Skip to content
2000
Volume 18, Issue 8
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Artificial intelligence (AI) has become an important driver in the current dynamic technological environment, presenting itself as a revolutionary power capable of reconfiguring various sectors, economies, and social structures. The paper aims to address a wide range of readers, encompassing AI practitioners, academics, and people in general. Its primary objective is to connect the complex technical aspects of AI and the ethical problems inherent in its creation and implementation. In an era marked by the growing integration of AI systems into various aspects of human existence, the book offers fundamental ideas that contribute to cultivating an environment where these systems function with transparency, ethical considerations, and reliability. The paper's comprehensive coverage spans various subjects that contribute to a complete comprehension of the intricate terrain of reliable AI. The analysis is initiated by conducting an in-depth examination of the architectural aspects of AI systems, elucidating the progression from the input of data to the generation of decision-making outcomes. The text introduces the core functions of AI, explores its conceptual framework, and emphasizes the significance of data processing modules, computations, Machine Learning models (ML), and integrating software. This foundational framework establishes a basis for subsequent investigation into the pivotal concepts of integrity, trust, and ethics. This paper bravely tackles urgent issues about bias, justice, and the erosion of data privacy while offering practical solutions to increase AI system openness and explainability by 20%. This paper examines various strategies to improve transparency and explainability, recognizing the importance of strengthening user understanding and confidence. Within the realm of healthcare, the paper acquaints readers with the pioneering notion of Federated Deep Learning, which can improve data privacy by up to 30%. This includes a dedicated part that delves into the concept of explainable AI, introducing various methodologies such as LIME and SHAP, which are employed to interpret predictions made by AI models. The paper provides readers with the knowledge to traverse the ever-changing environment of AI safely and ethically. It emphasizes the importance of utilizing AI's transformative potential for improving humanity while maintaining the utmost adherence to ethical principles.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965308169240616144800
2024-07-04
2025-11-15
Loading full text...

Full text loading...

References

  1. ThiebesS. LinsS. SunyaevA. Trustworthy artificial intelligence.Electron. Mark.202131244746410.1007/s12525‑020‑00441‑4
    [Google Scholar]
  2. KaurD. UsluS. RittichierK.J. DurresiA. Trustworthy artificial intelligence: A review.ACM Comput. Surv.202355213810.1145/3491209
    [Google Scholar]
  3. ShneidermanB. Human-centered artificial intelligence: Reliable, safe & trustworthy.Int. J. Hum. Comput. Interact.202036649550410.1080/10447318.2020.1741118
    [Google Scholar]
  4. KaurD. UsluS. DurresiA. Requirements for trustworthy artificial intelligence: A review.Adv. Intell. Syst. Comput.2021126410511510.1007/978‑3‑030‑57811‑4_11
    [Google Scholar]
  5. LarssonS. HeintzF. Transparency in artificial intelligence.Internet Policy Rev.20209210.14763/2020.2.1469
    [Google Scholar]
  6. FelzmannH. Fosch-VillarongaE. LutzC. Tamò-LarrieuxA. Towards transparency by design for artificial intelligence.Sci. Eng. Ethics20202663333336110.1007/s11948‑020‑00276‑433196975
    [Google Scholar]
  7. WalmsleyJ. Artificial intelligence and the value of transparency.AI Soc.202136258559510.1007/s00146‑020‑01066‑z
    [Google Scholar]
  8. SchmidtP. BiessmannF. TeubnerT. Transparency and trust in artificial intelligence systems.J. Decis. Syst.202029426027810.1080/12460125.2020.1819094
    [Google Scholar]
  9. StevenL. NicoleG. DanielH. AsadiS.I. Hawaii international conference on system sciences.54th Hawaii International Conference on System Sciences, HICSS 2021, Kauai, Hawaii, USA, January 5, 2021.Available from: https://hdl.handle.net/10125/72112
    [Google Scholar]
  10. SafdarN.M. BanjaJ.D. MeltzerC.C. Ethical considerations in artificial intelligence.Eur. J. Radiol.202012210876810.1016/j.ejrad.2019.10876831786504
    [Google Scholar]
  11. BelkR. Ethical issues in service robotics and artificial intelligence.Serv. Ind. J.20214113-1486087610.1080/02642069.2020.1727892
    [Google Scholar]
  12. NaikN. HameedB.M.Z. ShettyD.K. SwainD. ShahM. PaulR. AggarwalK. IbrahimS. PatilV. SmritiK. ShettyS. RaiB.P. ChlostaP. SomaniB.K. Legal and ethical consideration in artificial intelligence in healthcare: Who Takes Responsibility?Front. Surg.2022986232210.3389/fsurg.2022.86232235360424
    [Google Scholar]
  13. OuchchyL. CoinA. DubljevićV. AI in the headlines: The portrayal of the ethical issues of artificial intelligence in the media.AI Soc.202035492793610.1007/s00146‑020‑00965‑5
    [Google Scholar]
  14. DasA. RadP. Opportunities and challenges in explainable artificial intelligence (XAI): A survey.arXiv:2006.113712020Available from: http://arxiv.org/abs/2006.11371
    [Google Scholar]
  15. van der VeldenB.H.M. KuijfH.J. GilhuijsK.G.A. ViergeverM.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis.Med. Image Anal.20227910247010.1016/j.media.2022.10247035576821
    [Google Scholar]
  16. MinhD. WangH.X. LiY.F. NguyenT.N. Explainable artificial intelligence: A comprehensive review.Artif. Intell. Rev.20225553503356810.1007/s10462‑021‑10088‑y
    [Google Scholar]
  17. ZafarM.R. KhanN.M. DLIME: A deterministic local interpretable model-agnostic explanations approach for computer-aided diagnosis systems.arxiv.1906.102632019Available from: http://arxiv.org/abs/1906.10263
    [Google Scholar]
  18. ZafarM.R. KhanN. Deterministic local interpretable model-agnostic explanations for stable explainability.Mach. Learn. Knowl.Extrac.20213352554110.3390/make3030027
    [Google Scholar]
  19. AlbiniE. LongJ. DervovicD. MagazzeniD. Counterfactual shapley additive explanations.2022 ACM Conference on Fairness, Accountability, and Transparency20221054107010.1145/3531146.3533168
    [Google Scholar]
  20. KimY. KimY. Explainable heat-related mortality with random forest and shapley additive explanations (SHAP) models.Sustain Cities Soc.20227910367710.1016/j.scs.2022.103677
    [Google Scholar]
  21. MarkusA. F. KorsJ. A. RijnbeekP. R. The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies.J Biomed Inform202111310365510.1016/j.jbi.2020.103655
    [Google Scholar]
  22. AliS. AbuhmedT. El-SappaghS. MuhammadK. Alonso-MoralJ.M. ConfalonieriR. GuidottiR. Del SerJ. Díaz-RodríguezN. HerreraF. Explainable artificial intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence.Inf. Fusion20239910180510.1016/j.inffus.2023.101805
    [Google Scholar]
  23. IslamM.R. AhmedM.U. BaruaS. BegumS. A systematic review of explainable artificial intelligence in terms of different application domains and tasks.Appl. Sci.2022123135310.3390/app12031353
    [Google Scholar]
  24. ThalpageN. Unlocking the black box: Explainable artificial intelligence (XAI) for trust and transparency in AI systems.J. Digi. Art. Humanit.202341313610.33847/2712‑8148.4.1_4
    [Google Scholar]
  25. SaeedW. OmlinC. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities.Knowl. Base. Syst.202326311027310.1016/j.knosys.2023.110273
    [Google Scholar]
  26. LiuH. WangY. FanW. LiuX. LiY. JainS. LiuY. JainA. TangJ. Trustworthy AI: A computational perspective.ACM Trans. Intell. Syst. Technol.202314115910.1145/3546872
    [Google Scholar]
  27. AngelovP.P. SoaresE.A. JiangR. ArnoldN.I. AtkinsonP.M. Explainable artificial intelligence: An analytical review.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2021115e142410.1002/widm.1424
    [Google Scholar]
  28. RasheedK. QayyumA. GhalyM. Al-FuqahaA. RaziA. QadirJ. Explainable, trustworthy, and ethical machine learning for healthcare: A survey.Comput Biol Med202214910604310.1016/j.compbiomed.2022.106043
    [Google Scholar]
  29. KaleA. NguyenT. HarrisF. C. LiC. ZhangJ. MaX. Provenance documentation to enable explainable and trustworthy AI: A literature review.Data Intell.20235114110.1162/dint_a_00119
    [Google Scholar]
  30. AlbahriA.S. DuhaimA.M. FadhelM.A. AlnoorA. BaqerN.S. AlzubaidiL. AlbahriO.S. AlamoodiA.H. BaiJ. SalhiA. SantamaríaJ. OuyangC. GuptaA. GuY. DeveciM. A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion.Inf. Fusion20239615619110.1016/j.inffus.2023.03.008
    [Google Scholar]
  31. ChamolaV. HassijaV. SulthanaA.R. GhoshD. DhingraD. SikdarB. A review of trustworthy and explainable artificial intelligence (XAI).IEEE Access202311789947901510.1109/ACCESS.2023.3294569
    [Google Scholar]
  32. LinardatosP. PapastefanopoulosV. KotsiantisS. Explainable AI: A review of machine learning interpretability methods.Entropy20202311810.3390/e2301001833375658
    [Google Scholar]
  33. KobbacyK A H. VaderaS. RasmyM.H. AI and OR in management of operations: History and trends.J. Oper. Res. Soc.2007581102810.1057/palgrave.jors.2602132
    [Google Scholar]
  34. HeX. ZhaoK. ChuX. AutoML: A survey of the state-of-the-art.Knowl. Base. Syst.202121210662210.1016/j.knosys.2020.106622
    [Google Scholar]
  35. Kho LinS. Auto-scaling a defence application across the cloud using docker and kubernetes.2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 2018, pp. 327-334.10.1109/UCC‑Companion.2018.00076
    [Google Scholar]
  36. ZhaoZ. WuJ. LiT. SunC. YanR. ChenX. Challenges and opportunities of AI-enabled monitoring, diagnosis & prognosis: A review.Chin. J. Mech. Eng.20213415610.1186/s10033‑021‑00570‑7
    [Google Scholar]
  37. Schmitt-KoopmannF.M. HuangE.M. DarvishyA. Accessible PDFs: Applying Artificial Intelligence for Automated Remediation of STEM PDFsProceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility20221610.1145/3517428.3550407
    [Google Scholar]
  38. RohY. HeoG. WhangS.E. A survey on data collection for machine learning: A big data : AI integration perspective.IEEE Trans. Knowl. Data Eng.20213341328134710.1109/TKDE.2019.2946162
    [Google Scholar]
  39. EdwardC. AndreasM. SonjaZ. Jean-ChristopheP. The elements of big data value.Foundations of the Research and Innovation EcosystemSpringerCham20211401
    [Google Scholar]
  40. ParraE. AlahmadiM. EllisA. HaiducS. A comparative study and analysis of developer communications on Slack and Gitter.Empir. Softw. Eng.20222724010.1007/s10664‑021‑10095‑1
    [Google Scholar]
  41. MarijanD. LiaaenM. SenS. DevOps improvements for reduced cycle times with integrated test optimizations for continuous integration.2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 2018, pp. 22-27.10.1109/COMPSAC.2018.00012
    [Google Scholar]
  42. SatyaR. DittakaviS. AI optimized cost-aware design strategies for resource-efficient applications.J. Sci. Technol.202341110
    [Google Scholar]
  43. BoschJ. OlssonH.H. CrnkovicI. Engineering AI systems: A research agenda.Artificial Intelligence Paradigms for Smart Cyber-Physical SystemsIGI Global202111910.4018/978‑1‑7998‑5101‑1.ch001
    [Google Scholar]
  44. KimT. VecchiettiL.F. ChoiK. SarielS. HarD. Two-stage training algorithm for AI robot soccer.PeerJ Comput. Sci.20217e71810.7717/peerj‑cs.71834616894
    [Google Scholar]
  45. SunL. HuangY. WangH. WuS. TrustLLM: Trustworthiness in large language models.arXiv:2401.055612024Available from: https://arxiv.org/abs/2401.05561
    [Google Scholar]
  46. ShiY. YangK. JiangT. ZhangJ. LetaiefK.B. Communication-efficient edge AI: Algorithms and systems.IEEE Commun. Surv. Tutor.20202242167219110.1109/COMST.2020.3007787
    [Google Scholar]
  47. TalibM.A. MajzoubS. NasirQ. JamalD. A systematic literature review on hardware implementation of artificial intelligence algorithms.J. Supercomput.20217721897193810.1007/s11227‑020‑03325‑8
    [Google Scholar]
  48. van de PoelI. Embedding values in artificial intelligence (AI) systems.Minds Mach.202030338540910.1007/s11023‑020‑09537‑4
    [Google Scholar]
  49. SmithersT. ConkieA. DohenyJ. LoganB. MillingtonK. TangM.X. Design as intelligent behaviour: An AI in design research programme.Artif. Intell. Eng.1990527810910.1016/0954‑1810(90)90004‑N
    [Google Scholar]
  50. TeelhawodB.N. Machine learning in e-health: A comprehensive survey of anxiety.2021 International Conference on Data Analytics for Business and Industry, ICDABI 2021202116717210.1109/ICDABI53623.2021.9655966
    [Google Scholar]
  51. LiB. QiP. LiuB. DiS. LiuJ. PeiJ. YiJ. ZhouB. Trustworthy AI: From principles to practices.ACM Comput. Surv.202355914610.1145/3555803
    [Google Scholar]
  52. KaluzaA. GellrichS. CerdasF. ThiedeS. HerrmannC. Life cycle engineering based on visual analytics.Procedia CIRP201869374210.1016/j.procir.2017.11.128
    [Google Scholar]
  53. NM.A. LeonovaK.VD. Visualization of a product’s life cycles in the common information space on the basis of project management methods.SV-J.201682640
    [Google Scholar]
  54. RamanujanD. BernsteinW.Z. ChandrasegaranS.K. RamaniK. Visual analytics tools for sustainable lifecycle design: Current status, challenges, and future opportunities.J. Mech. Des.20171391111141510.1115/1.403747929170612
    [Google Scholar]
  55. Jie LiuJ.S.S.W. Pattern recognition: An overview.IJCSNS Int. J. Comp. Sci. Netw. Secu.2006665761
    [Google Scholar]
  56. AntaniS. KasturiR. JainR. A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video.Pattern Recognit.200235494596510.1016/S0031‑3203(01)00086‑3
    [Google Scholar]
  57. JainA.K. DuinP.W. Jianchang Mao Statistical pattern recognition: A review.IEEE Trans. Pattern Anal. Mach. Intell.200022143710.1109/34.824819
    [Google Scholar]
  58. LuxemK. SunJ.J. BradleyS.P. KrishnanK. YttriE. ZimmermannJ. PereiraT.D. LaubachM. Open-source tools for behavioral video analysis: Setup, methods, and best practices.eLife202312e7930510.7554/eLife.7930536951911
    [Google Scholar]
  59. WrightC. AI in Production: Video analysis and machine learning for expanded live events coverage.Proceedings of the 2023 ACM International Conference on Interactive Media Experiences Workshops, 2023, pp. 77-78.10.1145/3604321.3604375
    [Google Scholar]
  60. LuD. WengQ. A survey of image classification methods and techniques for improving classification performance.Int. J. Remote Sens.200728582387010.1080/01431160600746456
    [Google Scholar]
  61. JiangH. DiaoZ. ShiT. ZhouY. WangF. HuW. ZhuX. LuoS. TongG. YaoY.D. A review of deep learning-based multiple-lesion recognition from medical images: Classification, detection and segmentation.Comput. Biol. Med.202315710672610.1016/j.compbiomed.2023.10672636924732
    [Google Scholar]
  62. LiC. LiX. ChenM. SunX. Deep learning and image recognition.2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT), 2023 Qingdao, China, pp. 557-562, 2023.10.1109/ICEICT57916.2023.10245041
    [Google Scholar]
  63. WuQ. CastlemanK.R. Image Segmentation.Microscope Image Processing.Elsevier202311915210.1016/B978‑0‑12‑821049‑9.00003‑4
    [Google Scholar]
  64. KaurR. SinghS. A comprehensive review of object detection with deep learning.Digit. Signal Process.202313210381210.1016/j.dsp.2022.103812
    [Google Scholar]
  65. KaurP. KrishanK. SharmaS.K. KanchanT. Facial-recognition algorithms: A literature review.Med. Sci. Law202060213113910.1177/002580241989316831964224
    [Google Scholar]
  66. HeyatM.B.B. AkhtarF. KhanM.H. UllahN. GulI. KhanH. LaiD. Detection, treatment planning, and genetic predisposition of bruxism: A systematic mapping process and network visualization technique.CNS Neurol. Disord. Drug Targets202120875577510.2174/19963181MTExyMzM3333172381
    [Google Scholar]
  67. ToreiniE. AitkenM. CoopamootooK. ElliottK. ZelayaC.G. van MoorselA. The relationship between trust in AI and trustworthy machine learning technologies.Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency,202027228310.1145/3351095.3372834
    [Google Scholar]
  68. FloridiL. Establishing the rules for building trustworthy AI.Ethics, Governance, and Policies in Artificial Intelligence. Philosophical Studies SeriesSpringerCham2021144414510.1007/978‑3‑030‑81907‑1_4
    [Google Scholar]
  69. KobayashiK. Explainable, interpretable, and trustworthy AI for an intelligent digital twin: A case study on remaining useful life.Eng. Applic. Artif. Intell.2024129107620Available from: https://www.sciencedirect.com/science/article/pii/S0952197623018043
    [Google Scholar]
  70. HabbalA. AliM. Artificial intelligence trust, risk and security management (AI TRiSM): Frameworks, applications, challenges and future research directions.Exp. Syst. Applic.2024240122442Available from: https://www.sciencedirect.com/science/article/pii/S0957417423029445
    [Google Scholar]
  71. JainS. LuthraM. SharmaS. FatimaM. Trustworthiness of artificial intelligence.2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, pp. 907-912.10.1109/ICACCS48705.2020.9074237
    [Google Scholar]
  72. SiauK. WangW. Building trust in artificial intelligence, machine learning, and robotics.Cutt. Bus. Technol. J.2018312117Available from: www.cutter.com
    [Google Scholar]
  73. AshooriM. WeiszJ.D. In AI we trust? factors that influence trustworthiness of AI-infused decision-making processes.arxiv1912.026752019Available from: http://arxiv.org/abs/1912.02675
    [Google Scholar]
  74. ArinaitweM. RezaH. Towards specifying and evaluating the trustworthiness of an AI-enabled system.ITNG 2023 20th International Conference on Information Technology-New Generations,SpringerCham2023144519119810.1007/978‑3‑031‑28332‑1_22
    [Google Scholar]
  75. BhuiyanM.Z.A. KuoS.Y. WangG. Guest editorial: Trustworthiness of AI/ML/DL approaches in industrial internet of things and applications.IEEE Trans. Industr. Inform.202319196997210.1109/TII.2022.3201588
    [Google Scholar]
  76. LauxJ. WachterS. Trustworthy artificial intelligence and the European Union AI act: On the conflation of trustworthiness and acceptability of risk.Regulation & GovernanceWiley Online Library2023Jan10.1111/rego.1251238435808
    [Google Scholar]
  77. SinghR. VatsaM. RathaN. Trustworthy AI.Proceedings of the 3rd ACM India Joint International Conference on Data Science & Management of Data (8th ACM IKDD CODS & 26th COMAD),202144945310.1145/3430984.3431966
    [Google Scholar]
  78. AlakweK. Human dignity in the era of artificial intelligence and robotics: Issues and Prospects.J. Humanit.Soc. Sci. Stud.202356879710.32996/jhsss.2023.5.6.10
    [Google Scholar]
  79. CataletaM.S. East-west center humane artificial intelligence: The fragility of human rights facing AI.Available from: https://about.jstor.org/terms
  80. The Cambridge Handbook of Information Technology, Life Sciences and Human Rights.Cambridge University Press202210.1017/9781108775038
    [Google Scholar]
  81. Aler TubellaA. Mora-CantallopsM. NievesJ.C. How to teach responsible AI in Higher Education: challenges and opportunities.Ethics Inf. Technol.2024261310.1007/s10676‑023‑09733‑7
    [Google Scholar]
  82. RayhanR. RayhanS. AI and Human Rights: Balancing innovation and privacy in the digital age.Comp. Sci. Eng.Artif. Intell.2023353945600110.13140/RG.2.2.35394.56001
    [Google Scholar]
  83. Al-RodhanN. Artificial Intelligence: Implications for human dignity and governance.2021Available from: https://oxfordpoliticalreview.com/2021/03/27/artificial-intelligence/#:~:text=AI%20And%20Dignity-Based%20Governance&text=It%20is%20a%20comprehensive%20set,(and%20sometimes%2C%20both)
  84. MehrotraS. JorgeC.C. JonkerC.M. TielmanM.L. Integrity based explanations for fostering appropriate trust in AI agents.ACM Trans. Interact. Intell. Syst.2023Jul10.1145/3610578
    [Google Scholar]
  85. JobinA. IencaM. VayenaE. The global landscape of AI ethics guidelines.Nat. Mach. Intell.20191938939910.1038/s42256‑019‑0088‑2
    [Google Scholar]
  86. ReinhardtK. Trust and trustworthiness in AI ethics.AI Ethics20233373574410.1007/s43681‑022‑00200‑5
    [Google Scholar]
  87. Van BulckL. What if your patient switches from Dr. Google to Dr. ChatGPT? A vignette-based survey of the trustworthiness, value, and danger of ChatGPT-generated responses to health questions.Eur J Cardiovasc Nurs2023231959810.1093/eurjcn/zvad038
    [Google Scholar]
  88. ChengL. VarshneyK.R. LiuH. Socially responsible AI algorithms: Issues, purposes, and challenges.J. Artif. Intell. Res.2021711137118110.1613/jair.1.12814
    [Google Scholar]
  89. Hawaii international conference on system sciences.53rd Hawaii International Conference on System Sciences (HICCS), University of Hawai'i at Manoa, Honolulu, January 5-8, 2021.
    [Google Scholar]
  90. GunningD. Explainable artificial intelligence (XAI).2017Available from: http://listverse.com/
  91. ZednikC. Solving the black box problem: A normative framework for explainable artificial intelligence.Philos. Technol.202134226528810.1007/s13347‑019‑00382‑7
    [Google Scholar]
  92. LangerM. OsterD. SpeithT. HermannsH. KästnerL. SchmidtE. SesingA. BaumK. What do we want from Explainable Artificial Intelligence (XAI)? : A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research.Artif. Intell.202129610347310.1016/j.artint.2021.103473
    [Google Scholar]
  93. DuvalA. Explainable artificial intelligence (XAI).Available from: https://www.ibm.com/topics/explainable-ai
  94. ConfalonieriR. CobaL. WagnerB. BesoldT.R. A historical perspective of explainable Artificial Intelligence.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2021111e139110.1002/widm.1391
    [Google Scholar]
  95. DosilovicF.K. BrcicM. HlupicN. Explainable artificial intelligence: A survey.2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2018, pp. 0210-0215.10.23919/MIPRO.2018.8400040
    [Google Scholar]
  96. HassijaV. Interpreting black-box models: A review on explainable artificial intelligence.Cognit. Comput.202316457410.1007/s12559‑023‑10179‑8
    [Google Scholar]
  97. KuppaA. Le-KhacN-A. Black box attacks on explainable artificial intelligence(XAI) methods in cyber security.2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, pp. 1-8.10.1109/IJCNN48605.2020.9206780
    [Google Scholar]
  98. HussainF. HussainR. HossainE. Explainable artificial intelligence (XAI): An engineering perspectivearxiv.2101.036132021Available from: http://arxiv.org/abs/2101.03613
    [Google Scholar]
  99. AdadiA. BerradaM. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI).IEEE Access20186521385216010.1109/ACCESS.2018.2870052
    [Google Scholar]
  100. SamekW. MüllerK.R. Towards explainable.Lect. Notes Comput. Sci.20191170052210.1007/978‑3‑030‑28954‑6_1
    [Google Scholar]
  101. HanifA. ZhangX. WoodS. A survey on explainable artificial intelligence techniques and challenges.2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), Gold Coast, Australia, pp. 81-89, 2021.10.1109/EDOCW52865.2021.00036
    [Google Scholar]
  102. HolzingerA. SarantiA. MolnarC. BiecekP. SamekW. Explainable AI Methods : A brief overview.xxAI : Beyond Explainable AI. xxAI 2020. Lecture Notes in Computer ScienceSpringerCham202213200133810.1007/978‑3‑031‑04083‑2_2
    [Google Scholar]
  103. Truong Thanh NguyenH. CaoH. Vo Thanh NguyenK. Dinh Khoi PhamN. Evaluation of explainable artificial intelligence: SHAP, LIME, and CAM evaluation of explainable artificial intelligence: SHAP, LIME, and CAM Hung Quoc Cao.Available from: https://www.researchgate.net/publication/362165633
  104. GramegnaA. GiudiciP. SHAP and LIME: An evaluation of discriminative power in credit risk.Front. Artif. Intell.2021475255810.3389/frai.2021.75255834604738
    [Google Scholar]
  105. RoselliD. MatthewsJ. TalagalaN. Managing Bias in AI.WWW '19: Companion Proceedings of The 2019 World Wide Web ConferenceACM Digital Library201953954410.1145/3308560.3317590
    [Google Scholar]
  106. ParikhR.B. TeepleS. NavatheA.S. Addressing bias in artificial intelligence in health care.JAMA2019322242377237810.1001/jama.2019.1805831755905
    [Google Scholar]
  107. MökanderJ. FloridiL. Ethics-based auditing to develop trustworthy AI.Minds Mach.202131232332710.1007/s11023‑021‑09557‑8
    [Google Scholar]
  108. RyanM. In AI we trust: Ethics, artificial intelligence, and reliability.Sci. Eng. Ethics20202652749276710.1007/s11948‑020‑00228‑y32524425
    [Google Scholar]
  109. ChoungH. DavidP. RossA. Trust and ethics in AI.AI Soc.202338273374510.1007/s00146‑022‑01473‑4
    [Google Scholar]
  110. HohmaE. LütgeC. From trustworthy principles to a trustworthy development process: The need and elements of trusted development of AI systems.AI20234490492610.3390/ai4040046
    [Google Scholar]
  111. ShneidermanB. Bridging the gap between ethics and practice.ACM Trans. Interact. Intell. Syst.202010413110.1145/3419764
    [Google Scholar]
  112. Díaz-RodríguezN. Del SerJ. CoeckelberghM. López de PradoM. Herrera-ViedmaE. HerreraF. Connecting the dots in trustworthy artificial intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation.Inf. Fusion20239910189610.1016/j.inffus.2023.101896
    [Google Scholar]
  113. CrockettK. ColyerE. GerberL. LathamA. Building trustworthy AI solutions: A case for practical solutions for small businesses.IEEE Trans. Artif. Intell.20234477879110.1109/TAI.2021.3137091
    [Google Scholar]
  114. LemonnierNoémi Ethical issues using artificial intelligence in healthcare.Available from: https://jyx.jyu.fi/handle/123456789/75832
  115. Mohammad AminiM. JesusM. Fanaei SheikholeslamiD. AlvesP. Hassanzadeh BenamA. HaririF. Artificial intelligence ethics and challenges in healthcare applications: A comprehensive review in the context of the european GDPR mandate.Mach. Learn. Knowl. Extrac.2023531023103510.3390/make5030053
    [Google Scholar]
  116. AkhtarF. Bin HeyatB. PingJ.L. PatelP.K. GuragaiB. Role of machine learning in human stress: A review.2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2020, pp. 170-174.10.1109/ICCWAMTIP51612.2020.9317396
    [Google Scholar]
  117. Rithvik VanaparthiS. V. A. R. Revolutionizing health care: AI-enabled disease diagnosis, outcome prediction& operational efficiencyTurk. J. Comp. Mathem. Educ.202314312891308
    [Google Scholar]
  118. WaniS.U.D. KhanN.A. ThakurG. GautamS.P. AliM. AlamP. AlshehriS. GhoneimM.M. ShakeelF. Utilization of artificial intelligence in disease prevention: Diagnosis, treatment, and implications for the healthcare workforce.Healthcare202210460810.3390/healthcare1004060835455786
    [Google Scholar]
  119. CarterS.M. WendyR. Khin ThanW. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care.The Breast2020492532Available from: https://www.sciencedirect.com/science/article/pii/S0960977619305648
    [Google Scholar]
  120. UkwuomaC. C. Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images.J King Saud Univ Comput Inf Sci202335710159610.1016/j.jksuci.2023.101596
    [Google Scholar]
  121. Bin HeyatM.B. AkhtarF. KhanA. NoorA. BenjdiraB. QamarY. AbbasS.J. LaiD. A novel hybrid machine learning classification for the detection of bruxism patients using physiological signals.Appl. Sci.20201021741010.3390/app10217410
    [Google Scholar]
  122. Fosch VillarongaE. Implementing AI in healthcare: An ethical and legal analysis based on case studies.Data Protection and Privacy: Data Protection and Artificial IntelligenceHart Publishing202018721610.5040/9781509941780.ch‑007
    [Google Scholar]
  123. AI, machine learning, and ethics in health care.J. Leg.Med.2019394427441Available from: https://www.tandfonline.com/doi/abs/10.1080/01947648.2019.1690604
    [Google Scholar]
  124. UkwuomaC.C. QinZ. Belal Bin HeyatM. AkhtarF. BamisileO. MuaadA.Y. AddoD. Al-antariM.A. A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.J. Adv. Res.20234819121110.1016/j.jare.2022.08.02136084812
    [Google Scholar]
  125. SultanaA. BegumW. SaeediR. RahmanK. Bin HeyatM.B. AkhtarF. SonN.T. UllahH. Experimental and computational approaches for the classification and correlation of temperament (mizaj) and uterine dystemperament (Su’-I-Mizaj Al-Rahim) in abnormal vaginal discharge (Sayalan Al-Rahim) based on clinical analysis using support vector machine.Complexity2022202211610.1155/2022/5718501
    [Google Scholar]
  126. Md BelalB.H. FaijanA. ArshiyaS. Role of oxidative stress and inflammation in insomnia sleep disorder and cardiovascular diseases: herbal antioxidants and anti-inflammatory coupled with insomnia detection using machine learning.Curr Pharm Des202228453618363610.2174/1381612829666221201161636
    [Google Scholar]
  127. QayyumS. SultanaA. HeyatM.B.B. RahmanK. AkhtarF. HaqA. AlkhamisB.A. AlqahtaniM.A. GahtaniR.M. Therapeutic efficacy of a formulation prepared with Linum usitatissimum L., Plantago ovata forssk., and honey on uncomplicated pelvic inflammatory disease analyzed with machine learning techniques.Pharmaceutics202315264310.3390/pharmaceutics1502064336839965
    [Google Scholar]
  128. SultanaA. Unveiling the efficacy of unani medicine in female disorders through machine learning: current challenges and opportunities.2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2023, pp. 1-6.10.1109/ICCWAMTIP60502.2023.10385245
    [Google Scholar]
  129. FazmiyaM.J.A. SultanaA. HeyatM.B.B. ParveenS. RahmanK. AkhtarF. KhanA.A. AlanaziA.M. AhmedZ. DíezI.T. BallesterJ.B. SaripalliT.S.K. Efficacy of a vaginal suppository formulation prepared with Acacia arabica (Lam.) Willd. gum and Cinnamomum camphora (L.) J. Presl. in heavy menstrual bleeding analyzed using a machine learning technique.Front. Pharmacol.202415133162210.3389/fphar.2024.133162238410133
    [Google Scholar]
  130. Sumbul SultanaA. HeyatM.B.B. RahmanK. AkhtarF. ParveenS. UrbanoM.B. LipariV. De la Torre DíezI. KhanA.A. MalikA. Efficacy and classification of Sesamum indicum linn seeds with Rosa damascena mill oil in uncomplicated pelvic inflammatory disease using machine learning.Front Chem.202412136198010.3389/fchem.2024.136198038629105
    [Google Scholar]
  131. SultanaA. RahmanK. HeyatM.B.B. SumbulF. AkhtarF. MuaadA.Y. Role of inflammation, oxidative stress, and mitochondrial changes in premenstrual psychosomatic behavioral symptoms with anti-inflammatory, antioxidant herbs, and nutritional supplements.Oxid. Med. Cell. Longev.2022202212910.1155/2022/359924635873799
    [Google Scholar]
  132. KarimianG. PetelosE. The ethical issues of the application of artificial intelligence in healthcare: A systematic scoping review.AI Ethics20222539551Available from: https://link.springer.com/article/10.1007/s43681-021-00131-7
    [Google Scholar]
  133. DanielS. Artificial intelligence in healthcare: a critical analysis of the legal and ethical implications.Int. J. Law.Inform. Technol.2019272171203Available from:https://academic.oup.com/ijlit/article-abstract/27/2/171/5485669
    [Google Scholar]
  134. HiraokaD. InuiT. KawakamiE. Diagnosis of atrial fibrillation using machine learning with wearable devices after cardiac surgery: Algorithm development study.JMIR Form Res202268e35396Available from: https://formative.jmir.org/2022/8/e35396
    [Google Scholar]
  135. ZhouZ. TamV. LuiK. Applying Deep Learning and Wearable Devices for Educational Data Analytics.2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, pp. 871-878, 2019.Available from: https://ieeexplore.ieee.org/abstract/document/8995238/?casa_token=reM5KC3g1UcAAAAA:XyPS3WgGSDAGhRQ1IRbR_HpiakYzYHUj_6MNrG5wkgekzkD4u5VJcEVwr78mNjfKFiNTHxGq
    [Google Scholar]
  136. Thi ThuN. DaoT-H. Quoc BaoB. TranD-N. Van ThanhP. TranD-T. Real-time wearable-device based activity recognition using machine learning methods.Univ. Bahr. Scient.J.202212112012610.12785/ijcds/120126
    [Google Scholar]
  137. De QuadrosT. A movement decomposition and machine learning-based fall detection system using wrist wearable device.IEEE Sens. J.2018181250825089Available from: https://ieeexplore.ieee.org/abstract/document/8345625/?casa_token=xbrjy6dUgMIAAAAA:W_jrJ3crBlFv-QkRRTIQt-6wr-W2GOj_XaXYlOeuHWqjlporEaD1tcjYFiqrrOEj8n92ePQ-
    [Google Scholar]
  138. Al-TurjmanF. BaaliI. Machine learning for wearable IoT‐based applications: A survey.Trans. Emerg. Telecommun. Technol.2022338e363510.1002/ett.3635
    [Google Scholar]
  139. RogersW.A. DraperH. CarterS.M. Evaluation of artificial intelligence clinical applications: Detailed case analyses show value of healthcare ethics approach in identifying patient care issues.Bioethics202135762363310.1111/bioe.1288534046918
    [Google Scholar]
  140. RogersW. DraperH. Artificial intelligence applications in healthcare sector.Emerg. Sci. J.20226471773810.28991/ESJ‑2022‑06‑04‑05
    [Google Scholar]
  141. GerkeS. MinssenT. Ethical and legal challenges of artificial intelligence-driven healthcare.Artif. Intell.Healthc.2020295336Available from: https://www.sciencedirect.com/science/article/pii/B9780128184387000125
    [Google Scholar]
  142. KoshiyamaA. Towards algorithm auditing: managing legal, ethical and technological risks of AI, ML and associated algorithms.R. Soc. Open Sci.202411230859
    [Google Scholar]
  143. Fritz-MorgenthalS. HeinB. PapenbrockJ. Financial risk management and explainable, trustworthy, responsible AI.Front. Artif. Intell.2022577979910.3389/frai.2022.77979935295866
    [Google Scholar]
  144. MaxR. KriebitzA. Von WebskyC. Ethical considerations about the implications of artificial intelligence in finance. San-JoseL. RetolazaJ.L. van Liedekerkeand L. Handbook on Ethics in Finance. International Handbooks in Business EthicsSpringerCham202157759210.1007/978‑3‑030‑29371‑0_21
    [Google Scholar]
  145. Chu-chen RosaYEH. Cze-chiun JasmineW. Wei-wen VeraC. Labor displacement in artificial intelligence era: A systematic literature review.Taiw. J. East. Asi. Stud.20201722575
    [Google Scholar]
  146. MoradiP. LevyK. The future of work in the age of AI.The Oxford Handbook of Ethics of AI.Oxford University Press202026928810.1093/oxfordhb/9780190067397.013.17
    [Google Scholar]
  147. HeyatM.B.B. AkhtarF. MunirF. SultanaA. MuaadA.Y. GulI. SawanM. AsgharW. IqbalS.M.A. BaigA.A. de la Torre DíezI. WuK. Unravelling the complexities of depression with medical intelligence: exploring the interplay of genetics, hormones, and brain function.Complex Intell. Syst.202410.1007/s40747‑024‑01346‑x
    [Google Scholar]
  148. AkhtarF. PatelP.K. HeyatM.B.B. YousafS. BaigA.A. MohonaR.A. MutoffarM.M. BhattacharyaT. TeelhawodB.N. LiJ.P. KamalM.A. WuK. Smartphone addiction among students and its harmful effects on mental health, oxidative stress, and neurodegeneration towards future modulation of anti-addiction therapies: A comprehensive survey based on SLR, research questions, and network visualization techniques.CNS Neurol. Disord. Drug Targets20232271070108910.2174/187152732166622061412143935702800
    [Google Scholar]
  149. ParveenS. Interweaving artificial intelligence and bio-signals in mental fatigue: Unveiling dynamics and future pathways.2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2023, pp. 1-9.10.1109/ICCWAMTIP60502.2023.10387132
    [Google Scholar]
  150. Zouhaier SlimiB. V. C. Navigating the ethical challenges of artificial intelligence in higher education: An analysis of seven global AI ethics policies.TEM J.2023122590602
    [Google Scholar]
  151. RodriguesR. Legal and human rights issues of AI: Gaps, challenges and vulnerabilities.J. Responsib. Technol.2020410000510.1016/j.jrt.2020.100005
    [Google Scholar]
  152. uY. MengX. LiA. AI’s ethical implications: Job displacement.Adv. Comp. Commun.20234313814210.26855/acc.2023.06.006
    [Google Scholar]
  153. KhogaliH.O. MekidS. The blended future of automation and AI: Examining some long-term societal and ethical impact features.Technol. Soc.20237310223210.1016/j.techsoc.2023.102232
    [Google Scholar]
  154. KaurA. KukrejaV. Singh RanaD. GargA. SharmaR. AI-driven strategies for identifying and classifying mango scab disease.2021 Asian Conference on Innovation in Technology (ASIANCON), PUNE, India, 2021, pp. 1-8.10.1109/IITCEE59897.2024.10467992
    [Google Scholar]
  155. TanejaK. TanejaH. KumarK. SelwalA. OuhE. Data Science and Innovations for Intelligent Systems: Computational Excellence and Society 5.0.2021Available from: https://books.google.com/books?hl=en&lr=&id=goM8EAAAQBAJ&oi=fnd&pg=PR7&dq=chitkara+university,punjab+trustworthy+artificial+intelligence+&ots=MfS30jDZSj&sig=A92OLI7fmYYgQ4_Ps8eF_u-nEjs (Accessed: Apr. 10, 2024).
  156. LiF. RuijsN. LuY. Ethics & AI: A systematic review on ethical concerns and related strategies for designing with AI in healthcare.AI202341285310.3390/ai4010003
    [Google Scholar]
  157. ReddyS. AllanS. CoghlanS. CooperP. A governance model for the application of AI in health care.J. Am. Med. Inform. Assoc.202027349149710.1093/jamia/ocz19231682262
    [Google Scholar]
  158. BalthazarP. HarriP. PraterA. SafdarN.M. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics.J. Am. Coll. Radiol.201815358058610.1016/j.jacr.2017.11.03529402532
    [Google Scholar]
  159. BærøeK. Miyata-SturmA. HendenE. How to achieve trustworthy artificial intelligence for health.Bull. World Health Organ.202098425726210.2471/BLT.19.23728932284649
    [Google Scholar]
  160. BurukB. EkmekciP.E. ArdaB. A critical perspective on guidelines for responsible and trustworthy artificial intelligence.Med. Health Care Philos.202023338739910.1007/s11019‑020‑09948‑132236794
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965308169240616144800
Loading
/content/journals/raeeng/10.2174/0123520965308169240616144800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test