Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

Wind-solar hybrid power systems, playing a pivotal role in renewable energy integration and diversification of energy sources, frequently face low-frequency oscillation issues due to inadequate damping under disturbances. These oscillations pose challenges for realizing system stability through coordinated control strategies.

Objective

This study aims to utilize intelligent algorithms for optimizing controller parameters, effectively suppress the occurrence of low-frequency oscillations, and thereby significantly improve the overall stability and reliability of wind-solar hybrid power systems.

Methods

The power system stabilizer and flexible AC transmission system devices are utilized to enhance the stability of the wind-solar hybrid power system, and an improved snake optimizer algorithm is proposed to optimize the parameters of power system stabilizer and flexible AC transmission system devices, as well as the installation location of flexible AC transmission system devices.

Results

Simulations demonstrate that the proposed algorithm shows a notable enhancement in system stability and reliability, with better performance in optimization precision and computation speed when compared to conventional methods.

Conclusion

The proposed method effectively mitigates low-frequency oscillations, significantly improving stability and reliability in wind-solar hybrid power systems.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965296205240305115726
2024-03-18
2025-12-14
Loading full text...

Full text loading...

References

  1. HeL. LuZ. GengL. ZhangJ. LiX. GuoX. Environmental economic dispatch of integrated regional energy system considering integrated demand response.Int. J. Electr. Power Energy Syst.202011610552510.1016/j.ijepes.2019.105525
    [Google Scholar]
  2. VergaraP.P. LópezJ.C. RiderM.J. ShakerH.R. da SilvaL.C.P. JørgensenB.N. A stochastic programming model for the optimal operation of unbalanced three-phase islanded microgrids.Int. J. Electr. Power Energy Syst.202011510544610.1016/j.ijepes.2019.105446
    [Google Scholar]
  3. SalehA.M. HarisA. AhmadN. Towards a utaut-based model for the intention to use solar water heaters by libyan households.Int. J. Energy Econ. Policy2014412631
    [Google Scholar]
  4. QuM. AhponenP. TahvanainenL. GrittenD. Mola-YudegoB. PelkonenP. Chinese university students’ knowledge and attitudes regarding forest bio-energy.Renew. Sustain. Energy Rev.20111583649365710.1016/j.rser.2011.07.002
    [Google Scholar]
  5. RazmjooA. Gakenia KaiguthaL. Vaziri RadM.A. MarzbandM. DavarpanahA. DenaiM. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO 2 emissions in a high potential area.Renew. Energy2021164465710.1016/j.renene.2020.09.042
    [Google Scholar]
  6. RaheemA. AbbasiS.A. MemonA. SamoS.R. Taufiq-YapY.H. DanquahM.K. HarunR. Renewable energy deployment to combat energy crisis in Pakistan.Energy Sustain. Soc.2016611610.1186/s13705‑016‑0082‑z
    [Google Scholar]
  7. AshfaqA. IanakievA. Features of fully integrated renewable energy atlas for Pakistan; Wind, solar and cooling.Renew. Sustain. Energy Rev.201897142710.1016/j.rser.2018.08.011
    [Google Scholar]
  8. LudinN.A. MustafaN.I. HanafiahM.M. IbrahimM.A. Asri Mat TeridiM. SepeaiS. ZaharimA. SopianK. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review.Renew. Sustain. Energy Rev.201896112810.1016/j.rser.2018.07.048
    [Google Scholar]
  9. MovahediA. NiasarA.H. GharehpetianG.B. Designing SSSC, TCSC, and STATCOM controllers using AVURPSO, GSA, and GA for transient stability improvement of a multi-machine power system with PV and wind farms.Int. J. Electr. Power Energy Syst.201910645546610.1016/j.ijepes.2018.10.019
    [Google Scholar]
  10. HeP. WenF. LedwichG. XueY. An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms.Int. J. Electr. Power Energy Syst.20167814815710.1016/j.ijepes.2015.11.052
    [Google Scholar]
  11. Pei-ZhenX. Yong-GengL. Xi-MinC. Overview of subsynchronous oscillation in grid-connected wind farm.Recent Adv. Electr. Electron. Eng.202013796997910.2174/2352096513999200407103526
    [Google Scholar]
  12. LiC. ZhenZ. HeP. LiuY. ZhongP. Frequency coordinated control of wind power flexible direct system based on voltage sourced converter based multi-terminal high voltage direct current.Recent Adv. Electr. Electron. Eng.2023161566510.2174/2352096515666221012090511
    [Google Scholar]
  13. DyskoA. LeitheadW.E. O’ReillyJ. Enhanced power system stability by coordinated PSS design.IEEE Trans. Power Syst.201025141342210.1109/TPWRS.2009.2036704
    [Google Scholar]
  14. HeP. WenF. LedwichG. XueY. WangK. Effects of various power system stabilizers on improving power system dynamic performance.Int. J. Electr. Power Energy Syst.20134617518310.1016/j.ijepes.2012.10.026
    [Google Scholar]
  15. Abd ElazimS.M. AliE.S. Optimal power system stabilizers design via cuckoo search algorithm.Int. J. Electr. Power Energy Syst.2016759910710.1016/j.ijepes.2015.08.018
    [Google Scholar]
  16. MalikO.P. Adaptive and intelligent control applications to power system stabiliser.Int. J. Model. Identif. Control200961516110.1504/IJMIC.2009.023530
    [Google Scholar]
  17. ChaturvediD.K. MalikO.P. Generalized neuron-based adaptive PSS for multimachine environment.IEEE Trans. Power Syst.200520135836610.1109/TPWRS.2004.840410
    [Google Scholar]
  18. GhahremaniE. KamwaI. Analysing the effects of different types of FACTS devices on the steady‐state performance of the Hydro‐Québec network.IET Gener. Transm. Distrib.20148223324910.1049/iet‑gtd.2013.0316
    [Google Scholar]
  19. HeP. JinH. FangQ. QiP. GongZ. JiY. Small-signal stability improvement of grid integrated DFIG and SOFC system with SSSC-POD using coordinated optimization approach.Recent Adv. Electr. Electron. Eng.202215648550110.2174/2352096515666220613092804
    [Google Scholar]
  20. Nguyen-DucH. DessaintL.A. OkouA.F. KamwaI. A power oscillation damping control scheme based on bang-bang modulation of FACTS signals.IEEE Trans. Power Syst.20102541918192710.1109/TPWRS.2010.2046504
    [Google Scholar]
  21. FordJ.J. LedwichG. DongZ.Y. Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices.IET Gener. Transm. Distrib.20082573174210.1049/iet‑gtd:20070415
    [Google Scholar]
  22. Sahraei-ArdakaniM. HedmanK.W. Computationally efficient adjustment of FACTS set points in DC optimal power flow with shift factor structure.IEEE Trans. Power Syst.20173231733174010.1109/TPWRS.2016.2591503
    [Google Scholar]
  23. ZhangX. ShiD. WangZ. ZengB. WangX. TomsovicK. JinY. Optimal allocation of series FACTS devices under high penetration of wind power within a market environment.IEEE Trans. Power Syst.20183366206621710.1109/TPWRS.2018.2834502
    [Google Scholar]
  24. KapetanakiA. LeviV. BuhariM. SchachterJ.A. Maximization of wind energy utilization through corrective scheduling and FACTS deployment.IEEE Trans. Power Syst.20173264764477310.1109/TPWRS.2017.2662802
    [Google Scholar]
  25. JowderF.A.L. Influence of mode of operation of the SSSC on the small disturbance and transient stability of a radial power system.IEEE Trans. Power Syst.200520293594210.1109/TPWRS.2005.846121
    [Google Scholar]
  26. HabibC. TayebA. MustaphaB. DenaiM. Modelling, simulation and fuzzy self-tuning control of D-STATCOM in a single machine infinite bus power system.Recent Adv. Electr. Electron. Eng.201912151110.2174/2352096511666180314141205
    [Google Scholar]
  27. YangS. LiuY. WangX. GunasekaranD. KarkiU. PengF.Z. Modulation and control of transformerless UPFC.IEEE Trans. Power Electron.20163121050106310.1109/TPEL.2015.2416331
    [Google Scholar]
  28. SongP. XuZ. DongH. UPFC‐based line overload control for power system security enhancement.IET Gener. Transm. Distrib.201711133310331710.1049/iet‑gtd.2017.0022
    [Google Scholar]
  29. BhukyaJ. MahajanV. Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm.Int. J. Electr. Power Energy Syst.201910831433510.1016/j.ijepes.2019.01.017
    [Google Scholar]
  30. BhukyaJ. NaiduT.A. VuddantiS. KonstantinouC. Coordinated control and parameters optimization for PSS, POD and SVC to enhance the transient stability with the integration of DFIG based wind power systems.Int. J. Emerg. Electr. Power Syst.202223335937910.1515/ijeeps‑2021‑0098
    [Google Scholar]
  31. HeP. ShenR. WenF. PanQ. Coordinated optimization of parameters of PSS and UPFC-PODCs to improve small-signal stability of a power system with renewable energy generation.J. Energy Eng.202114720402008910.1061/(ASCE)EY.1943‑7897.0000737
    [Google Scholar]
  32. Fathollahi-FardA.M. Hajiaghaei-KeshteliM. Tavakkoli-MoghaddamR. Red deer algorithm (RDA): A new nature-inspired meta-heuristic.Soft Comput.20202419146371466510.1007/s00500‑020‑04812‑z
    [Google Scholar]
  33. Fathollahi-FardA.M. Niaz AzariM. Hajiaghaei-KeshteliM. An improved red deer algorithm for addressing a direct current brushless motor design problem.Sci. Iran.202128317501764
    [Google Scholar]
  34. Fathollahi-FardA.M. Hajiaghaei-KeshteliM. Tavakkoli-MoghaddamR. The social engineering optimizer (SEO).Eng. Appl. Artif. Intell.20187226729310.1016/j.engappai.2018.04.009
    [Google Scholar]
  35. TianG. ZhangC. Fathollahi-FardA.M. LiZ. ZhangC. JiangZ. An enhanced social engineering optimizer for solving an energy-efficient disassembly line balancing problem based on bucket brigades and cloud theory.IEEE Trans. Industr. Inform.20231957148715910.1109/TII.2022.3193866
    [Google Scholar]
  36. KhadangaR.K. DasD. KumarA. PandaS. Sine augmented scaled arithmetic optimization algorithm for frequency regulation of a virtual inertia control based microgrid.ISA Trans.202313853454510.1016/j.isatra.2023.02.02536898910
    [Google Scholar]
  37. ZhangC. TianG. Fathollahi-FardA.M. WangW. WuP. LiZ. Interval-valued intuitionistic uncertain linguistic cloud petri net and its application to risk assessment for subway fire accident.IEEE Trans. Autom. Sci. Eng.2020192163177
    [Google Scholar]
  38. YuH. DaiH. TianG. WuB. XieY. ZhuY. ZhangT. Fathollahi-FardA.M. HeQ. TangH. Key technology and application analysis of quick coding for recovery of retired energy vehicle battery.Renew. Sustain. Energy Rev.202113511012910.1016/j.rser.2020.110129
    [Google Scholar]
  39. KamarposhtiM.A. ColakI. IwendiC. BandS.S. IbekeE. Optimal coordination of PSS and SSSC controllers in power system using ant colony optimization algorithm.J. Circuits Syst. Comput.2022314225006010.1142/S0218126622500608
    [Google Scholar]
  40. HasanvandH. ArvanM.R. MozafariB. AmraeeT. Coordinated design of PSS and TCSC to mitigate interarea oscillations.Int. J. Electr. Power Energy Syst.20167819420610.1016/j.ijepes.2015.11.097
    [Google Scholar]
  41. AnsariJ. AbbasiA.R. HeydariM.H. AvazzadehZ. Simultaneous design of fuzzy PSS and fuzzy STATCOM controllers for power system stability enhancement.Alex. Eng. J.20226142841285010.1016/j.aej.2021.08.007
    [Google Scholar]
  42. BianX.Y. GengY. LoK.L. FuY. ZhouQ.B. Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of power system with wind farm integration.IEEE Trans. Power Syst.20163132371238210.1109/TPWRS.2015.2458980
    [Google Scholar]
  43. MartinsL.F.B. de AraujoP.B. de Vargas FortesE. MacedoL.H. Design of the PI–UPFC–POD and PSS damping controllers using an artificial bee colony algorithm.J. Control Autom. Electr. Syst.201728676277310.1007/s40313‑017‑0341‑z
    [Google Scholar]
  44. HashimF.A. HussienA.G. Snake optimizer: A novel meta-heuristic optimization algorithm.Knowl. Base. Syst.202224210832010.1016/j.knosys.2022.108320
    [Google Scholar]
  45. BianX.Y. TseC.T. ZhangJ.F. WangK.W. Coordinated design of probabilistic PSS and SVC damping controllers.Int. J. Electr. Power Energy Syst.201133344545210.1016/j.ijepes.2010.10.006
    [Google Scholar]
  46. FarahaniM. Damping of subsynchronous oscillations in power system using static synchronous series compensator.IET Gener. Transm. Distrib.20126653954410.1049/iet‑gtd.2011.0625
    [Google Scholar]
  47. ThirumalaivasanR. JanakiM. PrabhuN. Damping of SSR using subsynchronous current suppressor with SSSC.IEEE Trans. Power Syst.2013281647410.1109/TPWRS.2012.2193905
    [Google Scholar]
  48. PereiraR.M.M. FerreiraC.M.M. BarbosaF.P.M. Comparative study of STATCOM and SVC performance on dynamic voltage collapse of an electric power system with wind generation.Rev. IEEE Am. Lat.201412213814510.1109/TLA.2014.6749530
    [Google Scholar]
  49. SenK.K. StaceyE.J. UPFC-unified power flow controller: Theory, modeling, and applications.IEEE Trans. Power Deliv.19981341453146010.1109/61.714629
    [Google Scholar]
  50. GolshannavazS. AminifarF. NazarpourD. Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations.IEEE Trans. Smart Grid2014541961196810.1109/TSG.2014.2304071
    [Google Scholar]
  51. HeP. ArefifarS. LiC. WenF. JiY. TaoY. Enhancing oscillation damping in an interconnected power system with integrated wind farms using unified power flow controller.Energies201912232210.3390/en12020322
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965296205240305115726
Loading
/content/journals/raeeng/10.2174/0123520965296205240305115726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test