Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

The use of computationally intensive applications requiring substantial storage resources in vehicular adhoc networks is on the rise due to the technology shift from smart, intelligent vehicles to autonomous vehicles. Cloud computing addresses this problem to some extent by providing computational and storage facilities for the significant amount of data generated by vehicular nodes. However, it still cannot meet the stringent requirements of highly dynamic vehicular nodes in a real-time environment. The delay-sensitive applications of vehicular ad hoc networks instill the need for computing facilities in the closest possible proximity to the vehicular nodes. Therefore, fog computing has found potential in vehicular ad hoc network applications. Fog computing brings storage and computing resources closer to vehicles. Fog-based vehicular ad hoc networks can help improve the issues of first-generation vehicular ad hoc networks, such as latency, location perception, and concurrent response. Based on existing research, using fog computing decreased the delay by 50-60% and 60-70% in vehicular ad hoc network safety and entertainment and commercial applications, respectively, compared to cloud computing. An extensive study of the amalgamation of fog computing and vehicular ad hoc networks should be conducted to understand the underlying challenges of fog-based vehicular ad hoc networks. Existing surveys only include specific applications of this technology. However, we present an extensive survey focusing on the architecture of these two technologies, their integration, use cases of fog vehicular ad hoc networks, simulation tools, important performance metrics, the challenges in multiple contexts, and the gaps that need to be addressed, as well as suggest prominent journals in this field. This paper will not only impart knowledge to researchers in this area but also provide them with insights to identify the challenges and pursue their work further in fog-based vehicular ad hoc networks.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965269524231003111719
2024-01-23
2025-11-01
Loading full text...

Full text loading...

References

  1. ChhabraR. VermaS. KrishnaC.R. A survey on driver behavior detection techniques for intelligent transportation systems.2017 7th International Conference on Cloud Computing, Data Science & Engineering - ConfluenceNoida, India, 2017, pp. 36-41.10.1109/CONFLUENCE.2017.7943120
    [Google Scholar]
  2. GillaniM. NiazH.A. FarooqM.U. UllahA. Data collection protocols for VANETs: A survey.Complex & Intelligent Systems2022832593262210.1007/s40747‑021‑00629‑x
    [Google Scholar]
  3. KhuranaM. RamakrishnaC. PandaS.N. Capacity enhancement using MU-MIMO in vehicular Adhoc network.Int. J. Appl. Eng. Res.20171258725883
    [Google Scholar]
  4. YefernyT. HamadS. Vehicular Ad-hoc networks: Architecture, applications and challenges.Int. J. Comput. Sci. Netw. Secur2020202
    [Google Scholar]
  5. KelarestaghiK. B. ForuhandehM. HeaslipK. GerdesR. Survey on vehicular Adhoc networks and its access technologies security vulnerabilities and countermeasures.arXiv:1903.015412019
    [Google Scholar]
  6. KhuranaM. RamakrishnaC. PandaS.N. Antenna diversity scheme for multipath mitigation in vehicular adhoc networks on urban roads.2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)Rajpura, India, 2020, pp. 317-324.10.1109/Indo‑TaiwanICAN48429.2020.9181316
    [Google Scholar]
  7. GroverJ. JainA. SinghalS. YadavA. Real-time VANET applications using fog computing.Smart. Innov. Sys. Technol.20187968369110.1007/978‑981‑10‑5828‑8_65
    [Google Scholar]
  8. RaniR. KashyapV. KhuranaM. Role of IoT-cloud ecosystem in smart cities: Review and challenges.Mater. Today Proc.2022492994299810.1016/j.matpr.2020.10.054
    [Google Scholar]
  9. FarooqiA.M. AlamM.A. HassanS.I. Mohammad IdreesS. A fog computing model for vanet to reduce latency and delay using 5G network in smart city transportation.Appl. Sci20221242083
    [Google Scholar]
  10. KaiK. CongW. TaoL. Fog computing for vehicular Ad-hoc networks: Paradigms, scenarios, and issues.J. China Univ. Post Telecommun.2016232569610.1016/S1005‑8885(16)60021‑3
    [Google Scholar]
  11. HouX. LiY. ChenM. WuD. JinD. ChenS. Vehicular fog computing: A viewpoint of vehicles as the infrastructures.IEEE Trans. Vehicular Technol.20166563860387310.1109/TVT.2016.2532863
    [Google Scholar]
  12. AliZ.H. AliH.A. Energy-efficient routing protocol on public roads using real-time traffic information.Telecomm. Syst.202382446548610.1007/s11235‑023‑00993‑8
    [Google Scholar]
  13. GauravA. GuptaB.B. PeñalvoF.J.G. NedjahN. PsannisK. DDoS attack detection in vehicular Ad-Hoc network (VANET) for 5G networks.Studies in Big Data20229526327810.1007/978‑3‑030‑85428‑7_11
    [Google Scholar]
  14. YangY. ZhangL. ZhaoY. ChooK.K.R. ZhangY. Privacy-preserving aggregation-authentication scheme for safety warning system in fog-cloud based VANET.IEEE Trans. Inf. Forensics Security20221731733110.1109/TIFS.2022.3140657
    [Google Scholar]
  15. Ministry of road transport & highways, government of India.Available From: https://morth.nic.in/
  16. India: Road transport passengers | Statista.Available From: https://www.statista.com/statistics/667456/road-transport-passengers-india/
  17. KadhimA.J. NaserJ.I. Proactive load balancing mechanism for fog computing supported by parked vehicles in IoV-SDN.China Commun.202118227128910.23919/JCC.2021.02.019
    [Google Scholar]
  18. LuoY. ChenY. WuJ. Energy efficient fog computing with architecture of smart traffic lights system.2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT),Surabaya, Indonesia, 2021, pp. 248-254.10.1109/EIConCIT50028.2021.9431873
    [Google Scholar]
  19. RasheedA. GillaniS. AjmalS. QayyumA. Vehicular AdHoc network (VANET): A survey, challenges, and applications.Adv. Intell. Sys. Comp.20175484395110.1007/978‑981‑10‑3503‑6_4
    [Google Scholar]
  20. EL MadaniS. MotahhirS. EL GhzizalA. Internet of vehicles: Concept, process, security aspects and solutions.Multimedia Tools Appl.20228112165631658710.1007/s11042‑022‑12386‑1
    [Google Scholar]
  21. LaghariA.A. JumaniA.K. LaghariR.A. Review and state of art of fog computing.Arch. Comput. Methods Eng.20212853631364310.1007/s11831‑020‑09517‑y
    [Google Scholar]
  22. NewareR. ShrawankarU. Fog computing architecture, applications and security issues.Int. J. Fog Comput2020317510510.4018/IJFC.2020010105
    [Google Scholar]
  23. HS. vN. A review on fog computing: Architecture, fog with IoT, algorithms and research challenges.ICT Express20217216217610.1016/j.icte.2021.05.004
    [Google Scholar]
  24. RazaS. WangS. AhmedM. AnwarM.R. A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions.Wirel. Commun. Mob. Comput201920192119
    [Google Scholar]
  25. ShresthaR. BajracharyaR. NamS.Y. Challenges of future VANET and cloud-based approaches.Wirel Commun Mob Comput2018201899115
    [Google Scholar]
  26. FadilahS.I. WahabM.H.A. ShibghatullahA.S. HashimW.N.W. Wireless vehicular network based commercial advertisment dissemination (VCAD).ARPN J. Eng. Appl. Sci.20151087248730
    [Google Scholar]
  27. HoqueM.A. SecretlabR.H. Towards an analysis of the architecture, security, and privacy issues in vehicular fog computing.SoutheastCon,Huntsville, AL, USA, 2019, pp. 1-8.10.1109/SoutheastCon42311.2019.9020476
    [Google Scholar]
  28. ZhaoW. A survey on fog computing applications in internet of vehicles.2021 2nd International Conference on Computing and Data Science (CDS),Stanford, CA, USA, 2021, pp. 27-32.10.1109/CDS52072.2021.00012
    [Google Scholar]
  29. MekkiT. JabriI. ChaariL. RachediA. A survey on vehicular fog computing: Motivation, architectures, taxonomy, and issues.Web, Artificial Intelligence and Network Applications.AISC2020115011671180
    [Google Scholar]
  30. MendiboureL. ChaloufM.A. KriefF. Edge computing based applications in vehicular environments: Comparative study and main issues.J. Comput. Sci. Technol.201934486988610.1007/s11390‑019‑1947‑3
    [Google Scholar]
  31. HuangC. LuR. ChooK.K.R. Vehicular fog computing: Architecture, use case, and security and forensic challenges.IEEE Commun. Mag.2017551110511110.1109/MCOM.2017.1700322
    [Google Scholar]
  32. GaouarN. LehsainiM. Toward vehicular cloud/fog communication: A survey on data dissemination in vehicular ad hoc networks using vehicular cloud/fog computing.Int. J. Commun. Syst.2021341312710.1002/dac.4906
    [Google Scholar]
  33. UllahA. YaoX. ShaheenS. NingH. Advances in position based routing towards ITS enabled fog-oriented VANET : A survey.IEEE Trans. Intell. Transp. Syst.202021282884010.1109/TITS.2019.2893067
    [Google Scholar]
  34. AlamA. QaziS. IqbalN. RazaK. Fog, edge and pervasive computing in intelligent internet of things driven applications in healthcare: Challenges, limitations and future use.Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications2020126
    [Google Scholar]
  35. JalowiczorJ. RozhonJ. VoznakM. Study of the efficiency of fog computing in an optimized lorawan cloud architecture.Sensors20212193159
    [Google Scholar]
  36. KhanS. ParkinsonS. QinY. Fog computing security: A review of current applications and security solutions.J. Cloud Comput20176119
    [Google Scholar]
  37. FerozB. MehmoodA. MaryamH. ZeadallyS. MapleC. ShahM.A. Vehicle-life interaction in fog-enabled smart connected and autonomous vehicles.IEEE Access202197402742010.1109/ACCESS.2020.3049110
    [Google Scholar]
  38. TangC. WeiX. ZhuC. ChenW. RodriguesJ.J.P.C. Towards smart parking based on fog computing.IEEE Access20186701727018510.1109/ACCESS.2018.2880972
    [Google Scholar]
  39. SofiaA. An overview to design an efficient and secure fog‐assisted data collection method in the internet of things.Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications2020Dec193208
    [Google Scholar]
  40. Fog computing architecture | Fog computing working operation.Available From: https://www.rfwireless-world.com/Terminology/Fog-Computing-Architecture-working.html [Accessed on: Aug 26, 2021].
  41. SunyaevA. Fog and edge computing.Internet Comput2020237264
    [Google Scholar]
  42. SinghH. LaxmiV. MalikA. Fog computing as future perspective in vehicular ad hoc networks.IoT Driven Appl.2020Dec177192
    [Google Scholar]
  43. GiangN.K. BlackstockM. LeaR. LeungV.C.M. Developing IoT applications in the fog: A distributed dataflow approach.5th International Conference on the Internet of Things (IOT),Seoul, Korea (South), 2015, pp. 155-162.10.1109/IOT.2015.7356560
    [Google Scholar]
  44. HuP. DhelimS. NingH. QiuT. Survey on fog computing: Architecture, key technologies, applications and open issues.J. Netw. Comput. Appl.201798274210.1016/j.jnca.2017.09.002
    [Google Scholar]
  45. RaniR. KumarN. KhuranaM. KumarA. BarnawiA. Storage as a service in Fog computing: A systematic review.J. Systems Archit.202111610203310.1016/j.sysarc.2021.102033
    [Google Scholar]
  46. YousefpourA. FungC. NguyenT. KadiyalaK. JalaliF. NiakanlahijiA. KongJ. JueJ.P. All one needs to know about fog computing and related edge computing paradigms: A complete survey.J. Systems Archit.20199828933010.1016/j.sysarc.2019.02.009
    [Google Scholar]
  47. XiaoY. WatsonM. Guidance on conducting a systematic literature review.J. Plann. Educ. Res.20193919311210.1177/0739456X17723971
    [Google Scholar]
  48. HarrisJ.D. QuatmanC.E. ManringM.M. SistonR.A. FlaniganD.C. How to write a systematic review.Am. J. Sports Med.201442112761276810.1177/036354651349756723925575
    [Google Scholar]
  49. DarwishT.S.J. Abu BakarK. Fog based intelligent transportation big data analytics in the internet of vehicles environment: Motivations, architecture, challenges, and critical issues.IEEE Access20186156791570110.1109/ACCESS.2018.2815989
    [Google Scholar]
  50. KhattakH.A. IslamS.U. DinI.U. GuizaniM. Integrating fog computing with VANETs: A consumer perspective.IEEE Communications Standards Magazine201931192510.1109/MCOMSTD.2019.1800050
    [Google Scholar]
  51. DongL. NiQ. WuW. HuangC. ZnatiT. DuD.Z. A proactive reliable mechanism-based vehicular fog computing network.IEEE Internet Things J.2020712118951190710.1109/JIOT.2020.3007608
    [Google Scholar]
  52. AnawarM.R. WangS. Azam ZiaM. JadoonA.K. AkramU. RazaS. Fog computing: An overview of big IoT data analytics.Wirel. Commun. Mob. Comput20182018
    [Google Scholar]
  53. ChebaaneA. KhelilA. SuriN. Time-critical fog computing for vehicular networks.Fog Comput. Theory Pract2020431458
    [Google Scholar]
  54. PereiraJ. RicardoL. LuísM. SennaC. SargentoS. Assessing the reliability of fog computing for smart mobility applications in VANETs.Future Gener. Comput. Syst.20199431733210.1016/j.future.2018.11.043
    [Google Scholar]
  55. YanJ. HasanF. Prospect of vehicular fog computing to improve traffic efficiency and to increase road safety.researchgate202030
    [Google Scholar]
  56. AlzoubiY.I. OsmanajV.H. JaradatA. Al-AhmadA. Fog computing security and privacy for the internet of thing applications: State-of-the-art.Secur. Priv.20204145
    [Google Scholar]
  57. WangL. LiuG. SunL. A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based VANETs.Sensors2017174668
    [Google Scholar]
  58. XiongM. YiC. ZhuK. Vehicular path planning for balancing traffic congestion cost and fog computing reward: A routing game approach.Wireless Algorithms, Systems, and Applications202136637710.1007/978‑3‑030‑86130‑8_29
    [Google Scholar]
  59. RoyS. BoseR. SarddarD. A fog-based dss model for driving rule violation monitoring framework on the internet of things.Int. J. Adv. Sci. Technol201582233210.14257/ijast.2015.82.03
    [Google Scholar]
  60. MaC. ZhuJ. LiuM. ZhaoH. LiuN. ZouX. Parking edge computing: Parked-vehicle-assisted task offloading for urban VANETs.IEEE Internet Things J.20218119344935810.1109/JIOT.2021.3056396
    [Google Scholar]
  61. LiangJ. ZhangJ. LeungV.C.M. WuX. Distributed information exchange with low latency for decision making in vehicular fog computing.IEEE Internet Things J.2021XX117
    [Google Scholar]
  62. YaqoobS. UllahA. AkbarM. ImranM. ShoaibM. Congestion avoidance through fog computing in internet of vehicles.J. Ambient Intell. Humaniz. Comput.2019103863387710.1007/s12652‑019‑01253‑x
    [Google Scholar]
  63. WangM. WuJ. LiG. LiJ. LiQ. WangS. Toward mobility support for information-centric IoV in smart city using fog computing.2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE),Oshawa, ON, Canada, 2017, pp. 357-361.10.1109/SEGE.2017.8052825
    [Google Scholar]
  64. ParanjothiA. TanikU. WangY. KhanM.S. Hybrid-Vehfog: A robust approach for reliable dissemination of critical messages in connected vehicles.Trans. Emerg. Telecommun. Technol2019306e3595
    [Google Scholar]
  65. AliZ.H. BadawyM.M. AliH.A. A novel geographically distributed architecture based on fog technology for improving Vehicular Ad hoc Network (VANET) performance.Peer-to-Peer Netw. Appl.20201351539156610.1007/s12083‑020‑00910‑9
    [Google Scholar]
  66. NooraniN. SenoS. A. H. SDN- and fog computing-based switchable routing using path stability estimation for vehicular ad hoc networksPeer-to-Peer Netw. Appl.20201394896410.1007/s12083‑019‑00859‑4
    [Google Scholar]
  67. KimO.T.T. Dang TriN. NguyenV.D. TranN.H. HongC.S. A shared parking model in vehicular network using fog and cloud environment.2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS),Busan, Korea (South), 2015, pp. 321-326.
    [Google Scholar]
  68. WaheedA. KrishnaP.V. JG. SadounB. ObaidatM. Learning automata and reservation based secure smart parking system: Methodology and simulation analysis.Simul. Model. Pract. Theory202110610220510.1016/j.simpat.2020.102205
    [Google Scholar]
  69. TimpnerJ. SchürmannD. WolfL. Trustworthy parking communities: Helping your neighbor to find a space.IEEE Trans. Depend. Secure Comput.201613112013210.1109/TDSC.2015.2427838
    [Google Scholar]
  70. Al-HeetyO.S. ZakariaZ. IsmailM. ShakirM.M. AlaniS. AlsarieraH. A comprehensive survey: Benefits, services, recent works, challenges, security, and use cases for SDN-VANET.IEEE Access20208910289104710.1109/ACCESS.2020.2992580
    [Google Scholar]
  71. TruongN.B. LeeG.M. Ghamri-DoudaneY. Software defined networking-based vehicular Adhoc network with fog computing.2015 IFIP/IEEE International Symposium on Integrated Network Management (IM),Ottawa, ON, Canada, 2015, pp. 1202-1207.10.1109/INM.2015.7140467
    [Google Scholar]
  72. XiaoK. LiuK. XuX. ZhouY. FengL. Efficient fog-assisted heterogeneous data services in software defined VANETs.J. Ambient Intell. Humaniz. Comput201913261273
    [Google Scholar]
  73. BarbaC.T. MateosM.Á. SotoP.R. MezherA.M. IgartuaM.A. Smart city for VANETs using warning messages, traffic statistics and intelligent traffic lights.2012 IEEE Intelligent Vehicles Symposium,Madrid, Spain, 2012, pp. 902-907.10.1109/IVS.2012.6232229
    [Google Scholar]
  74. Pal SinghT. Nitika KapoorE. Clustering and multicasting scheme for fog computing based vehicular ad hoc network.IACSIT Int. J. Eng. Technol.201872.27828710.14419/ijet.v7i2.27.12613
    [Google Scholar]
  75. BonadioA. ChitiF. FantacciR. An integrated framework for fog communications and computing in internet of vehicles.EPiC Series in Computing2018568474
    [Google Scholar]
  76. ShamshadS. ObaidatM.S. MinahilM.A. An efficient and provably secure authenticated key agreement protocol for fog-based vehicular ad-hoc networks.IEEE Internet Things J20216580658075
    [Google Scholar]
  77. ZhangX. LyuC. ShiZ. LiD. XiongN.N. ChiC.H. Reliable multiservice delivery in fog-enabled VANETs: Integrated misbehavior detection and tolerance.IEEE Access20197957629577810.1109/ACCESS.2019.2928365
    [Google Scholar]
  78. ErskineS.K. ElleithyK.M. Secure intelligent vehicular network using fog computing samuel.Electronics2019
    [Google Scholar]
  79. CuiM. HanD. WangJ. An efficient and safe road condition monitoring authentication scheme based on fog computing.IEEE Internet Things J.2019659076908410.1109/JIOT.2019.2927497
    [Google Scholar]
  80. LiangJ. WuK. An extremely accurate time synchronization mechanism in fog-based vehicular Ad-Hoc network.IEEE Access2020825326810.1109/ACCESS.2019.2958867
    [Google Scholar]
  81. AdrianoD.D. MontezC. NovaesA.G.N. WanghamM. DMRVR: Dynamic milk-run vehicle routing solution using fog-based vehicular AdHoc networks.Electronics2020912201010.3390/electronics9122010
    [Google Scholar]
  82. LiuK. XiaoK. DaiP. LeeV.C.S. GuoS. CaoJ. Fog computing empowered data dissemination in software defined heterogeneous VANETs.IEEE Trans. Mobile Comput.202120113181319310.1109/TMC.2020.2997460
    [Google Scholar]
  83. LiuB. A novel framework for message dissemination with consideration of destination prediction in VFC.Neural Comput. Appl2021351238912399
    [Google Scholar]
  84. WeberJ.S. NevesM. FerretoT. VANET simulators: An updated review.J. Braz. Comput. Soc.2021271810.1186/s13173‑021‑00113‑x
    [Google Scholar]
  85. AljabryI.A. Al-SuhailG.A. A survey on network simulators for vehicular Ad-hoc networks (VANETS).Int. J. Comput. Appl.2021174111910.5120/ijca2021920979
    [Google Scholar]
  86. Network simulation tools | Research projects using network simulation tools in NS2, NS33, Omnet++, qualnet, opnet, peersim, mininet.Available From: https://networksimulationtools.com/ [Accessed on : Apr. 19, 2023].
  87. 196383 PDFs | Review articles in MATLAB.Available From: https://www.researchgate.net/topic/MATLAB/publications [Accessed on : Apr. 19, 2023].
  88. BhatiaT.K. RamachandranR.K. DossR. PanL. A review of simulators used for VANETs: The case-study of vehicular mobility generators.2020 7th International Conference on Signal Processing and Integrated Networks (SPIN),Noida, India, 2020, pp. 234-239.10.1109/SPIN48934.2020.9070933
    [Google Scholar]
  89. LanK.C. MOVE: A practical simulator for mobility model in VANET.Telematics Communication Technologies and Vehicular Networks: Wireless Architectures and ApplicationsIGI Global2009355368
    [Google Scholar]
  90. Mobility virtual environment - MoVE.Available From: https://comperem.gitlab.io/move/ [Accessed on : Apr. 19, 2023].
    [Google Scholar]
  91. KadhimA.J. AminS. SenoH. Energy-efficient multicast routing protocol based on SDN and fog computing for vehicular networks.Ad. Hoc. Netw.2018
    [Google Scholar]
  92. UllahA. YaqoobS. ImranM. NingH. Emergency message dissemination schemes based on congestion avoidance in vanet and vehicular fog computing.IEEE Access201971570158510.1109/ACCESS.2018.2887075
    [Google Scholar]
  93. MekkiT. JabriI. RachediA. Vehicular cloud networks: Challenges, architectures, and future directions.Veh. Commun.20179268280
    [Google Scholar]
  94. El GayyarK.S. SalehA.I. LabibL.M. A new fog-based routing strategy (FBRS) for vehicular ad-hoc networks.Peer-to-Peer Netw. Appl.2021
    [Google Scholar]
  95. HaseebK. IslamN. JavedY. TariqU. A lightweight secure and energy-efficient fog-based routing protocol for constraint sensors network.Energies202114114
    [Google Scholar]
  96. Hassan AliZ. Arafat AliH. AliZ. H. AliH. A. AuthorC. Energy-efficient routing protocol for enhancing the vehicular ad-hoc network communication.Comput. J.2022568938946
    [Google Scholar]
  97. ParveenS. SinghP. AroraD. Fog computing research opportunities and challenges: A comprehensive survey.Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019)202012117118110.1007/978‑981‑15‑3369‑3_13
    [Google Scholar]
  98. KadhimA.J. NaserJ.I. Routing protocol for IoV-fog network supported by SDN.Telecommun. Radio Eng202079544345210.1615/TelecomRadEng.v79.i5.70
    [Google Scholar]
  99. TangC. WeiX. ZhuC. WangY. JiaW. Mobile vehicles as fog nodes for latency optimization in smart cities.IEEE Trans. Vehicular Technol.20206999364937510.1109/TVT.2020.2970763
    [Google Scholar]
  100. RehmanO. QureshiR. Ould-KhaouaM. NiaziM.F. Analysis of mobility speed impact on end-to-end communication performance in VANETs.Vehic. Commun.20202610027810.1016/j.vehcom.2020.100278
    [Google Scholar]
  101. WaqasM. NiuY. AhmedM. LiY. JinD. HanZ. Mobility-aware fog computing in dynamic environments: Understandings and implementation.IEEE Access20197388673887910.1109/ACCESS.2018.2883662
    [Google Scholar]
  102. SharmaD.K. GoelA. ManglaP. Fog and edge driven security & privacy issues in iot devices.Fog, Edge, Pervasive Comput. Intell. IoT Driven Appl.2020Dec389408
    [Google Scholar]
  103. KumarS. ManiR. Modeling of VANET for future generation transportation system through edge/fog/cloud computing powered by 6G.Cloud and IoT‐Based Vehicular Ad Hoc Networks2021105124
    [Google Scholar]
  104. WangX. NingZ. WangL. Offloading in internet of vehicles: A fog-enabled real-time traffic management system.IEEE Trans. Industr. Inform.201814104568457810.1109/TII.2018.2816590
    [Google Scholar]
  105. HameedA. R. Energy- and performance-aware load-balancing in vehicular fog computing.Sustain. Comput. Informatics Syst.202130100454
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965269524231003111719
Loading
/content/journals/raeeng/10.2174/0123520965269524231003111719
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test