Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

This paper aims to provide a comprehensive overview of the design of microstrip patch antennae since communication and connectivity are two very important aspects of mankind. For ages, antennas have been highly demanded transducers in communication technology. With the development of the technologies in today’s era, wireless systems are becoming more compact, thereby reducing the size of the antenna. As space research is taking huge leaps, even private companies like Space X and ambitious projects from ISRO and NASA have been introduced. Space research motivates researchers to carry out more studies about space bodies that produce radio waves. Detection of the position and velocity of bodies using radar provides emerging research into this domain, which is called radio location. Therefore, multiband antennas are explored to obtain multiple operating frequencies. The reduced size, low profile, and lightweight microstrip antennas have become integral to wireless communication systems, and the increasing growth of wireless systems requires a miniaturized antenna. Thus, this paper discusses the basic configuration of MPA (Microstrip Patch Antenna), its feeding techniques, and different shapes in CST (Computer-simulated technology) microwave studio, dielectrics, and substrate materials. The paper also provides an overview of wireless applications, such as radar systems, satellite communication, and military applications. Also, there is a description of how to design a microstrip antenna in MATLAB.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965290685240326165912
2025-05-24
2025-11-15
Loading full text...

Full text loading...

References

  1. ChenY. TianY.B. QiangZ. XuL. Optimisation of reflection coefficient of microstrip antennas based on KBNN exploiting GPR model.IET Microw. Antennas Propag.201812460260610.1049/iet‑map.2017.0282
    [Google Scholar]
  2. AdhityaG. AbishekV. SundaramM.R. Design of microstrip antenna for X band satellite communicationsIJRAR201962
    [Google Scholar]
  3. BorelT.T.S. PriyadarshiniR. A compact microstrip patch antenna for X-band applications.Transact. Electromag. Spectr.2022122430
    [Google Scholar]
  4. Al-JanabiF. SinghM.J. AmarP.S.P. Development of microstrip antenna for satellite application at Ku/Ka Ka-band.J. Commun.2021164
    [Google Scholar]
  5. SinghM. SinghH. A triband microstrip patch antenna in Ku and J band for satellite and aerospace applications.Aerosp. Syst.20225466367010.1007/s42401‑022‑00163‑9
    [Google Scholar]
  6. AlharbiK.H. MoniruzzamanM. AldhaheriR.W. AljohaniA.J. SinghS. SamsuzzamanM. IslamM.T. Ultra-wideband monopole antenna with U and L shaped slotted patch for applications in 5G and short distance wireless communications.Int. J. Appl. Electromagn. Mech.202166115918010.3233/JAE‑201553
    [Google Scholar]
  7. MoniruzzamanM. IslamM.T. SamsuzzamanM. MM.S. SaharN.M. Al-BawriS.S. AlmalkiS.H.A. AlsaifH. IslamM.S. Gap coupled symmetric split ring resonator based near zero index ENG metamaterial for gain improvement of monopole antennaSci. Rep.2022121740610.1038/s41598‑022‑11029‑7 35523812
    [Google Scholar]
  8. DasS. GokhrooS. Microstrip patch antenna at 7 GHz for satellite communication.Int. J. Eng. Technol. Sci. Res.2015211911
    [Google Scholar]
  9. ChengQ. HaoY. McGheeJ. WhittowW.G. VardaxoglouJ.C. MittraR. ZhangS. Dual circularly polarized 3-D printed broadband dielectric reflect array with a linearly polarized feed.IEEE Trans. Antenn. Propag.20227075393540310.1109/TAP.2022.3142735
    [Google Scholar]
  10. WhittakerT. ZhangS. PowellA. StevensC.J. VardaxoglouJ.Y.C. WhittowW. 3D printing materials and techniques for antennas and metamaterials: A survey of the latest advancesIEEE Antennas Propag. Mag.202265310p. 20
    [Google Scholar]
  11. HashimF.F. MahadiW.N.L.B. Abdul LatefT.B. OthmanM.B. Key factors in the implementation of wearable antennas for WBNs and ISM applications: A review WBNs and ISM applications: A review.Electronics20221115247010.3390/electronics11152470
    [Google Scholar]
  12. KunduD. ParameswaranA. SonalikarH.S. BhattacharyaD. GuptaS. A low-RCS circularly polarized reflectarray antenna with a linearly polarized feed.IEEE Trans. Antenn. Propag.20237186501651210.1109/TAP.2023.3269149
    [Google Scholar]
  13. KaurJ. Nitika PanwarR. Design and optimization of a dual-band slotted microstrip patch antenna using Differential Evolution Algorithm with improved cross polarization characteristics for wireless applicationsJ. Electromagn. Waves Appl.201933111427144210.1080/09205071.2019.1612283
    [Google Scholar]
  14. XieY.X. WuG.B. DengW.Q. ZhuS.Y. ChanC.H. A 3-D printed ultra-wideband achromatic metalens antenna.IEEE Open J. Antennas Propag.20234713723
    [Google Scholar]
  15. HakeemM.J. NahasM.M. Improving the Performance of a microstrip antenna by adding a slot into different patch designs.Eng. Technol. Appl. Sci. Res.202111474697476
    [Google Scholar]
  16. AshrafS. SheikhJ.A. AshrafA. RasoolU. Comparative analysis of rectangular framed S-shaped millimeter-wave antenna for different feeding techniques.Mater. Today Proc.20237412312910.1016/j.matpr.2022.08.029
    [Google Scholar]
  17. RajeswariD. JayanthyT. KalaiarasiD. A review paper on design for microstrip patch antenna.Int Res J Eng Technol.20174211231126
    [Google Scholar]
  18. KoutinosA.G. ZekiosC.L. GeorgakopoulosS.V. Increasing the bandwidth of wideband antennas using the frequency pulling technique.IEEE Open J. Antennas Propag.202341095110210.1109/OJAP.2023.3329762
    [Google Scholar]
  19. ThakurV. A review paper on techniques and design for microstrip patch antenna.Int. J. Adv. Res. Electr.201542656662
    [Google Scholar]
  20. DidiS.E. HalkhamsI. Es-SaqyA. FattahM. BalboulY. MazerS. El BekkaliM. New microstrip patch antenna array design at 28 GHz millimeter-wave for fifth-generation application.Int. J. Electr. Comp. Eng.2023134418410.11591/ijece.v13i4.pp4184‑4193
    [Google Scholar]
  21. BanuM.S. PrabhuR. SasikalaU.T. Design a square microstrip patch antenna for s-band application.IOSR-JECE201522430
    [Google Scholar]
  22. RanaM.S. FahimT.A. RanaS.B. MahbubR. RahmanM.M. Design, simulation, and analysis of microstrip patch antenna for wireless applications operating at 3.6 GHz.TELKOMNIKA202321595796710.12928/telkomnika.v21i5.24813
    [Google Scholar]
  23. MeenaM. KannanP. Analysis of microstrip patch antenna for four different shapes and substrates.ICTACT J. Microelectron.2018041519530
    [Google Scholar]
  24. Pauliah NadarK. JeyaprakasamV. Tharcis MariapushpamI. VivekanandC.V. EswaralingamA.D. LouisM.T. RajA.J.X. JibrilA.H. ChellappaA.S. MuthukuttyR.K. GopalakrishnanS. Design and analysis of microstrip patch antenna array and electronic beam steering linear phased antenna array with high directivity for space applications.ACS Omega2023845431974321710.1021/acsomega.3c06691 38024742
    [Google Scholar]
  25. AhmedO. ThaherR.H. AhmedS.R. "Design and fabrication of UWB microstrip Antenna on different substrates for a wireless Communication system".2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA) 09-11 June 2022, Ankara, Turkey, 2022.10.1109/HORA55278.2022.9799852
    [Google Scholar]
  26. BenlakehalM.E. HociniA. KhedroucheD. TemmarM.N. DenidniT.A. Gain enhancement of a novel 1 × 2 microstrip patch antenna array based on cylindrical and cuboid photonic crystal substrate in THz.Analog Integr. Circuits Signal Process.2023114115917010.1007/s10470‑023‑02134‑2
    [Google Scholar]
  27. ZhangZ. YangH. LiangY. A new wave front sensing technique for satellite-ground laser communication.Adaptive Optics Systems VIIISPIE2022Vol. 121852638264710.1117/12.2630740
    [Google Scholar]
  28. VarshneyA.K. PathakN.P. SircarD. Frequency reconfigurable dielectric lens antenna with graphene nano-antenna feed for THz applications.Optik202227117011210.1016/j.ijleo.2022.170112
    [Google Scholar]
  29. LavadiyaS. SorathiyaV. DuraisamyK. DeviD.H. DasS. Graphene-based THz antenna: Rudiments, fabrication, and forthcoming opportunity.Recent Advances in Graphene Nanophotonics.ChamSpringer Nature Switzerland202328730410.1007/978‑3‑031‑28942‑2_13
    [Google Scholar]
  30. HemalathaT. RoyB. BhattacharjeeA. BhattacharjeeK. DeA. DubeyS.K. MandalD. Design and analysis of substrate reliant slotted microstrip patch antenna for modern communication2023 3rd International Conference on Range Technology (ICORT) 23-25 February 2023, Chandipur, Balasore, India, 2023.10.1109/ICORT56052.2023.10249084
    [Google Scholar]
  31. MercyP.A.M. Bandwidth Enhancement Analysis of Rectangular Microstrip Patch Antenna for Various Substrates.PriMera Scientific Engineering202322940
    [Google Scholar]
  32. RashmithaR. NiranN. JugaleA.A. AhmedM.R. Microstrip patch antenna design for fixed mobile and satellite 5G communications.Procedia Comput. Sci.20201712073207910.1016/j.procs.2020.04.223
    [Google Scholar]
  33. SahooM. PataniA. MakwanaB. A review on Di-electrical resonant antenna based on the performance of gain and bandwidth.Multimedia Tools Appl.20238216246452467910.1007/s11042‑022‑14243‑7
    [Google Scholar]
  34. ChaabaneA. GuerrouiM. AissaouiD. Circularly polarized quasi-rectangular patch UWB antenna for GPR applications.Serb. J. Electr. Eng.202219326127110.2298/SJEE2203261C
    [Google Scholar]
  35. MishraR. MishraR.G. Design and analysis of microstrip patch antenna for wireless communication.Int. J. Innov. Technol. Explor. Eng.201987663666
    [Google Scholar]
  36. TiwariR. VermaS. Proposed a compact multiband and broadband rectangular microstrip patch antenna for C-band And X-band.Int. J. Comput. Technol.20141334291430110.24297/ijct.v13i3.2760
    [Google Scholar]
  37. SiviaJ.S. Design of fractal-based Microstrip Rectangular patch antenna for multiband applicationsConference: Advance Computing Conference (IACC), 2015 12-13 June 2015, Banglore, India, 2015.
    [Google Scholar]
  38. SharmaS. TripathiC.C. RishiR. Impedance matching techniques for microstrip patch antenna.Indian J. Sci. Technol.2017102811610.17485/ijst/2017/v10i28/97642
    [Google Scholar]
  39. TanL. LiZ. GaoY. ZhaiY. DuanW. Multiband deformed off-set octagonal patch antenna with improved impedance matching.AEU Int. J. Electron. Commun.202317115490010.1016/j.aeue.2023.154900
    [Google Scholar]
  40. AhmadA. LeeG.O. ChoiD. Design and performance evaluation of a compact frequency-reconfigurable coplanar-waveguide-fed slotted patch antenna for multi-band wireless communication.Electronics20231218388910.3390/electronics12183889
    [Google Scholar]
  41. JainK. Different substrates use in microstrip patch antenna-A survey.Int. J. Sci. Res.20123518021803
    [Google Scholar]
  42. AL-AmoudiM.A. Study, design, and simulation for microstrip patch antennaInt. J. Appl. Sci. Eng. Rev.202122012910.52267/IJASER.2021.2201
    [Google Scholar]
  43. KumarD.R. JayashreeM. VigneshC. SubramaniamR. AbishekE. DeviV. Non-radiating edges gap coupled microstrip antenna for wireless body area communications.Int. J. Adv. Sci. Technol.202029395969603
    [Google Scholar]
  44. GuptaA. KansalA. ChawlaP. Design of a compact dual-band antenna for on-/off body communication.J. Inst. Electron. Telecommun. Eng.20236921013102110.1080/03772063.2020.1845826
    [Google Scholar]
  45. WerfelliH. TayariK. ChaouiM. LahianiM. GharianiH. Design of rectangular microstrip patch antenna2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) 21-23 March 2016, Monastir, Tunisia, 2016.10.1109/ATSIP.2016.7523197
    [Google Scholar]
  46. FazalD. KhanU.Q. HongI.P. Multiband antenna design with enhanced radiations using characteristic mode analysis.Sci. Rep.20231311782910.1038/s41598‑023‑44923‑9 37857795
    [Google Scholar]
  47. BhuniaS. Microstrip patch antenna’s limitation and some remedies.IJECT2013413839
    [Google Scholar]
  48. TangelC. TeşneliN.B. A wideband, thin profile and enhanced gain microstrip patch antenna modified by novel mushroom-like EBG and periodic defected ground structures.J. Electromagn. Waves Appl.20232023116
    [Google Scholar]
  49. LiuY SiLM WeiM YanP YangP LuH ZhengC YuanY MouJ LvX SunH Some recent developments of microstrip antennaInt. J. Antennas Propag.2012201210.1155/2012/428284
    [Google Scholar]
  50. SalehC.M. AlmajaliE. JarndalA. YousafJ. Alja’AfrehS.S. AmayaR.E. Wideband 5G antenna gain enhancement using a compact single-layer millimeter wave metamaterial lensIEEE Access202311149281494210.1109/ACCESS.2023.3244401
    [Google Scholar]
  51. RanaS.M. HossainS. RanaB.S. RahmanM.M. Microstrip patch antennas for various applications: A review.Indones. J. Electr. Eng. Comput. Sci.20232931511151910.11591/ijeecs.v29.i3.pp1511‑1519
    [Google Scholar]
  52. IslamM.M. HasanR.R. RahmanM.M. IslamK.S. Al-AminS.M. Design & analysis of microstrip patch antenna using different dielectric materials for wiMAX communication system.Int. J. Recent Contributions Eng. Sci. IT2016411924
    [Google Scholar]
  53. PaltaP. SinghJ. GoyalS. KakkarR. KhoslaD. Microstrip patch antenna for X-band applications: Design & analysis.J. Xidian Uni.202014425062512
    [Google Scholar]
  54. ShurijiM.A. ThaherR.H. A reconfigurable switching diode loaded patch antenna for S, C, X, Ku, and K bands applications.Bull. Electr. Eng. Inform.202413124725310.11591/eei.v13i1.5738
    [Google Scholar]
  55. HeerM.S. RawatS. Design methodology and fabrication of elliptical microstrip patch antenna.ADR J.2017459
    [Google Scholar]
  56. MahendranK. GayathriD.R. SudarsanH. Design of multi band triangular microstrip patch antenna with triangular split ring resonator for S band, C band and X band applications.Microprocess. Microsyst.20218010340010.1016/j.micpro.2020.103400
    [Google Scholar]
  57. El-HakimH.A. MohamedH.A. Engineering planar antenna using geometry arrangements for wireless communications and satellite applications.Sci. Rep.20231311919610.1038/s41598‑023‑46400‑9 37932376
    [Google Scholar]
  58. MaoC.X. GaoS. WangY. ChuQ.X. YangX.X. Dual-band circularly polarized shared-aperture array for $ C $-/$ X $-band satellite communications.IEEE Trans. Antenn. Propag.201765105171517810.1109/TAP.2017.2740981
    [Google Scholar]
  59. GhimireJ. KhanD. ChoiD.Y. Microstrip to slot-line-fed microstrip patch antenna with radiation pattern diversity for X-band application.Electronics20231217367210.3390/electronics12173672
    [Google Scholar]
  60. JungE.Y. LeeJ.W. LeeT.K. LeeW.K. SIW-based array antennas with sequential feeding for X-band satellite communication.IEEE Trans. Antenn. Propag.20126083632363910.1109/TAP.2012.2201075
    [Google Scholar]
  61. AlamM.M. AzimR. SobahiN.M. KhanA.I. IslamM.T. A dual-band CPW-fed miniature planar antenna for S-, C-, WiMAX, WLAN, UWB, and X-band applications.Sci. Rep.2022121758410.1038/s41598‑022‑11679‑7 35534527
    [Google Scholar]
  62. ChinnagurusamyB. PerumalsamyM. SarasamT.A.S. Design and fabrication of compact triangular multiband microstrip patch antenna for C‐and X‐band applications.Int. J. Commun. Syst.202134154939
    [Google Scholar]
  63. UndrakondaJ. UpadhyayulaR.K. A novel miniaturized isotropic patch antenna for X-band radar applications using split ring resonators.Int. J. Electr. Comput. Eng. Syst.20231412127
    [Google Scholar]
  64. TewaryT. MaityS. RoyA. BhuniaS. Wideband microstrip patch antenna with enhanced gain using FSS structure.J. Microw. Optoelectron. Electromagn. Appl.202322232934510.1590/217910742023v22i2273333
    [Google Scholar]
  65. SoodM. RaiA. Design of compact fractal patch antenna for X/Ku/K‐band applications.Int. J. Commun. Syst.20233611e5515
    [Google Scholar]
  66. PandeyK. SadiwalaR. Dual-port MIMO antenna design for IoT: Analysis and implementation.J. Integr. Sci. Technol.202412376810.62110/sciencein.jist.2024.v12.768
    [Google Scholar]
  67. OkoroN.C. OborkhaleL.I. Design and simulation of rectangular microstrip patch antenna for X-Band applicationGlob. J. Res. Eng.: F Electr. Electr. Eng.20212134149
    [Google Scholar]
  68. SoodD. SinghG. TripathiC.C. SoodS.C. JoshiP. Design, fabrication and characterization of microstrip square patch antenna array for X-band applications.Indian J. Pure Appl. Phys.2008468593597
    [Google Scholar]
  69. ZakiA.Z.A. High gain compact microstrip patch antenna for X-band applications.Int. J. Antennas201621
    [Google Scholar]
  70. RabbaniM.S. ShirazG.H. Improvement of microstrip patch antenna gain and bandwidth at 60 GHz and X bands for wireless applications.IET Microw. Antennas Propag.201610111167117310.1049/iet‑map.2015.0672
    [Google Scholar]
  71. NajumunnisaM. SastryA.S.C.S. MadhavB.T.P. IslamT. DasS. Compact and innovative microstrip patch antenna with enhanced microwave circuit performance for RFID applicationsJ. Nano- Electr. Phys.202315505024-1, 05024-610.21272/jnep.15(5).05024
    [Google Scholar]
  72. VermaR.K. Design, analysis and fabrication of compact and T-shape notches loaded dual band rectangular microstrip patch antenna for GPS/WLAN/WiMAX applications.Wirel. Pers. Commun.2023132150552210.1007/s11277‑023‑10620‑z
    [Google Scholar]
  73. KuoF.Y. HwangR.B. High-isolation X-band marine radar antenna design.IEEE Trans. Antenn. Propag.20146252331233710.1109/TAP.2014.2307296
    [Google Scholar]
  74. MahdiR.H. AlsudaniA. AbdalrazakM.Q. AbdulnabiH.A. Design of defective ground plane modified microstrip patch antenna for ultra-wideband applications.TELKOMNIKA2024221344110.12928/telkomnika.v22i1.25577
    [Google Scholar]
  75. KumarA. PattanayakP. DharA. Compact triple band microstrip patch antenna for satellite and C/X/K/Ku bands applications.Wirel. Pers. Commun.20231291577010.1007/s11277‑022‑10085‑6
    [Google Scholar]
  76. QaddooriI.H. ThaherR.H. AliI.H. Design, fabrication, and performance analysis of microstrip patch antenna for Wi-Fi/WiMAX applications4th International Scientific Conference Of Engineering Sciences And Advances Technologies 3–4 June 2022, Baghdad, Iraq, 2023.
    [Google Scholar]
  77. GaharwarM. DhubkaryaD.C. X-band multilayer stacked microstrip antenna using novel electromagnetic band-gap structures.J. Inst. Electron. Telecommun. Eng.20236942015202410.1080/03772063.2021.1883484
    [Google Scholar]
  78. FristY. ElhabchiM. Nabil SrifiM. A compact multiband antenna based on metamaterial for L-band, WiMax, C-band, X-band, and Ku-band applications.TELKOMNIKA20232211910.12928/telkomnika.v22i1.25204
    [Google Scholar]
  79. GuptaN. SaxenaJ. BhatiaK.S. DadwalN. Design of metamaterial-loaded rectangular patch antenna for satellite communication applications.Iran. J. Sci. Technol. Trans. Electr. Eng.201943S1394910.1007/s40998‑018‑0118‑9
    [Google Scholar]
  80. KatiP KothapudiVK An X/Ku dual-band shared aperture uniform linear antenna array for airborne synthetic aperture radar applicationsTelecom. Radio Eng.2024833
    [Google Scholar]
  81. SreeM.J.G. Vasu BabuK. DasS. IslamT. Design and optimization of a deep learning algorithm assisted stub-loaded dual band four-port MIMO antenna for Sub-6 GHz 5G and X band satellite communication applications.AEU Int. J. Electron. Commun.202417515507410.1016/j.aeue.2023.155074
    [Google Scholar]
  82. Yalduz h, çizmeci h. Design and analysis of multi-band compact microstrip antenna in gsm1900/wlan/wimax/dsrc/x-band frequency bands for vehicle applications.Journal of Scientific Reports-A.2023052407418
    [Google Scholar]
  83. HuqueM.T. HossainM.K. IslamM.S. ChowdhuryM.A. Design and performance analysis of microstrip array antennas with optimum parameters for X-band applications.Int. J. Adv. Comput. Sci. Appl.201124
    [Google Scholar]
  84. SamsuzzamanM. IslamM.T. MisranN. AliM.A.M. Dual-band X-shaped microstrip patch antenna for satellite applications.Procedia Technol.2013111223122810.1016/j.protcy.2013.12.317
    [Google Scholar]
  85. NairR.G. EmmanuelP.D.G. Jose BennyA. AnandS. ThomasA. SmithaB. Dual wide band patch antenna for WLAN/WiMAX and X-Band operationsMater. Today Proc.2023202310.1016/j.matpr.2023.01.024
    [Google Scholar]
  86. KabirS.S. KhanM.H. LatifS.I. A multi-band circularly polarized-shared aperture antenna for space applications at S and X bands.Electronics20231221443910.3390/electronics12214439
    [Google Scholar]
  87. NaveenK. NaiduP.V. RaoN.V. KumarA. NeelimaD. LakshmiJ.K. A small size triband dual l-shaped and pulse shaped compact size monopole antenna for 5G/wireless portable devices.Mater. Today Proc.20237414114510.1016/j.matpr.2022.08.035
    [Google Scholar]
  88. YayanS.M. Design of a broadband comparator network at $x$-band.IEEE Antennas Wirel. Propag. Lett.20232271542154610.1109/LAWP.2023.3250342
    [Google Scholar]
  89. BandiS. SanjayS.D. TriveniP. DeepikaV.N. NikhilV.K. Design and simulation of ultra wide and narrow band antenna for C-band and X-band applications.Anvesh. Edu. Res. Foundat. vol. 2022, 2022.
    [Google Scholar]
  90. TiwariP. MalikP.K. Wideband microstrip antenna design for higher “X” bandInt. J. e-Collab.20211746074
    [Google Scholar]
  91. KhadarS.A. KumarR.S. PoornachanderP. Multiband CPW patch antenna for C and X band applicationsUGC Care Group I List. J.20231325761
    [Google Scholar]
  92. NishandhiS. KavithaK. GayathriM. A compact MIMO T slot microstrip antenna design for k-band applications.J. Phys.: Conf. Series202324661012013
    [Google Scholar]
  93. PalitS.K. HamadiA. Design and development of wideband and dual-band microstrip antennas.IEE Proc., Microw. Antennas Propag.19991461353910.1049/ip‑map:19990390
    [Google Scholar]
  94. KarahanM. InalM. DilmenA. LacinkayaF. AkayA.N. KasnakogluC. Microstrip patch antenna design at 10 GHz for X band applicationsarXiv:2303.099632023
    [Google Scholar]
  95. MercyP.A.M. WilsonK.S.J. Gain enhancement of composite photonic crystal microstrip patch antenna inspired by maxwell garnett model for C‐band, X‐band and ku band applications.Cryst. Res. Technol.20232023230009010.1002/crat.202300090
    [Google Scholar]
  96. SharmaA KhareK ShrivastavaSC Dielectric resonator antenna for X band microwave application
    [Google Scholar]
  97. MercyP.A. High gain miniaturized multi-band microstrip patch antenna using slot-cutting techniques for C, and X band applicationsPriMera Scient. Eng.202325365
    [Google Scholar]
  98. ShraddhaA.P. AnsariJ.A. Design and analysis of defected ground structure-based microstrip antenna for X-band radar application.J. Data Acquis. Process.2023382586
    [Google Scholar]
  99. KielyE. WashingtonG. BernhardJ. Design and development of smart microstrip patch antennas.Smart Mater. Struct.19987679280010.1088/0964‑1726/7/6/007
    [Google Scholar]
  100. WuL.X. ZhangN. QuK. ChenK. JiangT. ZhaoJ. FengY. Transmissive metasurface with independent amplitude/phase control and its application to low-side-lobe metalens antenna.IEEE Trans. Antenn. Propag.20227086526653610.1109/TAP.2022.3161500
    [Google Scholar]
  101. KoshibaM. Finite element analysis of photonic crystal fibersCLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671) Taipei, Taiwan, pp. 345, 2003.10.1109/CLEOPR.2003.1274800
    [Google Scholar]
  102. Abdul HusseinA.M. KhidhirA.H. NaserA.A. Design and implementation of microstrip patch antenna using inset feed technique for 2.4 GHz applications.Int. J. Microw. Opt. Technol.2021164
    [Google Scholar]
  103. GeetharamaniG. AathmanesanT. Design of metamaterial antenna for 2.4 GHz WiFi applications.Wirel. Pers. Commun.202011342289230010.1007/s11277‑020‑07324‑z
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965290685240326165912
Loading
/content/journals/raeeng/10.2174/0123520965290685240326165912
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test