Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Nowadays, the communication industry is looking for a cognitive radio platform that can be used to handle multiple frequency bands, utilize various transmission protocols and be reconfigurable. For spectrum allocation, two methodologies have been adopted for CR between users who are licensed (PU) and those who are not (SU). They are spectrum overlay and spectrum underlay. Secondary users need to operate below the principal users' noise level therefore, significant restrictions resisted on the strength of their transmission in spectrum underlay methodology. Spectrum underlay is a type of underlay that is used in the construction of the unoccupied section of the spectrum searched by CR in the spectrum overlay process. A reconfigurable antenna is needed on RF front-end side of CR, which will a range of completely to span a vast array of frequencies specified sub-bands of frequency, and this is often a major design challenge. An antenna with a flexible monopole for Ultra-wideband equipment competent to function between the frequency range of 3.1 GHz to 10.6 GHz. Designs of reconfigurable antennas reported in the literature are mostly observed to be capable of manual tuning or switching between two or a few frequency bands. Hence, the requirement of new designs of integrated UWB and reconfigurable narrowband antennas that operate from 2 GHz and up to 12 GHz frequency range with a high degree of automated tunability or switching facility into different narrow bands would have a strong application potential for CRs.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965254041240105095627
2024-01-19
2025-11-04
Loading full text...

Full text loading...

References

  1. QinP. Y. A wideband-to-narrowband tunable antenna mistreatment a reconfigurable filter.IEEE Transac. Antennas Propagat.201563522822285
    [Google Scholar]
  2. YauK.L.A. A context-aware and intelligent dynamic channel choice scheme for cognitive radio networks.4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications,Hanover, Germany, 22-24 June, 2009.
    [Google Scholar]
  3. ZhaoQ. SadlerB. M. A survey of dynamic spectrum access.IEEE Signal Proc. Mag.20072437889
    [Google Scholar]
  4. MuduliArjuna A reconfigurable filtenna for cognitive radio application.J. Phys.: Conf. Series2021181711742659610.1088/1742‑6596/1817/1/012002
    [Google Scholar]
  5. Arjuna MuduliR.K. Modified UWB microstrip monopole antenna for cognitive radio application.IEEE Applied Electromagnetics Conference (AEMC),Guwahati, India, 18-21 Dec, 2015.10.1109/AEMC.2015.7509207
    [Google Scholar]
  6. TangM.C. Compact, frequency-reconfigurable filtenna with sharply defined wideband and continuously tunable narrowband states.IEEE Transac. Antennas Propagat.201765105026503410.1109/TAP.2017.2736535
    [Google Scholar]
  7. Ros MarieC. Frequency reconfigurable antennas for cognitive radio applications: A review.Int. J. Elect. Comput. Eng.20199535423549
    [Google Scholar]
  8. IbrahimA.A. Design of reconfigurable antenna using RF MEMS switch for cognitive radio applications.Progress In Electromagnetics Research Symposium - Spring (PIERS),St. Petersburg, Russia, 22-25 May, 2017.10.1109/PIERS.2017.8261767
    [Google Scholar]
  9. HussainR. SharawiM.S. Integrated reconfigurable multiple‐input–multiple‐output antenna system with an ultra‐wideband sensing antenna for cognitive radio platforms.IET Microw. Antennas Propag.20159994094710.1049/iet‑map.2014.0605
    [Google Scholar]
  10. KingslyS. ThangarasuD. KanagasabaiM. AlsathM.G.N. ThipparajuR.R. PalaniswamyS.K. SambandamP. Multiband reconfigurable filtering monopole antenna for cognitive radio applications.IEEE Antennas Wirel. Propag. Lett.20181781416142010.1109/LAWP.2018.2848702
    [Google Scholar]
  11. ParidaR.K. MishraR.K. SahooN.K. MuduliA. PandaD.C. MishraR.K. A hybrid multi-port antenna system for cognitive radio.Prog. Electromagn. Res. C. Pier C202010611610.2528/PIERC20052706
    [Google Scholar]
  12. AnandS. RajR.K. SinhaS. UpadhyayD. MishraG.K. Bandwidth reconfigurable patch antenna for next generation wireless communication system applications.Proceedings of the International Conference on Emerging Trends in Communication Technologies (ETCT),Dehradun, India, 2016.10.1109/ETCT.2016.7882991
    [Google Scholar]
  13. WagihM. WeiY. BeebyS. Flexible 2.4 GHz node for body area networks with a compact high-gain planar antenna.IEEE Antennas Wirel. Propag. Lett.2019181495310.1109/LAWP.2018.2880490
    [Google Scholar]
  14. ParkJ. ParkS. YangW. KamD.G. Folded aperture coupled patch antenna fabricated on FPC with vertically polarised end‐fire radiation for fifth‐generation millimetre‐wave massive MIMO systems.IET Microw. Antennas Propag.201913101660166310.1049/iet‑map.2018.5952
    [Google Scholar]
  15. ZhongL. HongJ.S. ZhouH.C. A novel pattern-reconfigurable cylindrical dielectric resonator antenna with enhanced gain.IEEE Antennas Wirel. Propag. Lett.2016151253125610.1109/LAWP.2015.2504127
    [Google Scholar]
  16. LuZ.L. YangX.X. TanG.N. A multidirectional pattern reconfigurable patch antenna with CSRR on the ground.IEEE Antennas Wirel. Propag. Lett.20171641641910.1109/LAWP.2016.2581834
    [Google Scholar]
  17. LinW. ChenS.L. ZiolkowskiR.W. GuoY.J. Reconfigurable, wideband, low-profile, circularly polarized antenna and array enabled by artificial magnetic conductor ground.IEEE Trans. Antenn. Propag.20186631564156910.1109/TAP.2018.2790437
    [Google Scholar]
  18. ParkM. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres.Nat. Nanotech.20127803809
    [Google Scholar]
  19. SebastianM.T. JantunenH. UbicR. Microwave Materials and Applications.Chichester, UK; Hoboken, NJ, USAJohn Wiley & Sons201710.1002/9781119208549
    [Google Scholar]
  20. WongW.S. SalleoA. Flexible Electronics: Materials and Applications; Electronic Materials: Science & Technology.New York, NY, USASpringer2009
    [Google Scholar]
  21. CaiY.M. GaoS. YinY. LiW. LuoQ. Compact-size low-profile wideband circularly polarized omnidirectional patch antenna with reconfigurable polarizations.IEEE Trans. Antenn. Propag.20166452016202110.1109/TAP.2016.2535502
    [Google Scholar]
  22. HussainR. SharawiM.S. ShamimA. An integrated four-element slot-based MIMO and a UWB sensing antenna system for CR platforms.IEEE Trans. Antenn. Propag.201866297898310.1109/TAP.2017.2781220
    [Google Scholar]
  23. HussainR. SharawiM.S. Reconfigurable pentagonal slot based 4-element MIMO antennas.IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting,San Diego, CA, USA, 09-14 July, 2017.10.1109/APUSNCURSINRSM.2017.8072618
    [Google Scholar]
  24. KhanS. LorenzelliL. DahiyaR.S. Technologies for printing sensors and electronics over large flexible substrates: A review.IEEE Sens. J.20151563164318510.1109/JSEN.2014.2375203
    [Google Scholar]
  25. MengL. WangW. GaoJ. LiuY. Bandwidth reconfigurable antenna with three step-shaped slots.Proceedings of the Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP),Xi’an, China, 2017.10.1109/APCAP.2017.8420865
    [Google Scholar]
  26. KopytP. SalskiB. Olszewska-PlachaM. JanczakD. SlomaM. KurkusT. JakubowskaM. GwarekW. Graphene-Based Dipole Antenna for a UHF RFID Tag.IEEE Trans. Antenn. Propag.20166472862286810.1109/TAP.2016.2565696
    [Google Scholar]
  27. MacDonaldW.A. LooneyM.K. MacKerronD. EvesonR. AdamR. HashimotoK. RakosK. Latest advances in substrates for flexible electronics.J. Soc. Inf. Disp.20071512107510.1889/1.2825093
    [Google Scholar]
  28. SubbaramanH. PhamD.T. XuX. ChenM.Y. HosseiniA. LuX. ChenR.T. Inkjet-printed two-dimensional phased-array antenna on a flexible substrate.IEEE Antennas Wirel. Propag. Lett.20131217017310.1109/LAWP.2013.2245292
    [Google Scholar]
  29. SanusiO.M. GhaffarF.A. ShamimA. VaseemM. WangY. RoyL. Development of a 2.45 GHz antenna for flexible compact radiation dosimeter tags.IEEE Trans. Antenn. Propag.20196785063507210.1109/TAP.2019.2911647
    [Google Scholar]
  30. KumarA. SaghlatoonH. LaT.G. Mahdi HonariM. CharayaH. Abu DamisH. MirzavandR. MousaviP. ChungH.J. A highly deformable conducting traces for printed antennas and interconnects: Silver/fluoropolymer composite amalgamated by triethanolamine.Flexible Printed Electron.20172404500110.1088/2058‑8585/aa8d38
    [Google Scholar]
  31. ShinK.Y. ChoS. JangJ. Graphene/polyaniline/poly(4-styrenesulfonate) hybrid film with uniform surface resistance and its flexible dipole tag antenna application.Small20139223792379810.1002/smll.20120320423650263
    [Google Scholar]
  32. RavindranA. FengC. HuangS. WangY. ZhaoZ. YangJ. Effects of graphene nanoplatelet size and surface area on the AC electrical conductivity and dielectric constant of epoxy nanocomposites.Polymers201810547710.3390/polym1005047730966511
    [Google Scholar]
  33. LiZ. SinhaS.K. TreichG.M. WangY. YangQ. DeshmukhA.A. SotzingG.A. CaoY. All-organic flexible fabric antenna for wearable electronics.J. Mater. Chem. C Mater. Opt. Electron. Devices20208175662566710.1039/D0TC00691B
    [Google Scholar]
  34. RiheenM.A. NguyenT.T. SahaT.K. KaracolakT. SekharP.K. CPW fed Wideband Bowtie Slot Antenna on PET substrate.Prog. Electromagn. Res. C. Pier C202010114715810.2528/PIERC20031402
    [Google Scholar]
  35. RahmanM.A. HossainM.F. RiheenM.A. SekharP.K. Early brain stroke detection using flexible monopole antenna.Prog. Electromagn. Res. C. Pier C2020999911010.2528/PIERC19120704
    [Google Scholar]
  36. HayesG.J. Ju-Hee So QusbaA. DickeyM.D. LazziG. Flexible liquid metal alloy (EGaIn) microstrip patch antenna.IEEE Trans. Antenn. Propag.20126052151215610.1109/TAP.2012.2189698
    [Google Scholar]
  37. ScarpelloM.L. KazaniI. HertleerC. RogierH. Vande GinsteD. Stability and efficiency of screen-printed wearable and washable antennas.IEEE Antennas Wirel. Propag. Lett.20121183884110.1109/LAWP.2012.2207941
    [Google Scholar]
  38. MohamadzadeB. HashmiR.M. SimorangkirR.B.V.B. GharaeiR. Ur RehmanS. AbbasiQ.H. Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art.Sensors20191910231210.3390/s1910231231109158
    [Google Scholar]
  39. YangL. RidaA. VyasR. TentzerisM.M. RFID Tag and RF structures on a paper substrate using inkjet-printing technology.IEEE Trans. Microw. Theory Tech.200755122894290110.1109/TMTT.2007.909886
    [Google Scholar]
  40. (a RiheenM.A. SahaT.K. SekharP.K. Inkjet printing on PET substrate.J. Electrochem. Soc.2019166B3036B3039
    [Google Scholar]
  41. (b SahaT.K. KnausT.N. Investigation of printing properties on paper substrate.J. Electrochem. Soc.2018165B3163B3167
    [Google Scholar]
  42. RautN.C. Al-ShameryK. Inkjet printing metals on flexible materials for plastic and paper electronics.J. Mater. Chem. C Mater. Opt. Electron. Devices2018671618164110.1039/C7TC04804A
    [Google Scholar]
  43. HussainR. KhanM.U. SharawiM.S. An integrated dual MIMO antenna system with dual-function GND-plane frequency-agile antenna.IEEE Antennas Wirel. Propag. Lett.201817114214510.1109/LAWP.2017.2778182
    [Google Scholar]
  44. AbiramiM. RajasekarG. MEMS reconfigurable slotted microstrip patch antenna for cognitive radio application.2016 Online International Conference on Green Engineering and Technologies (IC-GET),Coimbatore, 2016, pp. 1-4.10.1109/GET.2016.7916695
    [Google Scholar]
  45. WuT. Switchable quad-band antennas for cognitive radio base station applications.IEEE Transac. Antennas Propagat.20105851468147610.1109/TAP.2010.2044472
    [Google Scholar]
  46. TummasP. A frequency reconfigurable antenna design for UWB applications.11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON),Nakhon Ratchasima, Thailand, 14-17 May, 2014.10.1109/ECTICon.2014.6839850
    [Google Scholar]
  47. TawkY. ChristodoulouC.G. A New Reconfigurable Antenna Design for Cognitive Radio.IEEE Antennas Wirel. Propag. Lett.200981378138110.1109/LAWP.2009.2039461
    [Google Scholar]
  48. TawkY. ChristodoulouC.G. A cellular automata reconfigurable microstrip antenna design.2009 IEEE Antennas and Propagation Society International Symposium,Charleston, SC, 2009, pp. 1-410.1109/APS.2009.5171548
    [Google Scholar]
  49. AndradeA. da and C. Reconfigurable textile-based ultra-wideband antenna for wearable applications.10th European Conference on Antennas and Propagation (EuCAP),Davos, Switzerland, 10-15 April, 2016.
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965254041240105095627
Loading
/content/journals/raeeng/10.2174/0123520965254041240105095627
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test