Skip to content
2000
image of Nanorobots: Trailblazing the Future of Pharmaceuticals Through Targeted Therapy and Disease Monitoring

Abstract

Introduction

This review explores the design principles, sensor mechanisms, and propulsion systems of nanorobots, highlighting their applications in targeted drug delivery, disease monitoring, and broader biomedical fields. The objective is to provide a comprehensive overview of how nanorobots transform pharmaceutical delivery systems and precision therapy.

Methodology

A structured literature search was conducted using electronic databases, including PubMed, Scopus, and Web of Science. Keywords such as Nanorobots, Nanorobot propulsion, Biosensors, Magnetically driven nanorobots, Electric field-driven nanorobots, Biomedical applications, and Enzyme-driven nanorobots were used. Articles published between 2010 and 2024 were considered. Inclusion criteria involved peer-reviewed articles focusing on nanorobot design, propulsion systems, sensor mechanisms, and clinical applications. Non-English articles and non-peer-reviewed content were excluded.

Results

A total of 212 relevant studies were initially identified through a comprehensive search across PubMed, Scopus, Web of Science, and Google Scholar. After applying inclusion and exclusion criteria, 94 studies were selected for final analysis, focusing on the integration of sensors, propulsion systems, and energy sources in nanorobots.

Discussion

The review revealed that nanorobots utilize advanced sensor systems (nanocantilevers and biosensors) for molecular recognition and site-specific targeting. These sensors detect biochemical and mechanical changes, aiding precise navigation. Powered by external forces (magnetic, electric, light, ultrasound) or internal biochemical energy (enzymatic or chemical reactions), propulsion mechanisms enable controlled movement and drug delivery. Nanorobots constructed from silicon, polymers, and piezoelectric compounds exhibit functional adaptability. Their applications span targeted drug delivery, oncology, neurosurgery, vascular medicine, and environmental remediation.

Conclusion

Nanorobots represent a trailblazing pharmaceutical innovation, offering highly specific, efficient, and minimally invasive drug delivery and disease monitoring capabilities. Their combination of biosensing and propulsion mechanisms enhances targeted delivery and clinical efficacy. Continued development in nanorobotic systems holds the potential to revolutionize clinical treatments and improve patient outcomes across multiple therapeutic domains.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878372947250731061921
2025-08-18
2025-11-16
Loading full text...

Full text loading...

References

  1. Farjadian F. Ghasemi A. Gohari O. Roointan A. Karimi M. Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 2019 14 1 93 126 10.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
  2. Gao Y. Shi Y. Wang L. Advances in mathematical models of the active targeting of tumor cells by functional nanoparticles. Comput. Methods Programs Biomed. 2020 184 105106 10.1016/j.cmpb.2019.105106 31670178
    [Google Scholar]
  3. Nakamura Y. Mochida A. Choyke P.L. Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 2016 27 10 2225 2238 10.1021/acs.bioconjchem.6b00437 27547843
    [Google Scholar]
  4. Chen X.Z. Jang B. Ahmed D. Small‐scale machines driven by external power sources. Adv. Mater. 2018 30 15 1705061 10.1002/adma.201705061 29443430
    [Google Scholar]
  5. Ma X. Sánchez S. Self-propelling micro-nanorobots: Challenges and future perspectives in nanomedicine. Nanomedicine 2017 12 12 1363 1367 10.2217/nnm‑2017‑0104 28524756
    [Google Scholar]
  6. Roche E.T. Horvath M.A. Wamala I. Soft robotic sleeve supports heart function. Sci. Transl. Med. 2017 9 373 eaaf3925 10.1126/scitranslmed.aaf3925 28100834
    [Google Scholar]
  7. Phan P.T. Thai M.T. Hoang T.T. Smart textiles using fluid-driven artificial muscle fibers. Sci. Rep. 2022 12 1 11067 10.1038/s41598‑022‑15369‑2 35773415
    [Google Scholar]
  8. Liu S. Liu Z. Lei H. Miao Y.B. Chen J. Programmable nanomodulators for precision therapy, engineering tumor metabolism to enhance therapeutic efficacy. Adv. Healthc. Mater. 2025 14 4 2403019 10.1002/adhm.202403019 39529548
    [Google Scholar]
  9. Moradi F. Hadi N. Bazargani A. Abdi F. Ghorbanian N. Aeromonas characteristics in Iran, Southwest Asia; a systematic review and meta-analysis on epidemiology, reservoirs and antibiotic resistance profile from aquatic environments to human society during 2000–2023. BMC Vet. Res. 2025 21 1 107 10.1186/s12917‑024‑04431‑y 40001054
    [Google Scholar]
  10. Fooladfar Z. Moradi F. Francisella and tularemia in western Asia, Iran: A systematic review. New Microbes New Infect. 2023 52 101092 10.1016/j.nmni.2023.101092 36816490
    [Google Scholar]
  11. Ahmad U. Faiyazuddin M. Smart nanobots: The future in nanomedicine and biotherapeutics. J. Nanomedine Biotherapeutic Discov. 2016 6 1 140 10.4172/2155‑983X.1000e140
    [Google Scholar]
  12. Javaid M. Haleem A. Singh R.P. Rab S. Suman R. Exploring the potential of nanosensors: A brief overview. Sens Int 2021 2 100130 10.1016/j.sintl.2021.100130
    [Google Scholar]
  13. Hong T. Zhou W. Tan S. Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. Nanoscale Horiz. 2023 8 11 1485 1508 10.1039/D3NH00133D 37656443
    [Google Scholar]
  14. Kim T.S. Lee J.H. Yoon D.S. Micromanufacturing and nanotechnology: Nanomechanical cantilever for biological sensors. In: Mahalik NP, Ed Berlin, Heidelberg Springer 2006 299 10.1007/3‑540‑29339‑6_13
    [Google Scholar]
  15. Wang J. Xu B. Zhu Y. Zhao J. Microcantilever sensors for biochemical detection. J. Semicond. 2023 44 2 023105 10.1088/1674‑4926/44/2/023105
    [Google Scholar]
  16. Basu A.K. Chapter 3 Recent Progress in Cantilever-Based Sensors: An Overview of Application and Fabrication Techniques. Melville, New York AIP Publishing Books 2023 10.1063/9780735424395_003
    [Google Scholar]
  17. Weldegiorgish H.M. Enhancing Sensing in Nanoscale: Investigation of Smart Nanomechanical Cantilever Array. Uppsala UniversityLibrary: Digitala Vetenskapliga Arkivet 2022 69
    [Google Scholar]
  18. Álvarez M. Tamayo J. Plaza J.A. Zinoviev K. Domínguez C. Lechuga L.M. Dimension dependence of the thermomechanical noise of microcantilevers. J. Appl. Phys. 2006 99 2 024910 10.1063/1.2164537
    [Google Scholar]
  19. Soltani N. Development of nanomaterial-modified electrochemical sensors for the analysis of nucleic acids. Thesis, University of Toronto(Canada) ProQuest Dissertations 2023
    [Google Scholar]
  20. Paredes O. Valeska C. Study of the Interaction of Peroxynitrite with Oligonucleotides of Known Sequence Using Electrochemical Biosensors. Chile Universidad de Chile 2008 1 40
    [Google Scholar]
  21. Chomoucka J. Drbohlavova J. Masarik M. Nanotechnologies for society. New designs and applications of nanosensors and nanobiosensors in medicine and environmental analysis. Int. J. Nanotechnol. 2012 9 8-9 746 783 10.1504/IJNT.2012.046752
    [Google Scholar]
  22. Chałupniak A. Morales-Narváez E. Merkoçi A. Micro and nanomotors in diagnostics. Adv. Drug Deliv. Rev. 2015 95 104 116 10.1016/j.addr.2015.09.004 26408790
    [Google Scholar]
  23. Kapral R. Nanomotors propelled by chemical reactions. In: Mikhailov Engineering of chemical complexity World Scientific Publishing Co. China Springer 2012 101 124 10.1142/9789814390460_0005
    [Google Scholar]
  24. Vartholomeos P. Fruchard M. Ferreira A. Mavroidis C. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng. 2011 13 1 157 184 10.1146/annurev‑bioeng‑071910‑124724 21529162
    [Google Scholar]
  25. Sánchez S. Soler L. Katuri J. Chemically powered micro- and nanomotors. Angew. Chem. Int. Ed. 2015 54 5 1414 1444 10.1002/anie.201406096 25504117
    [Google Scholar]
  26. Karatzas I. Shreve S.E. Brownian motion and stochastic calculus. Germany Springer-Verlag 1998 10.1007/978‑1‑4612‑0949‑2
    [Google Scholar]
  27. Martel S. Mohammadi M. Felfoul O. Zhao Lu. Pouponneau P. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int. J. Robot. Res. 2009 28 4 571 582 10.1177/0278364908100924 19890435
    [Google Scholar]
  28. Bachand G.D. Montemagno C.D. Constructing organic/inorganic NEMS devices powered by biomolecular motors. Biomed. Microdevices 2000 2 3 179 184 10.1023/A:1009924327649
    [Google Scholar]
  29. Wheat P.M. Marine N.A. Moran J.L. Posner J.D. Rapid fabrication of bimetallic spherical motors. Langmuir 2010 26 16 13052 13055 10.1021/la102218w 20695541
    [Google Scholar]
  30. Parmar J. Ma X. Katuri J. Nano and micro architectures for self-propelled motors. Sci. Technol. Adv. Mater. 2015 16 1 014802 10.1088/1468‑6996/16/1/014802 27877745
    [Google Scholar]
  31. Córdova-Figueroa U.M. Brady J.F. Osmotic propulsion: The osmotic motor. Phys. Rev. Lett. 2008 100 15 158303 10.1103/PhysRevLett.100.158303 18518161
    [Google Scholar]
  32. Gao W. Wang J. Synthetic micro/nanomotors in drug delivery. Nanoscale 2014 6 18 10486 10494 10.1039/C4NR03124E 25096021
    [Google Scholar]
  33. Chen X.Z. Hoop M. Mushtaq F. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 2017 9 37 48 10.1016/j.apmt.2017.04.006
    [Google Scholar]
  34. Guo J. Gallegos J.J. Tom A.R. Fan D. Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 2018 12 2 1179 1187 10.1021/acsnano.7b06824 29303550
    [Google Scholar]
  35. Wang J. Xiong Z. Zheng J. Zhan X. Tang J. Light-driven micro/nanomotor for promising biomedical tools: Principle, challenge, and prospect. Acc. Chem. Res. 2018 51 9 1957 1965 10.1021/acs.accounts.8b00254 30179455
    [Google Scholar]
  36. Gao W. Sattayasamitsathit S. Manesh K.M. Weihs D. Wang J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 2010 132 41 14403 14405 10.1021/ja1072349 20879711
    [Google Scholar]
  37. Sokolov I.L. Cherkasov V.R. Tregubov A.A. Buiucli S.R. Nikitin M.P. Smart materials on the way to theranostic nanorobots: Molecular machines and nanomotors, advanced biosensors, and intelligent vehicles for drug delivery. Biochim. Biophys. Acta, Gen. Subj. 2017 1861 6 1530 1544 10.1016/j.bbagen.2017.01.027 28130158
    [Google Scholar]
  38. Kagan D. Laocharoensuk R. Zimmerman M. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 2010 6 23 2741 2747 10.1002/smll.201001257 20979242
    [Google Scholar]
  39. Zhou H. Mayorga-Martinez C.C. Pané S. Zhang L. Pumera M. Magnetically driven micro and nanorobots. Chem. Rev. 2021 121 8 4999 5041 10.1021/acs.chemrev.0c01234 33787235
    [Google Scholar]
  40. Alcanzare M.M. Karttunen M. Ala-Nissila T. Propulsion and controlled steering of magnetic nanohelices. Soft Matter 2019 15 7 1684 1691 10.1039/C8SM00037A 30681686
    [Google Scholar]
  41. Qiu F. Fujita S. Mhanna R. Zhang L. Simona B.R. Nelson B.J. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 2015 25 11 1666 1671 10.1002/adfm.201403891
    [Google Scholar]
  42. Pal M. Somalwar N. Singh A. Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 2018 30 22 1800429 10.1002/adma.201800429 29635828
    [Google Scholar]
  43. Jang B. Gutman E. Stucki N. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 2015 15 7 4829 4833 10.1021/acs.nanolett.5b01981 26029795
    [Google Scholar]
  44. Li T. Li J. Zhang H. Magnetically propelled fish-like nanoswimmers. Small 2016 12 44 6098 6105 10.1002/smll.201601846 27600373
    [Google Scholar]
  45. Gutman E. Or Y. Optimizing an undulating magnetic microswimmer for cargo towing. Phys. Rev. E 2016 93 6 063105 10.1103/PhysRevE.93.063105 27415356
    [Google Scholar]
  46. Lu Y. Chen W. Ke W. Wu S. Nickel-based (Ni–Cr and Ni–Cr–Be) alloys used in dental restorations may be a potential cause for immune-mediated hypersensitivity. Med. Hypotheses 2009 73 5 716 717 10.1016/j.mehy.2009.04.041 19482441
    [Google Scholar]
  47. Li H. Wen T. Wang T. In vivo metabolic response upon exposure to gold nanorod core/silver shell nanostructures: Modulation of inflammation and upregulation of dopamine. Int. J. Mol. Sci. 2020 21 2 384 10.3390/ijms21020384 31936206
    [Google Scholar]
  48. Demirörs A.F. Akan M.T. Poloni E. Studart A.R. Active cargo transport with Janus colloidal shuttles using electric and magnetic fields. Soft Matter 2018 14 23 4741 4749 10.1039/C8SM00513C 29799053
    [Google Scholar]
  49. Rahman M.M. Chowdhury M.M. Alam M.K. Rotating-electric-field-induced carbon-nanotube-based nanomotor in water: A molecular dynamics study. Small 2017 13 19 1603978 10.1002/smll.201603978 28371324
    [Google Scholar]
  50. Kong L. Mayorga-Martinez C.C. Guan J. Pumera M. Photocatalytic micromotors activated by UV to visible light for environmental remediation, micropumps, reversible assembly, transportation, and biomimicry. Small 2020 16 27 1903179 10.1002/smll.201903179 31402632
    [Google Scholar]
  51. Wang Q. Dong R. Wang C. Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion. ACS Appl. Mater. Interfaces 2019 11 6 6201 6207 10.1021/acsami.8b17563 30672287
    [Google Scholar]
  52. Dong R. Zhang Q. Gao W. Pei A. Ren B. Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 2016 10 1 839 844 10.1021/acsnano.5b05940 26592971
    [Google Scholar]
  53. Lu X. Shen H. Zhao K. Wang Z. Peng H. Liu W. Micro-/nanomachines driven by ultrasonic power sources. Chem. Asian J. 2019 14 14 2406 2416 10.1002/asia.201900281 31042016
    [Google Scholar]
  54. Li J. Li T. Xu T. Magneto-acoustic hybrid nanomotor. Nano Lett. 2015 15 7 4814 4821 10.1021/acs.nanolett.5b01945 26077325
    [Google Scholar]
  55. Garcia-Gradilla V. Orozco J. Sattayasamitsathit S. Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications. ACS Nano 2013 7 10 9232 9240 10.1021/nn403851v 23971861
    [Google Scholar]
  56. Esteban-Fernández de Ávila B. Angell C. Soto F. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 2016 10 5 4997 5005 10.1021/acsnano.6b01415 27022755
    [Google Scholar]
  57. Basta G. Venneri L. Lazzerini G. In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound. Cardiovasc. Res. 2003 58 1 156 161 10.1016/S0008‑6363(02)00665‑X 12667957
    [Google Scholar]
  58. Patiño T. Arqué X. Mestre R. Palacios L. Sánchez S. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Acc. Chem. Res. 2018 51 11 2662 2671 10.1021/acs.accounts.8b00288 30346732
    [Google Scholar]
  59. Hortelão A.C. Patiño T. Perez-Jiménez A. Blanco À. Sánchez S. Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 2018 28 25 1705086 10.1002/adfm.201705086
    [Google Scholar]
  60. Moradi F. Akbari M. Vakili-Ghartavol R. Ostovari M. Hadi N. Molecular characterization of superbugs K. pneumoniae harboring extended-spectrum β-lactamase (ESBL) and carbapenemase resistance genes among hospitalized patients in southwestern Iran, Western Asia. Heliyon 2024 10 17 36858 10.1016/j.heliyon.2024.e36858 39263100
    [Google Scholar]
  61. Zhang H. Li D. Ren H. A bioinspired virus‐like mechano–bactericidal nanomotor for ocular multidrug‐resistant bacterial infection treatment. Adv. Mater. 2025 37 8 2408221 10.1002/adma.202408221 39806835
    [Google Scholar]
  62. Liu L. Li S. Yang K. Drug-free antimicrobial nanomotor for precise treatment of multidrug-resistant bacterial infections. Nano Lett. 2023 23 9 3929 3938 10.1021/acs.nanolett.3c00632 37129144
    [Google Scholar]
  63. Batool N. Yoon S. Imdad S. An antibacterial nanorobotic approach for the specific targeting and removal of multiple drug‐resistant Staphylococcus aureus. Small 2021 17 20 2100257 10.1002/smll.202100257 33838013
    [Google Scholar]
  64. Zheng J. Deng Y. Zhao S. Cascade-driven nanomotors promote diabetic wound healing by eradicating MRSA biofilm infection. Chem. Eng. J. 2024 481 148790 10.1016/j.cej.2024.148790
    [Google Scholar]
  65. Zhang Z. Wang L. Chan T.K.F. Micro‐/Nanorobots in antimicrobial applications: Recent progress, challenges, and opportunities. Adv. Healthc. Mater. 2022 11 6 2101991 10.1002/adhm.202101991 34907671
    [Google Scholar]
  66. Blakemore R. Magnetotactic bacteria. Science 1975 190 4212 377 379 10.1126/science.170679 170679
    [Google Scholar]
  67. Lefèvre C.T. Schmidt M.L. Viloria N. Trubitsyn D. Schüler D. Bazylinski D.A. Insight into the evolution of magnetotaxis in Magnetospirillum spp., based on mam gene phylogeny. Appl. Environ. Microbiol. 2012 78 20 7238 7248 10.1128/AEM.01951‑12 22865076
    [Google Scholar]
  68. Vijay K.V. Linfeng C. Jining X. Nanomedicine: Design and applications of magnetic nanomaterials. Nanosen Nanosys Wiley 2008 3 356 367
    [Google Scholar]
  69. Komeili A. Li Z. Newman D.K. Jensen G.J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 2006 311 5758 242 245 10.1126/science.1123231 16373532
    [Google Scholar]
  70. Martel S. Targeted delivery of therapeutic agents with controlled bacterial carriers in the human blood vessels. US Patent 2006 417 -75
    [Google Scholar]
  71. Rosen J. Hannaford B. Satava R.M. Surgical robotics: Systems applications and visions. Cham: 257-70 2011 10.1007/978‑1‑4419‑1126‑1
    [Google Scholar]
  72. Leary S.P. Liu C.Y. Apuzzo M.L.J. Toward the emergence of nanoneurosurgery: Part II--nanomedicine: Diagnostics and imaging at the nanoscale level. Neurosurgery 2006 58 5 805 823 10.1227/01.NEU.0000216793.45952.ED 16639314
    [Google Scholar]
  73. Chen B.K. Knight A.M. de Ruiter G.C.W. Axon regeneration through scaffold into distal spinal cord after transection. J. Neurotrauma 2009 26 10 1759 1771 10.1089/neu.2008.0610 19413501
    [Google Scholar]
  74. Sowers A.E. Membrane electrofusion: A paradigm for study of membrane fusion mechanisms. Methods Enzymol. 1993 220 196 211 10.1016/0076‑6879(93)20083‑F
    [Google Scholar]
  75. Whittemore S.R. Snyder E.Y. Physiological relevance and functional potential of central nervous system-derived cell lines. Mol. Neurobiol. 1996 12 1 13 38 10.1007/BF02740745 8732538
    [Google Scholar]
  76. Steubing R.W. Cheng S. Wright W.H. Numajiri Y. Berns M.W. Laser induced cell fusion in combination with optical tweezers: The laser cell fusion trap. Cytometry 1991 12 6 505 510 10.1002/cyto.990120607 1764975
    [Google Scholar]
  77. Broderick J.P. Brott T.G. Duldner J.E. Tomsick T. Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994 25 7 1342 1347 10.1161/01.STR.25.7.1342 8023347
    [Google Scholar]
  78. Saadeh Y. Vyas D. Nanorobotic applications in medicine: Current proposals and designs. Am. J. Robot. Surg. 2014 1 1 4 11 10.1166/ajrs.2014.1010 26361635
    [Google Scholar]
  79. Wang J. Zhou Q. Dong Q. Nanoarchitectonic Engineering of Thermal‐Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy. Small 2024 20 36 2400408 10.1002/smll.202400408 38709208
    [Google Scholar]
  80. Popovtzer R. Reuveni, Motiei, Romman, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: An in vivo study. Int. J. Nanomedicine 2011 6 2859 2864 10.2147/IJN.S25446 22131831
    [Google Scholar]
  81. Hu C.M.J. Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012 83 8 1104 1111 10.1016/j.bcp.2012.01.008 22285912
    [Google Scholar]
  82. Grobmyer S.R. Zhou G. Gutwein L.G. Iwakuma N. Sharma P. Hochwald S.N. Nanoparticle delivery for metastatic breast cancer. Nanomedicine 2012 8 1 S21 S30 10.1016/j.nano.2012.05.011 22640908
    [Google Scholar]
  83. Douglas S.M. Bachelet I. Church G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 2012 335 6070 831 834 10.1126/science.1214081 22344439
    [Google Scholar]
  84. Dietz H. Douglas S.M. Shih W.M. Folding DNA into twisted and curved nanoscale shapes. Science 2009 325 5941 725 730 10.1126/science.1174251 19661424
    [Google Scholar]
  85. Seyedi S.M.R. Asoodeh A. Darroudi M. The human immune cell simulated anti-breast cancer nanorobot: The efficient, traceable, and dirigible anticancer bio-bot. Cancer Nanotechnol. 2022 13 1 44 10.1186/s12645‑022‑00150‑x
    [Google Scholar]
  86. Hogg T. Freitas R.A. Chemical power for microscopic robots in capillaries. Nanomedicine 2010 6 2 298 317 10.1016/j.nano.2009.10.002 19836466
    [Google Scholar]
  87. Freitas R.A. Pharmacytes: An ideal vehicle for targeted drug delivery. J. Nanosci. Nanotechnol. 2006 6 9 2769 2775 10.1166/jnn.2006.413 17048481
    [Google Scholar]
  88. Kong X. Gao P. Wang J. Fang Y. Hwang K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023 16 1 74 10.1186/s13045‑023‑01463‑z 37452423
    [Google Scholar]
  89. Li L. Yu Z. Liu J. Swarming responsive photonic nanorobots for motile-targeting microenvironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 2023 15 1 141 10.1007/s40820‑023‑01095‑5 37247162
    [Google Scholar]
  90. Cavalcanti A. Shirinzadeh B. Murphy D. Smith J.A. Nanorobots for laparoscopic cancer surgery. 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007) 2007 10.1109/ICIS.2007.138
    [Google Scholar]
  91. Binsalamah Z.M. Paul A. Prakash S. Shum-Tim D. Nanomedicine in cardiovascular therapy: Recent advancements. Expert Rev. Cardiovasc. Ther. 2012 10 6 805 815 10.1586/erc.12.41 22894635
    [Google Scholar]
  92. Wickline S.A. Neubauer A.M. Winter P. Caruthers S. Lanza G. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler. Thromb. Vasc. Biol. 2006 26 3 435 441 10.1161/01.ATV.0000201069.47550.8b 16373609
    [Google Scholar]
  93. Cavalcanti A. Rosen L. Shirinzadeh B. Rosenfeld M. Paulo S. Aviv T. Nanorobot for treatment of patients with artery occlusion. Proceedings of Virtual Concept. Cancun, Mexico Helikon Publishing 2006
    [Google Scholar]
  94. Cavalcanti A. Shirinzadeh B. Fukuda T. Ikeda S. Hardware architecture for nanorobot application in cerebral aneurysm. 7th IEEE Conference on Nanotechnology (IEEE NANO) 2007 10.1109/NANO.2007.4601179
    [Google Scholar]
  95. Wang B. Wang Q. Chan K.F. tPA-anchored nanorobots for in vivo arterial recanalization at submillimeter-scale segments. Sci. Adv. 2024 10 5 eadk8970 10.1126/sciadv.adk8970 38295172
    [Google Scholar]
  96. Sivasankar M. Durairaj R. Brief review on nano robots in bio medical applications. Adv Robot Automat 2012 1 1 2 10.4172/2168‑9695.1000101
    [Google Scholar]
  97. Bogunia-Kubik K. Sugisaka M. From molecular biology to nanotechnology and nanomedicine. Biosystems 2002 65 2-3 123 138 10.1016/S0303‑2647(02)00010‑2 12069723
    [Google Scholar]
  98. Frcitas R.A. Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artif. Cells Blood Substit. Immobil. Biotechnol. 1998 26 4 411 430 10.3109/10731199809117682 9663339
    [Google Scholar]
  99. Hassouna H. Blood stasis, thrombosis and fibrinolysis. Hematol. Oncol. Clin. North Am. 2000 14 2 xvii xii 10.1016/S0889‑8588(05)70134‑9 10806556
    [Google Scholar]
  100. Patole V. Tupe A. Tanpure S. Swami R. Vitkare V. Jadhav P. Nanorobotic artificial blood components and its therapeutic applications: A minireview. Ir. J. Med. Sci. 2024 193 1641 1650 10.1007/s11845‑024‑03617‑5
    [Google Scholar]
  101. Schreiber G.B. Busch M.P. Kleinman S.H. Korelitz J.J. The risk of transfusion-transmitted viral infections. The Retrovirus Epidemiology Donor Study. N. Engl. J. Med. 1996 334 26 1685 1690 10.1056/NEJM199606273342601 8637512
    [Google Scholar]
  102. Freitas R.A. Microbivores: Artificial mechanical phagocytes using digest and discharge protocol. J. Evol. Technol. 2005 14 1 54 106
    [Google Scholar]
  103. Rangi A.S.C.N. Rangi N. A research on future scenario in the field of role of nanorobotics a device for diagnosis and treatment. Global Acad J Med Sci 2023 5 2 85 95 10.36348/gajms.2023.v05i02.004
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878372947250731061921
Loading
/content/journals/raddf/10.2174/0126673878372947250731061921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test