; cancer; glioma; HOTAIR; LncRNAs; proliferation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test