Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-3947
  • E-ISSN: 1875-6301

Abstract

Polymers are the mainstay of drug delivery systems. They may be natural, semisynthetic, or synthetic and used to program the release of drugs as per requirement. They are used to enhance the bioavailability and hence solubility, stability, and site specificity, or to release to drug either in a controlled, pulsatile, sustained, immediate release pattern. In the present review, we have discussed the recent prose and patents of poly(lactic-co-glycolic acid) and PLGA applicability in preparing formulations against cancer. Synthetic polymer, PLGA comprises monomers of glycolide and lactide available in various grades with varying physicochemical properties thus serving the formulators to fabricate preparations having designed release patterns. In this review, current literature and patents of poly(lactic-co-glycolic acid); PLGA using anticancer preparations have been covered. PLGA has demonstrated its potential as a polymer to program the release of drugs as a coating polymer and the development of a matrix in various drug delivery systems. It can augment the bioavailability of the drug reducing the toxicity/side effects and delivering the drug at the target site. The potential of PLGA to transfer the drug may unclutter novel ways for therapeutic interventions in various tumors.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947284281240129065536
2024-02-19
2025-09-04
Loading full text...

Full text loading...

References

  1. ZhaoZ. WangJ. MaoH.Q. LeongK.W. Polyphosphoesters in drug and gene delivery.Adv. Drug Deliv. Rev.200355448349910.1016/S0169‑409X(03)00040‑112706047
    [Google Scholar]
  2. UedaH. TabataY. Polyhydroxyalkanonate derivatives in current clinical applications and trials.Adv. Drug Deliv. Rev.200355450151810.1016/S0169‑409X(03)00037‑112706048
    [Google Scholar]
  3. EngelbergI. KohnJ. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study.Biomaterials199112329230410.1016/0142‑9612(91)90037‑B1649646
    [Google Scholar]
  4. UhrichK.E. CannizzaroS.M. LangerR.S. ShakesheffK.M. Polymeric systems for controlled drug release.Chem. Rev.199999113181319810.1021/cr940351u11749514
    [Google Scholar]
  5. WuX. S. WangN. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation.J. Biomater. Sci.20011212134
    [Google Scholar]
  6. LüJ.M. WangX. Marin-MullerC. WangH. LinP.H. YaoQ. ChenC. Current advances in research and clinical applications of PLGA-based nanotechnology.Expert Rev. Mol. Diagn.20099432534110.1586/erm.09.1519435455
    [Google Scholar]
  7. SharmaS. ParmarA. KoriS. SandhirR. PLGA-based nanoparticles: A new paradigm in biomedical applications.Trends Analyt. Chem.201680304010.1016/j.trac.2015.06.014
    [Google Scholar]
  8. ParkT.G. Degradation of poly(d,l-lactic acid) microspheres: Effect of molecular weight.J. Control. Release199430216117310.1016/0168‑3659(94)90263‑1
    [Google Scholar]
  9. SchlieckerG. SchmidtC. FuchsS. KisselT. Characterization of a homologous series of d, l -lactic acid oligomers; A mechanistic study on the degradation kinetics in vitro.Biomaterials200324213835384410.1016/S0142‑9612(03)00243‑612818556
    [Google Scholar]
  10. DinarvandR. Sepehri Manouchehri RouhaniH. AtyabiF. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents.Int. J. Nanomedicine2011687789510.2147/IJN.S1890521720501
    [Google Scholar]
  11. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
  12. SahE. SahH. Recent trends in preparation of poly(lactide- co -glycolide) nanoparticles by mixing polymeric organic solution with antisolvent.J. Nanomater.2015201512210.1155/2015/794601
    [Google Scholar]
  13. MakadiaH.K. SiegelS.J. Poly lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  14. GhahremankhaniA.A. DorkooshF. DinarvandR. PLGA-PEG-PLGA tri-block copolymers as in situ gel-forming peptide delivery system: Effect of formulation properties on peptide release.Pharm. Dev. Technol.2008131495510.1080/1083745070170284218300099
    [Google Scholar]
  15. JeongB. BaeY.H. KimS.W. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof.J. Biomed. Mater. Res.200050217117710.1002/(SICI)1097‑4636(200005)50:2<171::AID‑JBM11>3.0.CO;2‑F10679681
    [Google Scholar]
  16. ZhangY. García-GabilondoM. RosellA. RoigA. MRI/Photoluminescence dual-modal imaging magnetic plga nanocapsules for theranostics.Pharmaceutics20191211610.3390/pharmaceutics1201001631877821
    [Google Scholar]
  17. TobíoM. GrefR. SánchezA. LangerR. AlonsoM.J. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration.Pharm. Res.199815227027510.1023/A:10119228199269523314
    [Google Scholar]
  18. RezvantalabS. DrudeN.I. MoravejiM.K. GüvenerN. KoonsE.K. ShiY. LammersT. KiesslingF. PLGA-Based nanoparticles in cancer treatment.Front. Pharmacol.20189126010.3389/fphar.2018.0126030450050
    [Google Scholar]
  19. KhalilN.M. NascimentoT.C.F. CasaD.M. DalmolinL.F. MattosA.C. HossI. RomanoM.A. MainardesR.M. Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats.Colloids Surf. B Biointerfaces201310135336010.1016/j.colsurfb.2012.06.02423010041
    [Google Scholar]
  20. KoopaeiMN. KhoshayandM.R. MostafaviS.H. AminiM. KhorramizadehM.R. Jeddi TehraniM. AtyabiF. DinarvandR. Docetaxel loaded PEG-PLGA nanoparticles: Optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect.Iran. J. Pharm. Res.201413381983325276182
    [Google Scholar]
  21. TaharaK. SakaiT. YamamotoH. TakeuchiH. HirashimaN. KawashimaY. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells.Int. J. Pharm.20093821-219820410.1016/j.ijpharm.2009.07.02319646519
    [Google Scholar]
  22. YangY. ChungT.S. NgN.P. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method.Biomaterials200122323124110.1016/S0142‑9612(00)00178‑211197498
    [Google Scholar]
  23. BazileD.V. RopertC. HuveP. VerrecchiaT. MariardM. FrydmanA. VeillardM. SpenlehauerG. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats.Biomaterials199213151093110210.1016/0142‑9612(92)90142‑B1493193
    [Google Scholar]
  24. KapoorD.N. BhatiaA. KaurR. SharmaR. KaurG. DhawanS. PLGA: A unique polymer for drug delivery.Ther. Deliv.201561415810.4155/tde.14.9125565440
    [Google Scholar]
  25. RochaC.V. GonçalvesV. da SilvaM.C. Bañobre-LópezM. GalloJ. PLGA-based composites for various biomedical applications.Int. J. Mol. Sci.2022234203410.3390/ijms2304203435216149
    [Google Scholar]
  26. JiangbingZ. LiangH JosephM. P. Compositions for enhancing delivery of agents across the blood brain barrier and methods of use thereof.U.S. Patent 20180126014A12018
  27. JeffreyA. Schneider Justin Hanes Targeted structure-specific particulate delivery systems.E.P. Patent 3220900B12020
  28. ZhiK. RajiB. NookalaA.R. KhanM.M. NguyenX.H. SakshiS. PourmotabbedT. YallapuM.M. KochatH. TadrousE. PernellS. KumarS. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: From R&D to cGMP.Pharmaceutics202113450010.3390/pharmaceutics1304050033917577
    [Google Scholar]
  29. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies.Int. J. Mol. Sci.2019209231310.3390/ijms2009231331083327
    [Google Scholar]
  30. OrunoğluM. KaffashiA. PehlivanS.B. ŞahinS. SöylemezoğluF. OğuzK.K. MutM. Effects of curcumin-loaded PLGA nanoparticles on the RG2 rat glioma model.Mater. Sci. Eng. C201778323810.1016/j.msec.2017.03.29228575990
    [Google Scholar]
  31. RabhaB. BharadwajK.K. PatiS. ChoudhuryB.K. SarkarT. KariZ.A. EdinurH.A. BaishyaD. AtanaseL.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update.Polymers20211323411410.3390/polym1323411434883617
    [Google Scholar]
  32. MaksimenkoO. MalinovskayaJ. ShipuloE. OsipovaN. RazzhivinaV. ArantsevaD. YarovayaO. MostovayaU. KhalanskyA. FedoseevaV. AlekseevaA. VanchugovaL. GorshkovaM. KovalenkoE. BalabanyanV. MelnikovP. BaklaushevV. ChekhoninV. KreuterJ. GelperinaS. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development.Int. J. Pharm.201957211873310.1016/j.ijpharm.2019.11873331689481
    [Google Scholar]
  33. HrabetaJ. GrohT. KhalilM.A. PoljakovaJ. AdamV. KizekR. UhlikJ. DoktorovaH. CernaT. FreiE. StiborovaM. EckschlagerT. Vacuolar-ATPase-mediated intracellular sequestration of ellipticine contributes to drug resistance in neuroblastoma cells.Int. J. Oncol.201547397198010.3892/ijo.2015.306626134421
    [Google Scholar]
  34. HuileG. TingL. Oral brain targeting nanoparticle and application thereof.C.N. Patent 116270478A2023
  35. GraemeF. Decreased adhesivity receptor-targeted NPs for fn14-positive tumors.U.S. Patent 20210030689A12021
  36. GautQingzhongamK. Anticarcinogenic internal implant agent.C.N. Patent 100340296C2010
  37. GautamA.K. KumarP. MaityB. RouthollaG. GhoshB. ChidambaramK. BegumM.Y. Al FateaseA. RajinikanthP.S. SinghS. SahaS. M RV. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies.Front. Pharmacol.202213102186710.3389/fphar.2022.102186736386226
    [Google Scholar]
  38. (a FaseheeH. DinarvandR. GhavamzadehA. Esfandyari-ManeshM. MoradianH. FaghihiS. GhaffariS.H. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: In vitro and in vivo investigations.J Nanobiotechnol.201614132
    [Google Scholar]
  39. (bAlkahtani S, Alarifi S, Albasher G, Al-Zharani M, Aljarba NH, Almarzoug MH, Alhoshani NM, Al-Johani NS, Alothaid H, Alkahtane AA. Poly lactic-co-glycolic acid-(PLGA-) loaded nanoformulation of cisplatin as a therapeutic approach for breast cancers.Oxid Med Cell Longev20212021583441810.1155/2021/5834418
    [Google Scholar]
  40. (a RuizAL. ArribasEV McEnnisK. Poly(lactic- co -glycolic acid) encapsulated platinum nanoparticles for cancer treatment.Mater. Adv.2022362858287010.1039/D1MA01155C
    [Google Scholar]
  41. (b BendaleY BendaleV PaulS. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis.Integr Med Res.20176214114810.1016/j.imr.2017.01.00628664137
    [Google Scholar]
  42. AndimaM. CostabileG. IsertL. NdakalaA. DereseS. MerkelO. Evaluation of β-sitosterol loaded PLGA and PEG-PLA nanoparticles for effective treatment of breast cancer: Preparation, physicochemical characterization, and antitumor activity.Pharmaceutics201810423210.3390/pharmaceutics1004023230445705
    [Google Scholar]
  43. JusuS.M. ObayemiJ.D. SalifuA.A. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer.Sci Rep202010114188
    [Google Scholar]
  44. BowermanC.J. ByrneJ.D. ChuK.S. SchorzmanA.N. KeelerA.W. SherwoodC.A. PerryJ.L. LuftJ.C. DarrD.B. DealA.M. NapierM.E. ZamboniW.C. SharplessN.E. PerouC.M. DeSimoneJ.M. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer.Nano Lett.201717124224810.1021/acs.nanolett.6b0397127966988
    [Google Scholar]
  45. ZhangshuangZ. XueweiC. YeQ. ZhongH. ShuD. Preparation method of breast cancer targeted nano drug delivery system.C.N. Patent 115887415A2023
  46. YanW. YunhaoL. FanJ. YujuanG. XuanW. Multifunctional anti-tumor nano-drug delivery system and preparation method and application thereof.C.N. Patent 115970002A2023
  47. YuC. MengL. FengjieL. MujuanP. QianwenL. TingtingG. Quercetin nano preparation and preparation method and application thereof.C.N. Patent 116270538A2023
  48. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  49. CondelloM. MeschiniS. Role of natural antioxidant products in colorectal cancer disease: A focus on a natural compound derived from prunus spinosa, trigno ecotype.Cells20211012332610.3390/cells1012332634943833
    [Google Scholar]
  50. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers1309202533922197
    [Google Scholar]
  51. LeeJ. BaeJ. KwakD. KimH. KimJ. Phyu HlaingS. SaparbayevaA. Hee LeeE. YoonI.S. KimM.S. Ryong MoonH. YooJ.W. 5-Fluorouracil crystal-incorporated, pH-responsive, and release-modulating PLGA/Eudragit FS hybrid microparticles for local colorectal cancer-targeted chemotherapy.Int. J. Pharm.202363012244310.1016/j.ijpharm.2022.12244336503847
    [Google Scholar]
  52. AlfalehM.A. HashemA.M. AbujamelT.S. AlhakamyN.A. KalamM.A. RiadiY. MdS. Apigenin loaded lipoid–plga–tpgs nanoparticles for colon cancer therapy: Characterization, sustained release, cytotoxicity, and apoptosis pathways.Polymers20221417357710.3390/polym1417357736080654
    [Google Scholar]
  53. ZumayaA.L.V. RimpelováS. ŠtějdířováM. UlbrichP. VilčákováJ. HassounaF. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma.Int. J. Mol. Sci.2022233120010.3390/ijms2303120035163122
    [Google Scholar]
  54. EbrahimianM. ShahgordiS. Yazdian-RobatiR. EtemadL. HashemiM. SalmasiZ. Targeted delivery of galbanic acid to colon cancer cells by PLGA nanoparticles incorporated into human mesenchymal stem cells.Avicenna J. Phytomed.202212329530836186932
    [Google Scholar]
  55. SarafA. DubeyN. DubeyN. SharmaM. Enhancement of cytotoxicty of diallyl disulfide toward colon cancer by Eudragit S100/PLGA nanoparticles.J. Drug Deliv. Sci. Technol.20216410258010.1016/j.jddst.2021.102580
    [Google Scholar]
  56. YavariB. AthariS.S. EpCAM aptamer activated 5-FU-loaded PLGA NPs in CRC treatment; in vitro and in vivo study.J. Drug Target.202331329630910.1080/1061186X.2022.214867936398476
    [Google Scholar]
  57. SarafA. DubeyN. Curcumin loaded eudragit S100/PLGA NPs in treatment of colon cancer: Formulation, optimization, and in-vitro cytotoxicity study.Indian J. Pharmaceut. Edu. Res.2021552S428S44010.5530/ijper.55.2s.114
    [Google Scholar]
  58. WuP. ZhouQ. ZhuH. ZhuangY. BaoJ. Enhanced antitumor efficacy on colon cancer using EGF functionalized PLGA NPs loaded with 5-Fluorouracil and perfluorocarbon.Res. Squa.2020201354
    [Google Scholar]
  59. LiL. XiangD. ShigdarS. YangW. LiQ. LinJ. LiuK. DuanW. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells.Int. J. Nanomedicine201491083109610.2147/IJN.S5977924591829
    [Google Scholar]
  60. SiegelR.L. MillerK.D. GodingSA. FedewaS.A. ButterlyL.F. AndersonJ.C. CercekA. SmithR.A. JemalA. Colorectal cancer statistics, 2020.CA Cancer J. Clin.202070314516410.3322/caac.2160132133645
    [Google Scholar]
  61. SaifM.W. ChuE. Biology of colorectal cancer.Cancer J.201016319620110.1097/PPO.0b013e3181e076af20526096
    [Google Scholar]
  62. EynaliS. KhoeiS. KhoeeS. EsmaelbeygiE. Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic NPs on human colon cancer cell line HT-29.Int J Hyperthermia201733332733510.1080/02656736.2016.1243260
    [Google Scholar]
  63. DehuaL. JingG. Neutral granulocyte membrane-coated nano-particle for radiotherapy sensitization and remote effect activation, and preparation method and application thereof.C.N. Patent 116270531A2023
  64. QianmingD. JianqingP. JiaZ. JianingW. YiC. JiajieS. Responsive nano-preparation carrying artesunate and chloroquine together, and preparation method and application thereof.C.N. Patent 116159057A2023
  65. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.2551621351269
    [Google Scholar]
  66. JainS. SaxenaS. KumarA. Epidemiology of prostate cancer in India.Meta Gene2014259660510.1016/j.mgene.2014.07.00725606442
    [Google Scholar]
  67. PedroM. Farokhzad ,NPs for the efficient delivery of various medicinal drugs.U.S. Patent 9931410B2018
  68. GiovanniB Catechol-functionalized magnetic NPs: Production and applications.C.N. Patent 106068128B2020
  69. WangZ OmidC. Langer, Drug delivery system for pharmaceuticals and radiation.U.S. Patent 20110027172A12011
  70. OmidC. Langer, aptamer-directed drug delivery.U.S. Patent 20110052697A12011
  71. OmidC. Zale system for administering medicinal medicines with precision.C.A. Patent 2648099C2012
  72. AhmedK. K. GearyS. M. SalemA. K. Surface engineering tumor cells with adjuvant-loaded particles for use as cancer vaccines.J. Control. Rel.20142481910.1016/j.jconrel.2016.12.03628057523
    [Google Scholar]
  73. GuoJ. WuS.H. RenW.G. WangX.L. YangA.Q. Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers.Exp. Ther. Med.20151062305231010.3892/etm.2015.279626668633
    [Google Scholar]
  74. AlviM. YaqoobA. RehmanK. PLGA-based NPs for the treatment of cancer: Current strategies and perspectives.AAPS Open202281210.1186/s41120‑022‑00060‑7
    [Google Scholar]
  75. RayS. RaySG. MandalS. Development of bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer.Artif. Cells Nanomed. Biotechnol.201745594495410.1080/21691401.2016.119645727327352
    [Google Scholar]
  76. AlfaitiMY. AliA.S. MohammedA.A. Atorvastatin-TPGS-PLGA NPs cytotoxicity augmentation against liver cancer HepG2 cells.Int. J. Pharmacol.202016798610.3923/ijp.2020.79.86
    [Google Scholar]
  77. SannaV. RoggioA.M. PosadinoA.M. CossuA. MarcedduS. MarianiA. AlzariV. UzzauS. PintusG. SechiM. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: Formulation, characterization, and cytotoxicity studies.Nanoscale Res. Lett.20116126010.1186/1556‑276X‑6‑26021711774
    [Google Scholar]
  78. Jeong-suk KangP. Novel albendazole NPs and composition comprising the same for preventing or treating cancer.K.R. Patent 101748127B12017
  79. UpadhyayP. BhattacharjeeM. BhattacharyaS. AhirM. AdhikaryA. PatraP. Silymarin-loaded, lactobionic acid-conjugated porous PLGA nanoparticles induce apoptosis in liver cancer cells.ACS Appl. Bio Mater.20203107178719210.1021/acsabm.0c0098735019376
    [Google Scholar]
  80. MoJ. DaX. LiQ. HuangJ. LuL. LuH. The study of exosomes-encapsulated mPEG-PLGA polymer drug-loaded particles for targeted therapy of liver cancer.J. Oncol.2022202211010.1155/2022/423411636164346
    [Google Scholar]
  81. CaoX. WangB. Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment.J. Biomater. Appl.202136584385010.1177/0885328221101770134000859
    [Google Scholar]
  82. KhanA.A. AlanaziA.M. JabeenM. ChauhanA. AnsariM.A. Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice.Sci. Rep.2019911582510.1038/s41598‑019‑52142‑431676815
    [Google Scholar]
  83. Pho-iamT. PunnakitikashemP. SomboonyosdechC. SripinitchaiS. MasaratanaP. SirivatanauksornV. SirivatanauksornY. WongwanC. NguyenK.T. SrisawatC. PLGA nanoparticles containing α-fetoprotein siRNA induce apoptosis and enhance the cytotoxic effects of doxorubicin in human liver cancer cell line.Biochem. Biophys. Res. Commun.202155319119710.1016/j.bbrc.2021.03.08633774221
    [Google Scholar]
  84. ChenX. YiL. YuZ. Gao-weiL. Formulation, characterization and evaluation of curcumin- Loaded PLGA- TPGS nanoparticles for liver cancer treatment.Drug Des. Devel. Ther.2019133569357810.2147/DDDT.S21174831802845
    [Google Scholar]
  85. SunS.B. LiuP. ShaoF.M. MiaoQ.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer.Int. J. Clin. Exp. Med.2015810196701968126770631
    [Google Scholar]
  86. AlfaifiM. Y. ShatiA. A. ElbehairiS. E. I. FahmyU. A. AlhakamyN. A. MdS. Anti-tumor effect of PEG-coated PLGA NPs of febuxostat on A549 non-small cell lung cancer cells.3 Biotech202010313310.1007/s13205‑020‑2077‑x32154046
    [Google Scholar]
  87. WHOGlobal Cancer Observatory.Available from:http://globocan.iarc.fr/ (Accessed on 28.10.2012).
  88. CoglianoV.J. BaanR. StraifK. GrosseY. Lauby-SecretanB. El GhissassiF. BouvardV. Benbrahim-TallaaL. GuhaN. FreemanC. GalichetL. WildC.P. Preventable exposures associated with human cancers.J. Natl. Cancer Inst.2011103241827183910.1093/jnci/djr48322158127
    [Google Scholar]
  89. IarmarcovaiG. BonassiS. BottaA. BaanR.A. OrsièreT. Genetic polymorphisms and micronucleus formation: A review of the literature.Mutat. Res. Rev. Mutat. Res.2008658321523310.1016/j.mrrev.2007.10.00118037339
    [Google Scholar]
  90. LiS. LiX. DingJ. HanL. GuoX. Anti-tumor efficacy of folate modified PLGA-based nanoparticles for the co-delivery of drugs in ovarian cancer.Drug Des. Devel. Ther.2019131271128010.2147/DDDT.S19549331114163
    [Google Scholar]
  91. Domínguez-RíosR. Sánchez-RamírezD.R. Ruiz-SarayK. Oceguera-BasurtoP.E. AlmadaM. JuárezJ. Zepeda-MorenoA. del Toro-ArreolaA. TopeteA. Daneri-NavarroA. Cisplatin-loaded PLGA nanoparticles for HER2 targeted ovarian cancer therapy.Colloids Surf. B Biointerfaces201917819920710.1016/j.colsurfb.2019.03.01130856589
    [Google Scholar]
  92. Fraguas-SánchezA.I. Torres-SuárezA.I. CohenM. DelieF. Bastida-RuizD. YartL. Martin-SabrosoC. Fernández-CarballidoA. PLGA nanoparticles for the intraperitoneal administration of CBD in the treatment of ovarian cancer: In vitro and In Ovo assessment.Pharmaceutics202012543910.3390/pharmaceutics1205043932397428
    [Google Scholar]
  93. RisnayantiC. JangY.S. LeeJ. AhnH.J. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer.Sci. Rep.201881749810.1038/s41598‑018‑25930‑729760419
    [Google Scholar]
  94. BrandhonneurN. BoucaudY. VergerA. DumaitN. MolardY. CordierS. DolloG. Molybdenum cluster loaded PLGA nanoparticles as efficient tools against epithelial ovarian cancer.Int. J. Pharm.202159212007910.1016/j.ijpharm.2020.12007933189811
    [Google Scholar]
  95. LabaniS. AsthanaS. RathoreK. SardanaK. Incidence of melanoma and nonmelanoma skin cancers in Indian and the global regions.J. Cancer Res. Ther.202117490691110.4103/jcrt.JCRT_785_1934528540
    [Google Scholar]
  96. da SilvaD.B. da SilvaC.L. DavanzoN.N. da Silva SouzaR. CorreaR.J. TedescoA.C. Riemma PierreM.B. ProtoporphyrinI.X. PpIX) loaded PLGA NPs for topical photodynamic therapy of melanoma cells.Photodiagn. Photodyn. Ther.20213510231710.1016/j.pdpdt.2021.10231733940210
    [Google Scholar]
  97. YamanS. RamachandramoorthyH. OterG. ZhukovaD. NguyenT. SabnaniM.K. WeidanzJ.A. NguyenK.T. Melanoma peptide MHC specific TCR expressing T-cell membrane camouflaged PLGA nanoparticles for treatment of melanoma skin cancer.Front. Bioeng. Biotechnol.2020894310.3389/fbioe.2020.0094332850765
    [Google Scholar]
  98. IbrahimW.N. RosliL.MBM DoolaaneaA.A. Formulation, cellular uptake and cytotoxicity of thymoquinone-loaded PLGA nanoparticles in malignant melanoma cancer cells.Int. J. Nanomedicine2020158059807410.2147/IJN.S26934033116518
    [Google Scholar]
  99. SinghN. AgrawalS. JiwnaniS. KhoslaD. MalikP. S. MohanA. PenumaduP. PrasadK. T. Lung cancer in India.J. Thoracic Oncol.202116812506610.1016/j.jtho.2021.02.004
    [Google Scholar]
  100. AraujoL.H. HornL. MerrittR.E. ShiloK. Xu-WelliverM. CarboneD.P. Cancer of the Lung: Non-small cell lung cancer and small cell lung cancer.Abeloff’s Clinical Oncology.6th ed. NiederhuberJ.E. ArmitageJ.O. DoroshowJ.H. KastanM.B. TepperJ.E. Philadelphia, PaElsevier202010.1016/B978‑0‑323‑47674‑4.00069‑4
    [Google Scholar]
  101. AlhakamyN.A. MdS. Repurposing itraconazole loaded PLGA nanoparticles for improved antitumor efficacy in non-small cell lung cancers.Pharmaceutics2019111268510.3390/pharmaceutics1112068531888155
    [Google Scholar]
  102. ZhangZ. ChengW. PanY. JiaL. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer.J. Mater. Chem. B Mater. Biol. Med.20208465566510.1039/C9TB02284H31904073
    [Google Scholar]
  103. Jiménez-LópezJ. El-HammadiM.M. OrtizR. Cayero-OteroM.D. CabezaL. PerazzoliG. Martin-BanderasL. BaeyensJ.M. PradosJ. MelguizoC. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer.Pharmacol. Res.201914145146510.1016/j.phrs.2019.01.01330634051
    [Google Scholar]
  104. ElbatanonyR.S. ParvathaneniV. KulkarniN.S. ShuklaS.K. ChauhanG. KundaN.K. GuptaV. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in-vitro efficacy.Drug Deliv. Transl. Res.202111392794310.1007/s13346‑020‑00802‑832557351
    [Google Scholar]
  105. AhmadN. AhmadR. AlrasheedR.A. AlmatarH.M.A. Al-RamadanA.S. BuheazahT.M. AlHomoudH.S. Al-NasifH.A. AlamM.A. A Chitosan-PLGA based catechin hydrate nanoparticles used in targeting of lungs and cancer treatment.Saudi J. Biol. Sci.20202792344235710.1016/j.sjbs.2020.05.02332884416
    [Google Scholar]
  106. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2015.CA Cancer J. Clin.201565152910.3322/caac.2125425559415
    [Google Scholar]
  107. WinterJ.M. BrennanM.F. TangL.H. D’AngelicaM.I. DeMatteoR.P. FongY. KlimstraD.S. JarnaginW.R. AllenP.J. Survival after resection of pancreatic adenocarcinoma: Results from a single institution over three decades.Ann. Surg. Oncol.201219116917510.1245/s10434‑011‑1900‑321761104
    [Google Scholar]
  108. FokasE. O’NeillE. Gordon-WeeksA. MukherjeeS. McKennaW.G. MuschelR.J. Pancreatic ductal adenocarcinoma: From genetics to biology to radiobiology to oncoimmunology and all the way back to the clinic.Biochim. Biophys. Acta201518551618225489989
    [Google Scholar]
  109. ErkanM. HausmannS. MichalskiC.W. FingerleA.A. DobritzM. KleeffJ. FriessH. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications.Nat. Rev. Gastroenterol. Hepatol.20129845446710.1038/nrgastro.2012.11522710569
    [Google Scholar]
  110. DurymanovM.O. RosenkranzA.A. SobolevA.S. Current approaches for improving Intratumoral accumulation and distribution of nanomedicines.Theranostics2015591007102010.7150/thno.1174226155316
    [Google Scholar]
  111. ZhaoX. YangK. ZhaoR. JiT. WangX. YangX. ZhangY. ChengK. LiuS. HaoJ. RenH. LeongK.W. NieG. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy.Biomaterials201610218719710.1016/j.biomaterials.2016.06.03227343466
    [Google Scholar]
  112. WuS. FowlerA.J. GarmonC.B. FesslerA.B. OgleJ.D. GroverK.R. AllenB.C. WilliamsC.D. ZhouR. YazdanifarM. OgleC.A. MukherjeeP. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles.BMC Cancer201818145710.1186/s12885‑018‑4393‑729685122
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947284281240129065536
Loading
/content/journals/cctr/10.2174/0115733947284281240129065536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test