Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

This paper delves into the potential of Fault Current Limiters (FCLs) as a transformative technology within power systems. FCLs assume a pivotal role in streamlining network expansion efforts, sustaining fault current levels, and augmenting the overall performance of power systems. The classification of FCLs is outlined, encompassing superconducting FCLs (SFCLs), Solid-State FCLs (SFCLs), and non-superconducting FCLs (Non-SFCLs). The core of this study lies in an exhaustive review of relevant literature, with a keen focus on optimal allocation strategies for FCLs. The primary objective of this paper is to function as an all-encompassing reference for both researchers and engineers, providing optimal FCL allocation studies. This paper discusses various techniques for the optimal allocation of FCLs within power systems. These allocation methods are categorized based on multiobjective functions such as cost, fault current reduction, stability, protection coordination, reliability, and power quality. This search presents an overview of the FCL survey structured around key components, including objective functions, design variables, constraints, optimization methods, network types, FCL types, and research contributions. This work aims to empower professionals in the field with a robust understanding of FCL allocation, ultimately contributing to the efficient and sustainable evolution of power systems. FCLs represent a promising technology for enhancing the performance and reliability of power systems, and this paper serves as a comprehensive resource for those interested in optimizing their allocation within these systems.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965287398231230081056
2024-01-26
2025-11-01
Loading full text...

Full text loading...

References

  1. AbdaliA. MazlumiK. BagheriA. An elitist gravitational search algorithm based approach for optimal placement of fault current limiters in power systems.Sigma J Eng Nat Sci 2019373691704
    [Google Scholar]
  2. Ghotbi-MalekiM. ChabanlooR.M. New Computational Method for Optimal Allocation of Fault Current Limiters in Power Systems.Iran. J. Electr. Electron. Eng.2021174173310.22068/IJEEE.17.4.1733
    [Google Scholar]
  3. TengJ.H. LuC.N. Optimum fault current limiter placement with search space reduction technique.IET Gener. Transm. Distrib.20104448549410.1049/iet‑gtd.2009.0340
    [Google Scholar]
  4. Bahramian HabilH. Azad-FarsaniE. Askarian abyanehH. A novel method for optimum fault current limiter placement using particle swarm optimization algorithm.Int. Trans. Electr. Energy Syst.201525102124213210.1002/etep.1952
    [Google Scholar]
  5. AlamM.S. AbidoM.A.Y. El-AminI. Fault current limiters in power systems: A comprehensive review.Energies2018115MDPI10.3390/en11051025
    [Google Scholar]
  6. AsgharR. Electric vehicles view project a study of LVRT enhancing capability of DFIG wind turbine through fault current limiters view project2018Available from: http://www.ijser.org
  7. SchmittH. Fault current limiters report on the activities of CIGRE WG A3.162006 IEEE Power Engineering Society General Meeting2006510.1109/PES.2006.1709205
    [Google Scholar]
  8. KumaraJ.R.S.S. AtputharajahA. EkanayakeJ.B. MumfordF.J. Over current protection coordination of distribution networks with fault current limiters.2006 IEEE Power Engineering Society General Meeting2006810.1109/PES.2006.1709251
    [Google Scholar]
  9. HosseinpourM. SadehJ. Optimal multiple FCLs allocation considering DG penetration in meshed network with multi-level voltages.Iran. J. Electr. Electron. Eng.20203336352
    [Google Scholar]
  10. ChenL. ZhangX. ChenH. LiG. YangJ. TianX. XuY. RenL. TangY. Pareto optimal allocation of resistive‐type fault current limiters in active distribution networks with inverter‐interfaced and synchronous distributed generators.Energy Sci. Eng.2019762554257110.1002/ese3.443
    [Google Scholar]
  11. ChenB. WeiL. ZhuY. ZhongY. YuanJ. LeiY. Pareto optimal allocation of fault current limiter based on immune algorithm considering cost and mitigation effect.J. Mod. Power Syst. Clean Energy20175582082910.1007/s40565‑016‑0249‑9
    [Google Scholar]
  12. MoW. WangY. ChenJ. QiaoS. ZhuL. FuR. Optimal Configuration of Fault Current Limiter Based on Multi-objective DecisionIOP Conference Series: Materials Science and EngineeringInstitute of Physics Publishing202010.1088/1757‑899X/752/1/012014
    [Google Scholar]
  13. JinG. TanJ. LiuL. WangC. YuanT. Placement optimization of Multi-Type fault current limiters based on genetic algorithm.Global Energy Interconnection20214550151210.1016/j.gloei.2021.11.006
    [Google Scholar]
  14. YangH.T. TangW.J. LubickiP.R. Placement of fault current limiters in a power system through a two-stage optimization approach.IEEE Trans. Power Syst.201833113114010.1109/TPWRS.2017.2693390
    [Google Scholar]
  15. HongesombutKomsan. FurusawaKen. MitaniYasunori. TsujiKiichiro. Allocation and circuit parameter design of superconducting fault current limiters in loop power system by a genetic algorithm.IEEJ Trans. Power Energy2003129910541063
    [Google Scholar]
  16. SridharP. RaoP.C. SinghB.P. Optimum placement of fault current limiter in 11 kV distribution system ⌠Available from: www.materialstoday.com/proceedings2028, 5(1): 758-64.201810.1016/j.matpr.2017.11.144
  17. ZhaoY. KrauseO. SahaT.K. A new approach for optimal allocation of multiple SFCLs in a power system with distributed generation.IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2015 Brisbane, Australia, pp. 1-5, 2015.
    [Google Scholar]
  18. M.M. Samet.H. Amin JarrahiMohammad. Optimal placement and sizing of fault current limiters in power systems with uncertainties.2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), pp. 1-6, 2019. Genova, Italy10.1109/EEEIC.2019.8783947
    [Google Scholar]
  19. HwangJ.-S. Validity analysis on the positioning of superconducting fault current limiter in neighboring AC and DC microgrid.IEEE Trans. Appl. Supercond.20112335600204
    [Google Scholar]
  20. YuP. VenkateshB. YazdaniA. SinghB.N. Optimal location and sizing of fault current limiters in mesh networks using iterative mixed integer nonlinear programming.IEEE Trans. Power Syst.20163164776478310.1109/TPWRS.2015.2507067
    [Google Scholar]
  21. EsmailiM. Ghamsari-YazdelM. AmjadyN. ChungC.Y. Optimal placement of resistive/inductive SFCLs considering short‐circuit levels using complex artificial bee colony algorithm.IET Gener. Transm. Distrib.201913245561556810.1049/iet‑gtd.2019.0232
    [Google Scholar]
  22. NgocP.T. SinghJ.G. Short circuit current level reduction in power system by optimal placement of fault current limiter.Int. Trans. Electr. Energy Syst.2017271210.1002/etep.2457
    [Google Scholar]
  23. DidierG. LévêqueJ. RezzougA. A novel approach to determine the optimal location of SFCL in electric power grid to improve power system stability.IEEE Trans. Power Syst.201328297898410.1109/TPWRS.2012.2224386
    [Google Scholar]
  24. DidierG. LévêqueJ. Influence of fault type on the optimal location of superconducting fault current limiter in electrical power grid.Int. J. Electr. Power Energy Syst.20145627928510.1016/j.ijepes.2013.11.018
    [Google Scholar]
  25. DidierG. LevequeJ. Study of optimal combination between SFCL location and PSS type to improve power system transient stability.Int. J. Electr. Power Energy Syst.20167715816510.1016/j.ijepes.2015.11.007
    [Google Scholar]
  26. AlaraifiS. El MoursiM.S. ZeineldinH.H. Optimal allocation of HTS-FCL for power system security and stability enhancement.IEEE Trans. Power Syst.20132844701471110.1109/TPWRS.2013.2273539
    [Google Scholar]
  27. ud dinS.N. Bilal IslamS. A. Optimal positioning of bridge type superconducting fault current limiter in solar integrated electric power grid.2015 Symposium on Recent Advances in Electrical Engineering (RAEE)Islamabad, Pakistan20151610.1109/RAEE.2015.7352752
    [Google Scholar]
  28. KumaraS. Arulampalam EkanayakeJ. MumfordF.J. 12-Over current protection coordination of distribution networks with fault current limiters.IEEE Xplore200610.1109/PES.2006.1709251
    [Google Scholar]
  29. SungB.C. ParkD.K. ParkJ.W. KoT.K. Study on optimal location of a resistive SFCL applied to an electric power grid.IEEE Trans. Appl. Supercond.20091932048205210.1109/TASC.2009.2019035
    [Google Scholar]
  30. AgheliA. AbyanehH.A. ChabanlooR.M. DezakiH.H. Reducing the impact of DG in distribution networks protection using fault current limiters.2010 4th International Power Engineering and Optimization Conference (PEOCO)201029830310.1109/PEOCO.2010.5559205
    [Google Scholar]
  31. HemmatiS. SadehJ. Applying superconductive fault current limiter to minimize the impacts of Distributed Generation on the distribution protection systems.2012 11th International Conference on Environment and Electrical Engineering201280881310.1109/EEEIC.2012.6221486
    [Google Scholar]
  32. El-ElaA.A.A. El-SehiemyR.A. ShaheenA.M. EllienA.R. Optimal allocation of distributed generation units correlated with fault current limiter sites in distribution systems.IEEE Syst. J.20211522148215510.1109/JSYST.2020.3009028
    [Google Scholar]
  33. HaiderR. ZamanM.S.U. BukhariS.B.A. AhmedZ. MehdiM. OhY-S. KimC-H. Protection coordination using superconducting fault current limiters in microgrids.JIEIE 20173110263610.5207/JIEIE.2017.31.10.026
    [Google Scholar]
  34. FarzinfarM. JazaeriM. A novel methodology in optimal setting of directional fault current limiter and protection of the MG.Int. J. Electr. Power Energy Syst.202011610556410.1016/j.ijepes.2019.105564
    [Google Scholar]
  35. GhanbariT. FarjahE. Unidirectional fault current limiter: An efficient interface between the microgrid and main network.IEEE Trans. Power Syst.20132821591159810.1109/TPWRS.2012.2212728
    [Google Scholar]
  36. Abdel-SalamM.M. El-MohandesM. Th. OsmanA.H. PSO-based protection coordination and power loss minimization in distribution systems wth DG sources using optimal fault current limiters.2019 21st International Middle East Power Systems Conference (MEPCON)20191119112610.1109/MEPCON47431.2019.9008038
    [Google Scholar]
  37. KimY. JoH.C. JooS.K. Analysis of impacts of superconducting fault current limiter (SFCL) placement on distributed generation (DG) expansion.IEEE Trans. Appl. Supercond.20162641510.1109/TASC.2016.255059827857508
    [Google Scholar]
  38. El-KhattamW. SidhuT.S. Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter.IEEE Trans. Power Deliv.200823257658510.1109/TPWRD.2008.915778
    [Google Scholar]
  39. ElmitwallyA. GoudaE. EladawyS. Optimal allocation of fault current limiters for sustaining overcurrent relays coordination in a power system with distributed generation.Alex. Eng. J.20155441077108910.1016/j.aej.2015.06.009
    [Google Scholar]
  40. JoH.C. JooS.K. Superconducting fault current limiter placement for power system protection using the minimax regret criterion.IEEE Trans. Appl. Supercond.20152531510.1109/TASC.2015.2411052
    [Google Scholar]
  41. GuardaF. G. K. CardosoG. da SilvaC. D. L. de MoraisA. P. Fault current limiter placement to reduce recloser ‑ Fuse miscoordination in electric distribution systems with distributed generation using multiobjective particle swarm optimization.IEEE Lat. Am.201816719141920
    [Google Scholar]
  42. ElmitwallyA. GoudaE. EladawyS. Restoring recloser-fuse coordination by optimal fault current limiters planning in DG-integrated distribution systems.Int. J. Electr. Power Energy Syst.20167791810.1016/j.ijepes.2015.11.021
    [Google Scholar]
  43. KimS.Y. KimW.W. KimJ.O. Determining the location of superconducting fault current limiter considering distribution reliability.IET Gener. Transm. Distrib.20126324010.1049/iet‑gtd.2011.0287
    [Google Scholar]
  44. KimS-Y. BaeI-S. KimJ-O. An optimal location for superconducting fault current limiter considering distribution reliability.IEEE PES General Meeting20101510.1109/PES.2010.5588064
    [Google Scholar]
  45. MahmoudianA. NiasatiM. KhanesarM.A. Multi objective optimal allocation of fault current limiters in power system.Int. J. Electr. Power Energy Syst.20178511110.1016/j.ijepes.2016.06.013
    [Google Scholar]
  46. ShuZ. ChenY. DengC. ZhengF. ZhongH. Pareto optimal allocation of flexible fault current limiter based on multi-objective improved bat algorithm.IEEE Access20219127621277810.1109/ACCESS.2021.3050795
    [Google Scholar]
  47. MahmoudianA. NiasatiM. A novel approach for optimal allocation of fault current limiter in distribution system via combination of particle swarm optimization algorithm and genetic algorithm (PSOGA).2016 21st Conference on Electrical Power Distribution Networks Conference (EPDC)2016758110.1109/EPDC.2016.7514786
    [Google Scholar]
  48. AlghamdiH. Optimum placement of distribution generation units in power system with fault current limiters using improved coyote optimization algorithm.Entropy202123665510.3390/e2306065534073742
    [Google Scholar]
  49. HamidiM.E. ChabanlooR.M. Optimal allocation of distributed generation with optimal sizing of fault current limiter to reduce the impact on distribution networks using NSGA-II.IEEE Syst. J.20191321714172410.1109/JSYST.2018.2867910
    [Google Scholar]
  50. ChantachirathamP. HongesombutK. PSO based approach for optimum fault current limiter placement in power system.2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology20121410.1109/ECTICon.2012.6254286
    [Google Scholar]
  51. GolzarfarA. SedighiA.R. AsadiA. Optimal placement and sizing of fault current limiter in a real network: A case study.Int. J. Eng.201528340240910.5829/idosi.ije.2015.28.03c.09
    [Google Scholar]
  52. KomijaniA. KheradmandiM. SedighizadehM. Optimal allocation and control of superconducting fault current limiter and superconducting magnetic energy storage in mesh microgrid networks to improve fault ride through.J. Oper. Autom.2023111223210.22098/JOAPE.2023.9577.1668
    [Google Scholar]
  53. GuoL. YeC. DingY. WangP. Allocation of Centrally Switched Fault Current Limiters Enabled by 5G in Transmission System.IEEE Trans. Power Deliv.20213653231324110.1109/TPWRD.2020.3037193
    [Google Scholar]
  54. El-Ela A. AbouAdel . Review on active distribution networks with fault current limiters and renewable energy resources.Energies 202215207648
    [Google Scholar]
  55. ChiT. Research on application of split reactance type FCL in distribution network with DG.Annual Conference of China Electrotechnical Society. 2022 Springer Nature Singapore
    [Google Scholar]
  56. AhmadM. WangZ. ShafiqueM. NadeemM.H. Significance of fault-current-limiters and parameters optimization in HVDC circuit breakers for increased capacity of VSC-HVDC transmission networks application.Energy Rep.2022887889210.1016/j.egyr.2021.12.024
    [Google Scholar]
  57. ZebK. IslamS.U. KhanI. UddinW. IshfaqM. Curi BusarelloT.D. MuyeenS.M. AhmadI. KimH.J. Faults and fault ride through strategies for grid-connected photovoltaic system: A comprehensive review.Renew. Sustain. Energy Rev.202215811212510.1016/j.rser.2022.112125
    [Google Scholar]
  58. ShafiullahM. AhmedS.D. Al-SulaimanF.A. Grid integration challenges and solution strategies for solar pv systems: A review.IEEE Access202210522335225710.1109/ACCESS.2022.3174555
    [Google Scholar]
  59. Azeredo FSLucas Study of reducing losses, short-circuit currents and harmonics by allocation of distributed generation, capacitor banks and fault current limiters in distribution grids.Applied Energy 2023350121760
    [Google Scholar]
  60. IlyushinPavel Review of methods for addressing challenging issues in the operation of protection devices in microgrids with voltages of up to 1 KV that integrates distributed energy resources.Energies 20221523918610.3390/en15239186
    [Google Scholar]
  61. SatiT.E. AzzouzM.A. ShaabanM. Optimal protection coordination of islanded microgrids utilizing an adaptive virtual impedance fault current limiter.IEEE Trans. Ind. Appl.20235932866287610.1109/TIA.2023.3244176
    [Google Scholar]
  62. YeC. GuoC. DingY. “5G-based optimal configuration of centralized fault current limiter in power system.” risk-based planning and operation strategy towards short circuit resilient power systems. Singapore: Springer.Nat. Singap.20233557
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965287398231230081056
Loading
/content/journals/raeeng/10.2174/0123520965287398231230081056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test