Skip to content
2000
Volume 18, Issue 10
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Inertial navigation is a comprehensive technology involving precision machinery, computer technology, microelectronics, optics, automatic control, materials, and other disciplines and fields. Strapdown inertial navigation systems have gradually developed into the mainstream and direction of inertial navigation systems because of their small size, low cost, simple structure, and high reliability. The angular rate and acceleration information of the carrier relative to the inertial space are measured by the inertial measurement unit (IMU), and the instantaneous velocity and position information of the carrier are automatically calculated by Newton's law of motion. It has the characteristics of not relying on external information, not radiating energy to the outside world, not being disturbed, and good concealment. Therefore, it is widely used in aerospace, aviation, and navigation, especially in the military field.

Objective

This paper describes the development history of the Strapdown Inertia Navigation System summarizes the research status of the Strapdown Inertia Navigation System, and looks forward to its future development direction.

Methods

The key technologies of strapdown inertial navigation systems are investigated, and the related research on strapdown inertial navigation technology is understood in detail. The hardware composition and related algorithms of the strapdown inertial navigation system are analyzed in detail.

Results

Nowadays, strapdown inertial navigation technology is the mainstream of inertial navigation technology. Compared with the gimbaled inertial navigation system technology, the strapdown inertial navigation system has higher precision, smaller volume, and lower cost. At present, the initial alignment technology, error compensation technology, navigation algorithm technology, and inertial device technology of strapdown inertial navigation technology have made full development.

Conclusion

With the development of initial alignment technology, error compensation technology, navigation algorithm technology, and inertial device technology, the accuracy, response speed and anti-interference ability of strapdown inertial navigation technology have been significantly improved. The development of strapdown inertial navigation is closely related to the gyroscope technology which belongs to inertial device technology. The strapdown inertial navigation system based on optical gyroscopes such as laser gyroscopes and fibre optic gyroscopes is mature, and the MEMS strapdown inertial navigation system has a wide application prospect compared with the optical gyroscope strapdown inertial navigation system.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965347882241024082952
2025-01-06
2026-01-02
Loading full text...

Full text loading...

References

  1. YuanX. YuJ.X. ChenZ. Navigation system.BeijingAviation Industry Publishing House1993
    [Google Scholar]
  2. ChatfieldB. Averil, fundamentals of high accuracy inertial navigation.RestonAmerican Institute of Aeronautics and Astronautics199710.2514/4.866463
    [Google Scholar]
  3. GrewalM.S. WeillL.R. AndrewsA.P. Global positioning systems, inertial navigation, and integration.John Wiley & Sons200710.1002/0470099720
    [Google Scholar]
  4. WangW. Status and Development Trend of Inertial Technology.Zidonghua Xuebao201439672372910.3724/SP.J.1004.2013.00723
    [Google Scholar]
  5. ZhouX.C. ShenJ.S. Development of inertial navigation technology and its applications.Autom. Meas. Control20062595559
    [Google Scholar]
  6. DingH.G. Inertia technology collection.BeijingNational Defense Industry Press1994
    [Google Scholar]
  7. WangX.L. Initial alignment of dynamic and static base of strapdown inertial navigation system.Northwest Industrial University Press2013
    [Google Scholar]
  8. GargS.C. MorrowL.D. MamenR. Strapdown navigation technology: A literature survey.J. Guid. Control19781316117210.2514/3.55760
    [Google Scholar]
  9. LuY.J. Inertial Device(I&II).BeijingChina Astronautic Publishing House1990
    [Google Scholar]
  10. QinY.Y. Inertial navigation.Science PressBeijing2014
    [Google Scholar]
  11. WuY.L. Application of ocean current velocity estimation in strapdown compass alignmentM.S. thesis, National University of Defense Technology, Changsha, China2021
    [Google Scholar]
  12. BortzJ. A new mathematical formulation for strapdown inertial navigation.IEEE Trans. Aerosp. Electron. Syst.1971AES-71616610.1109/TAES.1971.310252
    [Google Scholar]
  13. MillerR.B. A new strapdown attitude algorithm.J. Guid. Control Dyn.19836428729110.2514/3.19831
    [Google Scholar]
  14. JiangY.F. LinY.P. Improved strapdown coning algorithms.IEEE Trans. Aerosp. Electron. Syst.199228248449010.1109/7.144574
    [Google Scholar]
  15. MusoffH. MurphyJ.H. Study of strapdown navigation attitude algorithms.J. Guid. Control Dyn.199518228729010.2514/3.21382
    [Google Scholar]
  16. DengZ.L. Inertial Navigation Principle.HarbinHarbin University of Technology Press1994
    [Google Scholar]
  17. TittertonD.H. WestonJ.L. Strapdown Inertial Navigation Technology.2nd edLexingtonMIT Lincoln Laboratory200410.1049/PBRA017E
    [Google Scholar]
  18. BarbourN. SchmidtG. Inertial sensor technology trendsWorkshop on Autonomous Underwater Vehicles Cambridge, 1998, pp. 55-62.
    [Google Scholar]
  19. ZhaoX.M. WengJ. HuangW. ZhaoY.X. Inertial navigation technology and modern economyThe 14th Branch of the 15th Annual Conference of China Association for Science and Technology: Proceedings of the Forum on Civil-Military Integration Development of National Defense Science and Technology Industry China, 2013.
    [Google Scholar]
  20. WangM.H. LiuW. GPS/SINS speed integral matching alignment based on improved adaptive UKF2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) 2019, pp. 352-357.
    [Google Scholar]
  21. ChenL.G. LiuJ.Y. SunY.R. YueM. Study of analytic coarse alignment methods to micro SINS.Hangtian Kongzhi2005234912
    [Google Scholar]
  22. WeiC.L. ZhangH.Y. Comparison of analytic coarse alignment methods.Hangtian Kongzhi20001831621
    [Google Scholar]
  23. YanG.M. Research on initial alignment of strapdown inertial navigation system on moving base and other related problems.Northwestern Polytechnical University2008
    [Google Scholar]
  24. ZhaoJ. Study of the self-alignment method under latitude unknown in dynamic disturbance conditionM.S. thesis, Beijing: Beijing Polytechnic University2016
    [Google Scholar]
  25. JulierS. UhlmannJ. Durrant-WhyteH.F. A new method for the nonlinear transformation of means and covariances in filters and estimators.IEEE Trans. Automat. Contr.200045347748210.1109/9.847726
    [Google Scholar]
  26. ZhanxinZ. YananG. LiabinC. Unscented Kalman filter for SINS alignment.J. Syst. Eng. Electron.200718232733310.1016/S1004‑4132(07)60094‑2
    [Google Scholar]
  27. DuGuanglong ZhangPing Online serial manipulator calibration based on multisensory process via extended kalman and particle filters.IEEE Trans. Ind. Electron.201461126852685910.1109/TIE.2014.2314051
    [Google Scholar]
  28. WangB. YeW. LiuY. An improved real-time transfer alignment algorithm based on adaptive noise estimation for distributed POS.IEEE Access2020810211910212710.1109/ACCESS.2020.2998719
    [Google Scholar]
  29. LiuX. ZhangQ.S. YangD.K. Nonlinear filter algorithm for GPS/DR integrated positioning.J. Beijing Uni. Aeronautics and Astronautics2007332184187
    [Google Scholar]
  30. WangD.L. ZhangH.Y. Nonlinear Filtering Algorithm for INS Initial Alignment.Chinese J. Inertial Tech.1999731822
    [Google Scholar]
  31. LiD.M. Study on initial alignment methods of strapdown inertial navigation systemPh.D. thesis, Harbin Engineering University, Harbin, China2006
    [Google Scholar]
  32. GaiffeT. CottreauY. FaussotN. HardyG. SimonpietriP. ArdittyH. Highly Compact fiber optic gyrocompass for applications at depths up to 3,000 metersProceedings of the 2000 International Symposium on Underwater Technology (Cat. No.00EX418) Tokyo, Japan, 26-26 May 2000, pp. 155-160.
    [Google Scholar]
  33. GaiffeT. From R&D brassboard to navigation grade FOG-based INS: The experience of photonetics/lxsea15th Optical Fiber Sensors Conference Technical Digest., 2002 Portland, OR, USA, 10-10 May 2002, pp. 1-4.
    [Google Scholar]
  34. NapolitanoF. GaiffeT. CottreauY. LoretT. PHINS: The first high performances inertial navigation system based on fiber optic gyroscopes9th Saint Petersburg International Conference on Integrated Navigation systems, 2002pp. 296-304 Saint Petersburg, Russia, 2002, pp. 1-4.
    [Google Scholar]
  35. QinY.Y. YanG.M. GuD.Q. Study on information-based coarse alignment of strapdown inertial navigation system on swing base.J. Northwestern Polytech. Uni.2005235681684
    [Google Scholar]
  36. LianX.J. TangY.G. WuM.P. HuX.P. Study on SINS alignment algorithm with inertial frame for swaying bases.Guofang Ke-ji Daxue Xuebao20072559599
    [Google Scholar]
  37. YanG.M. YanW.S. XuD.M. Reverse navigation algorithm and its application in initial alignment of strapdown compass baseEssays of the 27th China Control Conference, China, 2008.
    [Google Scholar]
  38. ZhouQ. QinY.Y. ZhangJ.H. ChengY. Initial alignment algorithm for SINS based on quaternion Kalman filter.Journal of Chinese Inertial Technology2012202162167
    [Google Scholar]
  39. CuiX. QinY.Y. YanG.M. ZhouQ. Initial alignment algorithm for SINS based on state matrix Kalman filter.J. Chinese Inertial Technol.20182653136
    [Google Scholar]
  40. GiovanniC.S. LevinsonE. Performance of a ring laser strapdown marine gyrocompassION 37th Annual Meeting Proceedings Maryland, USA, 1981, pp.311-341.10.1002/j.2161‑4296.1981.tb00779.x
    [Google Scholar]
  41. LevinsonE. MajureR. Accuracy enhancement techniques applied to the marine ring laser inertial navigator (MARLIN).Navigation (Washington)1987341648610.1002/j.2161‑4296.1987.tb01490.x
    [Google Scholar]
  42. DeWallJ. Ship Augmented Gravity Enhancement (SAGE)Proceedings of IEEE/ION PLANS 2006 San Diego, CA, April 2006, pp. 36-43.
    [Google Scholar]
  43. LuY.M. Auto compensation of dither RLG INS.Journal of Chinese Inertial Technology20061441821
    [Google Scholar]
  44. MiaoL.J. Research on the application of wavelet analysis in optical fiber tuo tuo signal filtering.J. Astronaut.20002114246
    [Google Scholar]
  45. TangW. LiS.X. LiuL.Y. YangY. Select of wavelet basis in gyro signal processing.Chinese Journal of Inertia Technology20021052931
    [Google Scholar]
  46. GaoY.N. ChenJ.B. Wavelet analysis in the signal processing of FOG.Fire Power and Control20053053537
    [Google Scholar]
  47. YuanR.M. WeiX.H. LiZ.Y. YuanR.X. De-noising algorithm for signal in fog based on wavelet filtering using threshold value.Chinese J. Inertia Tech.20031154348
    [Google Scholar]
  48. GuoW. YangP.F. ZhangW.G. WangW. Error compensation method for MEMS accelerometer based on BP neural network model.China Measurement and Test2018443109113
    [Google Scholar]
  49. ZhuoC. DuJ.B. Thermal error compensation algorithm for accelerometers based on differential measurement of specific force.Chinese J. Inertia Techn.2016246821827
    [Google Scholar]
  50. LianJ.X. HuD.W. HuX.P. WuW.Q. Research on coning error and quantization error of SINS attitude algorithm.Hangkong Xuebao200627198101
    [Google Scholar]
  51. WeiX.Y. Research on attitude algorithm of strapdown inertial navigation systemM.S. thesis, Harbin Institute of Technology, Harbin, China.2005
    [Google Scholar]
  52. LuH. WeiX.F. Simulation research and overall design for SINS of air-to-air missile.Electronics Optics &Control2007142128132
    [Google Scholar]
  53. SavageP.G. A unified mathematical framework for strapdown algorithm design.J. Guid. Control Dyn.200629223724910.2514/1.17112
    [Google Scholar]
  54. SavageP.G. Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms.J. Guid. Control Dyn.1998211192810.2514/2.4228
    [Google Scholar]
  55. LiuX.Y. The research of SINS velocity algorithm based on the virtual slewing coordinate systemM.S. thesis, Harbin Institute of Technology, Harbin, China2016
    [Google Scholar]
  56. SavageP.G. Strapdown inertial navigation integration algorithm design part 2: velocity and position algorithms.J. Guid. Control Dyn.199821220822110.2514/2.4242
    [Google Scholar]
  57. XiaoH. ChenY.Z. YangH.Y. Improved velocity algorithm of SINS based on FOG.J. Projectiles Rockets Missiles Guid.20103018083
    [Google Scholar]
  58. GuD.Q. QinY.Y. LiJ. DuanJ.F. Research on multi-sample algorithms for position updating of SINS.Fire Control and Command Control2006316810
    [Google Scholar]
  59. IgnagniM.B. Optimal strapdown attitude integration algorithms.J. Guid. Control Dyn.199013236336910.2514/3.20558
    [Google Scholar]
  60. MarkJ.G. TazartesD.A. Tuning of coning algorithms to gyro data frequency response characteristics.J. Guid. Control Dyn.200124464164710.2514/2.4770
    [Google Scholar]
  61. WuYuanxin HuXiaoping HuDewen LiTao LianJunxiang Strapdown inertial navigation system algorithms based on dual quaternions.IEEE Trans. Aerosp. Electron. Syst.200541111013210.1109/TAES.2005.1413751
    [Google Scholar]
  62. WuYuanxin HuXiaoping WuMeiping HuDewen Strapdown inertial navigation using dual quaternion algebra: Error analysis.IEEE Trans. Aerosp. Electron. Syst.200642125926610.1109/TAES.2006.1603421
    [Google Scholar]
  63. HaysK.M. SchmidtR.G. WilsonW.A. CampbellJ.D. HeckmanD.W. GokhaleM.P. A Submarine Navigator for the 21st CenturyIEEE Position Location and Navigation Symposium Palm Springs, CA, USA, 2002, pp. 179-188.10.1109/PLANS.2002.998906
    [Google Scholar]
  64. VajdaS. ZornA. Survey of existing and emerging technologies for strategic submarine navigationIEEE Position Location and Navigation Symposium 1998, pp.309-315.10.1109/PLANS.1998.670102
    [Google Scholar]
  65. ClauticeW.G. "Submarine navigation", navigation.J. Inst. Navig.197825l
    [Google Scholar]
  66. McKELVIEB. GaltH.Jr The evolution of the ship’s inertial navigation system for the fleet ballistic missile programNavigation (Washington)197825331032210.1002/j.2161‑4296.1978.tb02260.x
    [Google Scholar]
  67. GreenspanR.L. Inertial navigation technology from 1970-1995.Navigation (Washington)199542116518510.1002/j.2161‑4296.1995.tb02334.x
    [Google Scholar]
  68. EltonO.L. MooreJ.P. Marine ESG navigation as a capability for the present.Navigation (Washington)197320212613610.1002/j.2161‑4296.1973.tb01161.x
    [Google Scholar]
  69. HallP.E. HansonP.O. Performance analysis of an electrically suspended gyro navigator (ESGN) for marine applicationsProceedings of the ION National Marine Meetings Annapolis, Md., October, 1972.
    [Google Scholar]
  70. McmurranM.W. LingJ.A. Development and testing of a precision marine electrostatic gyroscopeION National Meeting West Point, the USA1972
    [Google Scholar]
  71. XuG.Z. Inertia technical manual.BeijingAstronautical Press1995
    [Google Scholar]
  72. LevinsonE. GiovanniC.S. Laser gyro potential for long endurance marine navigationIEEE PLANS Position Location Navigation Symposium Piscataway, 1980, Vol. 115, pp.115-129.
    [Google Scholar]
  73. UrsaNavAvailable from: http://www.ursanav.com
  74. HeckmanD.W. BaretelaL.M. Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technologyIEEE Position Location and Navigation Symposium San DiegoCA, USA200040441010.1109/PLANS.2000.838332
    [Google Scholar]
  75. MorrowR.B. HeckmanD.W. High precision ifog insertion into the strategic submarine navigation systemIEEE PLANS Position Location and Navigation Symposium Palm Springs, CA, USA, 1998, pp. 332-338.10.1109/PLANS.1998.670128
    [Google Scholar]
  76. AdamsG. GokhaleM. Fiber optic gyro based precision navigation for submarines.Denver, United StatesAIAA Guidance, Navigation, and Control Conference and Exhibit20002610.2514/6.2000‑4384
    [Google Scholar]
  77. QuanH.Y. YangS.H. ChenX.Z. WangH. Development and application of advanced MEMS solid wave gyroscope.Navigation and Control20131667482
    [Google Scholar]
  78. LiX.Y. WangW.K. WangS.L. PengY.Q. JinX.F. Status and development trend of MEMS inertial sensors.Journal of Telemetry, Tracking and Command2019406113
    [Google Scholar]
  79. XueL.L. ShenY.P. XuY. Development and review of foreign inertial technology in 2019.Navigation Positioning & Timing2020716066
    [Google Scholar]
  80. DengH.L. Overview of quartz vibrating beam accelerometer.Control Technology of Tactical Missile20042145257
    [Google Scholar]
  81. The VIA vibrating beam accelerometer: Concept and performanceProceedings of the 1998 Position Location and Navigation Symposium Palm SpringsIEEECA19982529
    [Google Scholar]
  82. KillenA. TarrantD. JensenD. High acceleration, high performance solid state accelerometer development.IEEE Aerosp. Electron. Syst. Mag.199499202510.1109/62.312975
    [Google Scholar]
  83. HopkinsR. MiolaJ. SawyerW. SetterlundR. DowB. The Silicon oscillating accelerometer: A high-performance MEMS accelerometer for precision navigation and strategic guidance applicationProceedings of the 61st Annual Meeting of the Institute of Navigation Cambridge, MA, 2005, pp. 1043-1052.
    [Google Scholar]
  84. LiuY.Q. WangS.Z. LiH. Damping technology in strapdown inertial navigation system.Aerodynamic Missile199084460
    [Google Scholar]
  85. YaoJ.J. Contrast of different vibration isolation patterns used in strapdown inertial navigation system.Structure & Environment Engineering20093621927
    [Google Scholar]
  86. TuoZ.H. HuD.W. LiR.H. WeiJ.C. Damping design of strapdown inertial navigation system.J Chinese Inertial Technol.2009176648650
    [Google Scholar]
  87. YaoZ.Q. LeiH.J. SongH.W. ZhangY. Fine modeling for coupled vibration problem of laser strap-down inertial navigation.Journal of Vibration and Shock20193821271277
    [Google Scholar]
  88. LiX.B. WuB. DongC. LiB.L. Research on coupled vibration of strapdown INS damping system.Equipment Environmental Engineering20141124349
    [Google Scholar]
  89. ZhangB. RenJ. Coupling vibration analysis of spatial-five-point arrangement isolators for strapdown inertial navigation system.J. Astronaut.201536910301035
    [Google Scholar]
  90. ZhangZ.X. ZhangD.W. Theory analysis on resonance frequencies of linear vibration and torsional vibration of strapdown IMU damping system.J. Chinese Inertial Technol.2009176654657
    [Google Scholar]
  91. ZhaoX. WeiW. ZhangJ. Thedynamic modeling and the structure design method based on the dynamic characteristics of DRLG INS.Navigation and Control20201963543
    [Google Scholar]
  92. LuoL. HuangY.L. ChangL.B. ZhangY.G. Development and prospects of initial alignment method for strap-down inertial navigation system.Chinese J. Ship Res.2022175301313
    [Google Scholar]
  93. YuanX. ZhengE. Strapdown Inertial Navigation Principle.NanjingAviation Professional Textbook Compilation Group1985
    [Google Scholar]
  94. HongJiang Wei-QinYang You-TangYang State space modeling of random drift rate in high-precision gyro.IEEE Trans. Aerosp. Electron. Syst.19963231138114310.1109/7.532273
    [Google Scholar]
  95. LinY.R. DengZ.L. Systematic calibration for inertial instruments errors in laser gyro strapdown iinertial navigation system.J. Harbin Inst. Technol.2001331112115
    [Google Scholar]
  96. GuoM.F. TengY.H. ZhangY.S. Research on the static calibration method for a laser inertial navigation system.Journal of Chinese Inertial Technology1997542427
    [Google Scholar]
  97. LiangG.T. HuiJ.J. LiY.P. Development and application of gyroscope.Aerodynamic Missile J.200643840
    [Google Scholar]
  98. ChenJ.H. Gyroscope and inertial navigationphysics1995246348354
    [Google Scholar]
  99. AronowitzF. The Laser Gyro.Laser Applications New York. RossM. Academic Press1971
    [Google Scholar]
  100. ChowW.W. Gea-BanaclocheJ. PedrottiL.M. SandersV.E. SchleichW. ScullyM.O. The ring laser gyro.Rev. Mod. Phys.19855716110410.1103/RevModPhys.57.61
    [Google Scholar]
  101. WilkinsonJ.R. Ring lasers.Prog. Quantum Electron.1987111110310.1016/0079‑6727(87)90003‑6
    [Google Scholar]
  102. FaucheuxM. FayouxD. RolandJ.L. The ring laser gyro.Journal of Optics(Paris)1988193101115
    [Google Scholar]
  103. YuX.D. Research on some key technologies for single-axis rotation inertial navigation system with mechanically dithered ring laser gyroscopeM.S. thesis, National University of Defense Technology, Changsha, China.2011
    [Google Scholar]
  104. LiuY. The research on the shipboard strapdown vertical reference unit based on fiber optic gyroscopeM.S. thesis, Harbin Institute of Technology, Harbin, China.2011
    [Google Scholar]
  105. WangS.H. Current status and applications of MEMS sensorsWeina Dianzi Jishu: Micronanoelectronic Technology2011488516522
    [Google Scholar]
  106. WangH. MEMS gyroscope sensor ASIC Introduction and designChina lntegrated Circult.20192864450
    [Google Scholar]
  107. LiuH.F. JiaoS.M. TuL.C. Status and trend of optomechanical accelerometers abroad.Navigation and Control202120318
    [Google Scholar]
  108. WangW. The analysis and design of high-precision accelerometer measurement systemM.S. thesis, Harbin Engineering University, Harbin, China.2011
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965347882241024082952
Loading
/content/journals/raeeng/10.2174/0123520965347882241024082952
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test