Skip to content
2000
image of Advancements in Transdermal Drug Delivery: Nanoemulgels, Essential Oils, and Innovations in Colchicine Delivery for Improved Anti-Inflammatory Effects and Permeability Enhancement

Abstract

Introduction

Transdermal drug delivery (TDD) systems offer a patient-friendly alternative to oral and injectable routes by enhancing bioavailability and bypassing hepatic first-pass metabolism. Nanoemulgels, which integrate nanoemulsions with gel matrices, provide improved drug solubilization, stability, and skin permeation. Incorporating both herbal components, such as oil, and synthetic permeation enhancers, presents a synergistic strategy for enhancing the efficacy of anti-inflammatory agents like colchicine.

Methods

This review critically evaluates the formulation, pharmacological benefits, and permeation-enhancing strategies of nanoemulgels containing colchicine. Literature was selected from major scientific databases, emphasizing studies that investigated the combined effects of herbal and synthetic excipients on drug delivery and therapeutic performance.

Results

Evidence indicates that nanoemulgels incorporating oil and pharmaceutical-grade permeation enhancers significantly improve colchicine's dermal absorption, sustain drug release, and reduce systemic toxicity. The synergistic interaction between natural bioactives and synthetic agents enhances both anti-inflammatory activity and skin permeability.

Discussion

The dual role of as an anti-inflammatory and natural permeation enhancer, when paired with synthetic excipients, demonstrates superior pharmacodynamic outcomes. This integrated approach enhances the therapeutic index of colchicine while minimizing adverse effects.

Conclusion

Combining herbal oils like with pharmaceutical excipients in nanoemulgel systems represents a robust strategy for transdermal delivery. This platform improves drug penetration, stabilizes formulation performance, and amplifies therapeutic efficacy, offering a transformative alternative for chronic inflammatory conditions such as gout.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878383010250911124710
2025-09-16
2025-11-17
Loading full text...

Full text loading...

References

  1. Jha H. Sahu A. Arora R. Anti-neoplastic transdermal patches: A novel approach for targeted drug delivery using nanocarriers in cancer therapy. Int. J. Adv. Sci. Res. 2022
    [Google Scholar]
  2. Cheng T. Tai Z. Shen M. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system. Pharmaceutics 2023 15 8 2165 10.3390/pharmaceutics15082165 37631379
    [Google Scholar]
  3. Kumar Jyothika L.S. Abdul Ahad H. Haranath C. Kousar S. Pal Gowd H.D. Halima Sadiya S. Types of transdermal drug delivery systems: A literature report of the past decade. Res. J. Pharm. Dos. Forms Technol. 2022 157 162 10.52711/0975‑4377.2022.00025
    [Google Scholar]
  4. Hafeez A. Singh J. Maurya A. Rana L. Jain U. Recent advances in transdermal drug delivery system (TDDS): An overview. J Sci Innov Res 2013
    [Google Scholar]
  5. Wokovich A. Prodduturi S. Doub W. Hussain A. Buhse L. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur. J. Pharm. Biopharm. 2006 64 1 1 8 10.1016/j.ejpb.2006.03.009 16797171
    [Google Scholar]
  6. Pandey P.C. Shukla S. Skoog S.A. Boehm R.D. Narayan R.J. Current advancements in transdermal biosensing and targeted drug delivery. Sensors 2019 19 5 1028 10.3390/s19051028 30823435
    [Google Scholar]
  7. Le Z. Yu J. Quek Y.J. Design principles of microneedles for drug delivery and sampling applications. Mater. Today 2023 63 137 169 10.1016/j.mattod.2022.10.025
    [Google Scholar]
  8. Bhandari S. Ethosomes: A novel vesicular innovation to enhance transdermal delivery of drugs. Res. J. Pharm. Dos. Forms Technol. 2022 72 78 10.52711/0975‑4377.2022.00012
    [Google Scholar]
  9. Jayaprakash R. Hameed J. Anupriya A. An overview of transdermal delivery system. Asian J. Pharm. Clin. Res. 2017 10 10 36 10.22159/ajpcr.2017.v10i10.19909
    [Google Scholar]
  10. Xue Y. Chen C. Mi X. Transdermal Drug delivery system: Current status and clinical application of microneedles. ACS Mater. Lett. 2024 6 3 801 821 10.1021/acsmaterialslett.3c01317
    [Google Scholar]
  11. Saini N. Bajaj A. Recent trend on transdermal drug delivery system and advancements in drug delivery through skin. Int J Res Pharm Biosci 2014
    [Google Scholar]
  12. Parhi R. Swain S. Transdermal evaporation drug delivery system: Concept to commercial products. Adv. Pharm. Bull. 2018 8 4 535 550 10.15171/apb.2018.063 30607327
    [Google Scholar]
  13. Ress A.P. de Oliveira Moraes R. Salerno M.S. Test-Driven development as an innovation value chain. J. Technol. Manag. Innov. 2013 8 19 20 10.4067/S0718‑27242013000300010
    [Google Scholar]
  14. Parsons D. Lal R. Lange M. Test driven development: Advancing knowledge by conjecture and confirmation. Futur Internet 2011
    [Google Scholar]
  15. Liang T. Chen L. Huang M. RLTD: A Reinforcement Learning-based Truth Data Discovery scheme for decision support systems under sustainable environments. Appl. Soft Comput. 2023 143 110369 10.1016/j.asoc.2023.110369
    [Google Scholar]
  16. Chenel V. Boissy P. Cloarec J.P. Patenaude J. Analyses of acceptability judgments made toward the use of nanocarrier-based targeted drug delivery: Interviews with researchers and research trainees in the field of new technologies. Nanoethics 2015 9 3 199 215 10.1007/s11569‑015‑0241‑2 26594255
    [Google Scholar]
  17. Lee J.A. Berg E.L. Neoclassic drug discovery: The case for lead generation using phenotypic and functional approaches. SLAS Discov. 2013 18 10 1143 1155 10.1177/1087057113506118 24080259
    [Google Scholar]
  18. Nasrollahi S.A. Taghibiglou C. Azizi E. Farboud E.S. Cell-penetrating peptides as a novel transdermal drug delivery system. Chem. Biol. Drug Des. 2012 80 5 639 646 10.1111/cbdd.12008 22846609
    [Google Scholar]
  19. Lade S. Kosalge S. Shaikh S. Transdermal drug delivery system: A tool for novel drug delivery system: An overview. World J. Pharm. Res. 2014
    [Google Scholar]
  20. Sharma G. Alle M. Chakraborty C. Kim J.C. Strategies for transdermal drug delivery against bone disorders: A preclinical and clinical update. J. Control. Release 2021 336 375 395 10.1016/j.jconrel.2021.06.035 34175368
    [Google Scholar]
  21. Yadav V Altaf Bhai SM Transdermal drug delivery: A technical writeup J Pharm Sci Innov 2012
    [Google Scholar]
  22. Chandra Nandy B. Hardainiyan S. Dut Jasuja N. Vyas P. Raghav P.K. A review on the recent innovations in transdermal drug delivery for herbal therapy. J Biomed Pharm Res 2014
    [Google Scholar]
  23. Tiwary A. Sapra B. Jain S. Innovations in transdermal drug delivery: Formulations and techniques. Recent Pat. Drug Deliv. Formul. 2008 19075872
    [Google Scholar]
  24. Chhabaria S. Namdeo A. Kheri R. Gaurav S. Singhai A. Current status and future innovations in transdermal drug delivery. Int. J. Pharm. Sci. Res. 2012
    [Google Scholar]
  25. Akhtar N. Microneedles: An innovative approach to transdermal delivery- A review. Int. J. Pharm. Pharm. Sci. 2014
    [Google Scholar]
  26. Okpalaku O. Uronnachi E. Okoye E. Umeyor C. Nwakile C. Okeke T. Evaluating some essential oils-based and coconut oil nanoemulgels for the management of rheumatoid arthritis. Lett Appl NanoBioScience 2023 12 3 75 10.33263/LIANBS123.075
    [Google Scholar]
  27. Nining N. Amalia A. Zahrok F. Response surface methodology for optimization of turmeric essential oil-loaded nanoemulgel. J Res Pharm 2023 10.29228/jrp.436
    [Google Scholar]
  28. Amin S. Mir S.R. Kohli K. Ali B. Ali M. A study of the chemical composition of black cumin oil and its effect on penetration enhancement from transdermal formulations. Nat. Prod. Res. 2010 24 12 1151 1157 10.1080/14786410902940909 20582810
    [Google Scholar]
  29. Sajid Jamal QM Ali B Mir S Shams S Al-Wabel N Kamal M n silico analysis for predicting fatty acids of black cumin oil as inhibitors of P-glycoprotein Pharmacogn Mag 2015 11 44 606.(Suppl. 4) 10.4103/0973‑1296.172969 27013802
    [Google Scholar]
  30. Abdel-Mottaleb M.M.A. Bassand C. Penetration enhancer containing vesicles (PEVs) as carriers for enhancing the dermal deposition of thymoquinone. Int. J. Pharm. Pharm. Res. 2016
    [Google Scholar]
  31. Panyajai P. Chueahongthong F. Viriyaadhammaa N. Anticancer activity of Zingiber ottensii essential oil and its nanoformulations. PLoS One 2022 17 1 0262335 10.1371/journal.pone.0262335 35073347
    [Google Scholar]
  32. Ting T.C. Abdullah N.H. Ramle S.F.M. Sofi A.Z.M. Zaudin N.A.C. Development of Piper betle nanoemulgel formulation for effective droplet size reduction and excellent stability. AIP Conf Proc 2022 060017 0078521 10.1063/5.0078521
    [Google Scholar]
  33. Santos J. Alfaro-Rodríguez M.C. Vega L. Muñoz J. Relationship between HLB number and predominant destabilization process in microfluidized nanoemulsions formulated with lemon essential oil. Appl. Sci. 2023 13 8 5208 10.3390/app13085208
    [Google Scholar]
  34. Gerber M. Oosthuysen E. van Jaarsveld J.R. Shahzad Y. du Plessis J. Grapeseed oil nanoemulsions and nanoemulgels for transdermal delivery of a series of statins. J. Drug Deliv. Sci. Technol. 2023 88 104900 10.1016/j.jddst.2023.104900
    [Google Scholar]
  35. Abdallah M.H. Abu Lila A.S. El-Nahas H.M. Ibrahim T.M. Optimization of potential nanoemulgels for boosting transdermal glimepiride delivery and upgrading its anti-diabetic activity. Gels 2023 9 6 494 10.3390/gels9060494 37367164
    [Google Scholar]
  36. Sghier K. Mur M. Veiga F. Paiva-Santos A.C. Pires P.C. Novel therapeutic hybrid systems using hydrogels and nanotechnology: A focus on nanoemulgels for the treatment of skin diseases. Gels 2024 10 1 45 10.3390/gels10010045 38247768
    [Google Scholar]
  37. Shafiq M. Khan B.A. Rashid S.A. Biodegradable polymeric pharmaceutical nanoemulgel coloaded with eucalyptol‐lornoxicam: Fabrication and characterizations for possible better pain management. BioMed Res. Int. 2023 2023 1 4227242 10.1155/2023/4227242
    [Google Scholar]
  38. Firmansyah F. Muhtadi W.K. Indriani S. Development of novel curcumin nanoemulgel: Optimisation, characterisation, and ex vivo permeation. Pharm. Educ. 2022 22 2 98 103 10.46542/pe.2022.222.98103
    [Google Scholar]
  39. Sharma P. Tailang M. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. Futur J Pharm Sci 2020 10.1186/s43094‑020‑00035‑z
    [Google Scholar]
  40. Mandal S. Vishvakarma P. Nanoemulgel: A smarter topical lipidic emulsion-based nanocarrier. Indian J Pharm Educ Res 2023 57 3s s481 s498 10.5530/ijper.57.3s.56
    [Google Scholar]
  41. Che Zain M.S. Shaari K. Lee S.Y. Fakurazi S. Development and evaluation of hydrogel-thickened nanoemulsion containing orientin, isoorientin, vitexin and isovitexin as an antioxidant wound dressing. J Clust Sci 2024 10.1007/s10876‑023‑02504‑w
    [Google Scholar]
  42. Eid A.M. Istateyeh I. Salhi N. Istateyeh T. Antibacterial activity of fusidic acid and sodium fusidate nanoparticles incorporated in pine oil nanoemulgel. Int. J. Nanomedicine 2019 14 9411 9421 10.2147/IJN.S229557 31819440
    [Google Scholar]
  43. Maleškić Kapo S. Rakanović-Todić M. Burnazović-Ristić L. Analgesic and anti-inflammatory effects of diclofenac and ketoprofen patches in two different rat models of acute inflammation. J. King Saud Univ. Sci. 2023 35 1 102394 10.1016/j.jksus.2022.102394
    [Google Scholar]
  44. Espinosa-Cano E. Aguilar M.R. Portilla Y. Barber D.F. San Román J. Anti-inflammatory polymeric nanoparticles based on ketoprofen and dexamethasone. Pharmaceutics 2020 12 8 723 10.3390/pharmaceutics12080723 32751993
    [Google Scholar]
  45. Giraudel J.M. Gruet P. Alexander D.G. Seewald W. King J.N. Evaluation of orally administered robenacoxib versus ketoprofen for treatment of acute pain and inflammation associated with musculoskeletal disorders in cats. Am. J. Vet. Res. 2010 71 7 710 719 10.2460/ajvr.71.7.710 20594071
    [Google Scholar]
  46. De BOEVER S Neirinckx EA Meyer E Pharmacodynamics of tepoxalin, sodium-salicylate and ketoprofen in an intravenous lipopolysaccharide inflammation model in broiler chickens. J. Vet. Pharmacol. Ther. 2010 33 6 564 572 10.1111/j.1365‑2885.2010.01184.x 21062309
    [Google Scholar]
  47. Banat H. Csóka I. Paróczai D. Burian K. Farkas Á. Ambrus R. A novel combined dry powder inhaler comprising nanosized ketoprofen-embedded mannitol-coated microparticles for pulmonary inflammations: Development, in vitro-in silico characterization, and cell line evaluation. Pharmaceuticals 2024 17 1 75 10.3390/ph17010075 38256908
    [Google Scholar]
  48. Pachis K. Blazaki S. Tzatzarakis M. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation. Eur. J. Pharm. Sci. 2017 109 324 333 10.1016/j.ejps.2017.08.028 28843864
    [Google Scholar]
  49. Fang G. Wang Q. Yang X. Qian Y. Zhang G. Tang B. γ-Cyclodextrin-based polypseudorotaxane hydrogels for ophthalmic delivery of flurbiprofen to treat anterior uveitis. Carbohydr. Polym. 2022 277 118889 10.1016/j.carbpol.2021.118889 34893291
    [Google Scholar]
  50. Yu G. Nanomaterials for treating ocular diseases. In: Methods in Pharmacology and Toxicology. New York, NY Humana Press 2016 10.1007/978‑1‑4939‑3121‑7_19
    [Google Scholar]
  51. Baskoro Sanaji J. Sarah Krismala M. Rosa Liananda F. Pengaruh konsentrasi tween 80 sebagai surfaktan terhadap karakteristik fisik sediaan nanoemulgel ibuprofen the effect of tween 80 concentration as a surfactant on nanoemulgel Ibuprofen’s physical characteristics. J Med Sci 2019
    [Google Scholar]
  52. Sanaji J.B. Krismala M.S. Liananda F.R. The effect of tween 80 concentration as a surfactant on the physical characteristics of ibuprofen nanoemulgel preparations. J Med Sci 2019
    [Google Scholar]
  53. Wang X. Shi H. Huang S. Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction. Biomaterials 2023 302 122364 10.1016/j.biomaterials.2023.122364 37883909
    [Google Scholar]
  54. Chen Y. Shi J. Zhang Y. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J. Mater. Chem. B Mater. Biol. Med. 2020 8 5 980 992 10.1039/C9TB02523E 31930242
    [Google Scholar]
  55. Harmon KA Lane BA Boone RE Therapeutic engineered hydrogel coatings attenuate the foreign body response in submuscular implants. Ann Plast Surg 2018 80 6S S410 7 10.1097/SAP.0000000000001347 29746273
    [Google Scholar]
  56. Glasmacher B. Evertz F. Bernemann I. Sun H. Pogozhikh D. Spindler R. New cryopreservation strategies : A view from biothermal and biomedical process technology. 7th International Conference of Boar Semen Preservation Bonn 2011
    [Google Scholar]
  57. Sigurdardottir S.L. Freysdottir J. Vikingsdottir T. Valdimarsson H. Vikingsson A. Do non‐steroidal anti‐inflammatory drugs influence chronic inflammation? The effects of piroxicam on chronic antigen‐induced arthritis in rats. Scand. J. Rheumatol. 2008 37 6 469 476 10.1080/03009740802225876 19005999
    [Google Scholar]
  58. Beyer I. Bautmans I. Njemini R. Demanet C. Bergmann P. Mets T. Effects on muscle performance of NSAID treatment with Piroxicam versus placebo in geriatric patients with acute infection-induced inflammation. A double blind randomized controlled trial. BMC Musculoskelet. Disord. 2011 12 1 292 10.1186/1471‑2474‑12‑292 22208783
    [Google Scholar]
  59. Khosravian P. Javdani M. Masoudi M. Mohebi A. Sadegh A.B. Barzegar A. Preparation and administration of a controlled-release delivery system of chitosan hydrogel loaded with methadone and piroxicam in experimental defect of tibial in rats; histopathological evaluation. Front. Biomed. Technol. 2023
    [Google Scholar]
  60. Thomas R.A. Sunil E.S. Fernandez A.A. Anil S. Antony A. Davis A.M. Comparative insilico docking study involving antagonistic activity of coumarinderivatives on EGFR and CDK2. J Innov Appl Pharm Sci 2023 10.37022/jiaps.v8i3‑S.518
    [Google Scholar]
  61. Krishnatreyya H. Dey S. Pal P. Das P.J. Sharma V.K. Mazumder B. Piroxicam loaded solid lipid nanoparticles (Slns): Potential for topical delivery. Indian J Pharm Educ Res 2019
    [Google Scholar]
  62. Sohn J.S. Kim E.J. Park J.W. Choi J.S. Piroxicam ternary solid dispersion system for improvement of dissolution (%) and in vitro anti-inflammation effects. Mater. Sci. Eng. B 2020 261 114651 10.1016/j.mseb.2020.114651
    [Google Scholar]
  63. Ahmad R.M. Ibrahim O.M.M. Anti-inflammatory activity of clove (Syzygium aromaticum) oil extract against chronic inflammation in rat. Adv. Anim. Vet. Sci. 2024 12 1 77 84
    [Google Scholar]
  64. Babasahib S.K. Born R.W. Raghavendra N.M. Trans ethosomal hybrid composites of naproxen-sulfapyridine in hydrogel carrier: Anti-inflammatory response in complete Freund’s adjuvant induced arthritis rats. Artif. Cells Nanomed. Biotechnol. 2022 50 1 59 70 10.1080/21691401.2022.2047712 35261304
    [Google Scholar]
  65. Li J. Kuang Y. Gao Y. Du X. Shi J. Xu B. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J. Am. Chem. Soc. 2013 135 2 542 545 10.1021/ja310019x 23136972
    [Google Scholar]
  66. Shang Y. Ma C. Zhang J. Bifunctional supramolecular nanofiber inhibits atherosclerosis by enhancing plaque stability and anti-inflammation in apoE -/- mice. Theranostics 2020 10 22 10231 10244 10.7150/thno.48410
    [Google Scholar]
  67. Greig S.L. Garnock-Jones K.P. Loxoprofen: A review in pain and inflammation. Clin. Drug Investig. 2016 36 9 771 781 10.1007/s40261‑016‑0440‑9 27444038
    [Google Scholar]
  68. Xi Y. Jiang T. Chaurasiya B. Advances in nanomedicine for the treatment of ankylosing spondylitis. Int. J. Nanomedicine 2019 14 8521 8542 10.2147/IJN.S216199 31806960
    [Google Scholar]
  69. Md S. Alhakamy N.A. Aldawsari H.M. Improved analgesic and anti-inflammatory effect of diclofenac sodium by topical nanoemulgel: Formulation development—in vitro and in vivo studies. J. Chem. 2020 2020 1 10 10.1155/2020/4071818
    [Google Scholar]
  70. Chando A. Basudkar V. Gharat S. Momin M. Khan T. Development and preclinical assessment of nanoemulgel loaded with phytoconstituents for the management of rheumatoid arthritis. Drug Deliv. Transl. Res. 2024
    [Google Scholar]
  71. Astuti K.W. Wijayanti N.P.A.D. Yustiantara P.S. Laksana K.P. Putra P.S.A. Anti-inflammatory activity of mangosteen (Garcinia mangostana Linn.) rind extract nanoemulgel and gel dosage forms. Biomed. Pharmacol. J. 2019 12 4 1767 1774 10.13005/bpj/1807
    [Google Scholar]
  72. Morteza-Semnani K. Saeedi M. Akbari J. Development of a novel nanoemulgel formulation containing cumin essential oil as skin permeation enhancer. Drug Deliv. Transl. Res. 2022 12 6 1455 1465 10.1007/s13346‑021‑01025‑1 34275091
    [Google Scholar]
  73. Kim T.Y. Kim Y.I. Seo S-K. Kim S-H. Yang K-H. Shin S-C. Anti-hyperalgesic effects of meloxicam hydrogel via phonophoresis in acute inflammation in rats; comparing systemic and topical application. Biomol. Ther. 2009 17 3 305 310 10.4062/biomolther.2009.17.3.305
    [Google Scholar]
  74. Fattahpour S. Shamanian M. Tavakoli N. An injectable carboxymethyl chitosan-methylcellulose-pluronic hydrogel for the encapsulation of meloxicam loaded nanoparticles. Int. J. Biol. Macromol. 2020 151 220 229 10.1016/j.ijbiomac.2020.02.002 32027902
    [Google Scholar]
  75. Plugariu I.A. Gradinaru L.M. Avadanei M. Thermosensitive polyurethane-based hydrogels as potential vehicles for meloxicam delivery. Pharmaceuticals 2023 16 11 1510 10.3390/ph16111510 38004376
    [Google Scholar]
  76. D’Amico C. Fontana F. El-Sayed N. Double‐Layered Polyvinylpyrrolidone–Poly(methyl vinyl ether‐ alt ‐maleic acid)‐based microneedles to deliver meloxicam: An in vitro, in vivo, and short‐term stability evaluation study. Adv. Ther. 2023 6 8 2300138 10.1002/adtp.202300138
    [Google Scholar]
  77. Zhang Z.J. Osmałek T. Michniak-Kohn B. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam. Int. J. Nanomedicine 2020 15 9319 9335 10.2147/IJN.S274954 33262590
    [Google Scholar]
  78. Yar M. Farooq A. Shahzadi L. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater. Sci. Eng. C 2016 64 148 156 10.1016/j.msec.2016.03.072 27127039
    [Google Scholar]
  79. El-Megrab N.A. El-Nahas H.M. Balata G.F. Formulation and evaluation of meloxicam gels for topical administration. Saudi Pharm. J. 2006
    [Google Scholar]
  80. Permawati M. Anwar E. Arsianti A. Bahtiar A. Anti-inflammatory activity of nanoemulgel formulated from ageratum conyzoides (L.) l. and oldenlandia corymbosa l. Extracts in rats. J. Nat. Rem. 2019 19 3 124 134 10.18311/jnr/2019/23546
    [Google Scholar]
  81. Aggarwal G. Dhawan B. Harikumar S.L. Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int. J. Pharm. Investig. 2014 4 2 65 76 10.4103/2230‑973X.133053 25006551
    [Google Scholar]
  82. Razzaq F.A. Asif M. Asghar S. Glimepiride-loaded nanoemulgel; development, in vitro characterization, ex vivo permeation and in vivo antidiabetic evaluation. Cells 2021 10 9 2404 10.3390/cells10092404 34572054
    [Google Scholar]
  83. Ganesh G. Singh M.K. Datri S. Karri V.V.S.R. Design and Development of Curcumin Nanogel for Squamous Cell Carcinoma. J Pharm Sci Res 2019
    [Google Scholar]
  84. Thanujee Fernando W. A review on various plant-derived nanoemulgels and their applications. World J Adv Res Rev 2022
    [Google Scholar]
  85. Mahanty J. Rasheed S.H. Kumar S. Singh H. Sharma A. Potential of essential oils as alternative permeation enhancers for transdermal delivery. World J. Tradit. Chin. Med. 2023 9 3 258 269 10.4103/2311‑8571.351508
    [Google Scholar]
  86. Sani I.K. Pirsa S. Tağı Ş. Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym. Test. 2019 79 106004 10.1016/j.polymertesting.2019.106004
    [Google Scholar]
  87. Nawaz A. Farid A. Safdar M. Formulation development and ex-vivo permeability of curcumin hydrogels under the influence of natural chemical enhancers. Gels 2022 8 6 384 10.3390/gels8060384 35735728
    [Google Scholar]
  88. Pedro A.S. Cabral-Albuquerque E. Ferreira D. Sarmento B. Chitosan: An option for development of essential oil delivery systems for oral cavity care? Carbohydr. Polym. 2009 76 4 501 508 10.1016/j.carbpol.2008.12.016
    [Google Scholar]
  89. de Castro Dantas T.N. de Oliveira A.C. de Souza T.T.C. dos Santos Lucas C.R. de Andrade Araújo E. Aum P.T.P. Experimental study of the effects of acid microemulsion flooding to enhancement of oil recovery in carbonate reservoirs. J. Pet. Explor. Prod. Technol. 2020 10 3 1127 1135 10.1007/s13202‑019‑00754‑x
    [Google Scholar]
  90. Zhang Y. Wang X. Ma L. Anti-infammatory, antinociceptive activity of an essential oil recipe consisting of the supercritical fluid CO2 extract of white pepper, long pepper, cinnamon, saffron and myrrh in vivo. J. Oleo Sci. 2014 63 12 1251 1260 10.5650/jos.ess14061
    [Google Scholar]
  91. Nurul Syahida S. Ainun Z.M.A. Ismail-Fitry M.R. Nur Hanani Z.A. Development and characterisation of gelatine/palm wax/lemongrass essential oil (GPL)‐coated paper for active food packaging. Packag. Technol. Sci. 2020 33 10 417 431 10.1002/pts.2512
    [Google Scholar]
  92. de Sousa D.P. Damasceno R.O.S. Amorati R. Essential oils: Chemistry and pharmacological activities. Biomolecules 2023 13 7 1144 10.3390/biom13071144 37509180
    [Google Scholar]
  93. Cardia G.F.E. Silva-Comar F.M de S. da Rocha E.M.T. Silva-Filho S.E. Zagotto M. Uchida N.S. Pharmacological, medicinal and toxicological properties of lavender essential oil: A review. Res Soc Dev 2021 10.33448/rsd‑v10i5.14933
    [Google Scholar]
  94. Al-Khayri J.M. Banadka A. Nandhini M. Nagella P. Al-Mssallem M.Q. Alessa F.M. Essential Oil from Coriandrum sativum: A review on Its Phytochemistry and Biological Activity. Molecules 2023 28 2 696 10.3390/molecules28020696 36677754
    [Google Scholar]
  95. Jugreet B.S. Suroowan S. Rengasamy R.R.K. Mahomoodally M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends Food Sci. Technol. 2020 101 89 105 10.1016/j.tifs.2020.04.025
    [Google Scholar]
  96. Silva F.S. Menezes P.M.N. Sá P.G.S. Chemical composition and pharmacological properties of the essential oils obtained seasonally from Lippia thymoides. Pharm. Biol. 2016 54 1 25 34 10.3109/13880209.2015.1005751 25856708
    [Google Scholar]
  97. Pacheco-Hernández Y. Sánchez-Hernández G.R. Reyes-Cervantes E. Romero-Arenas O. Pérez-Xochipa I. Villa-Ruano N. Chemical Variation and Pharmacological Properties of Dyssodia decipiens Essential Oil. Chem. Biodivers. 2020 17 10 2000487 10.1002/cbdv.202000487 32749064
    [Google Scholar]
  98. Qneibi M. Bdir S. Maayeh C. Bdair M. Sandouka D. Basit D. A comprehensive review of essential oils and their pharmacological activities in neurological disorders: Exploring neuroprotective potential. Neurochem. Res. 2024 49 2 258 289 10.1007/s11064‑023‑04032‑5 37768469
    [Google Scholar]
  99. Saab A.M. Gambari R. Sacchetti G. Phytochemical and pharmacological properties of essential oils from Cedrus species. Nat. Prod. Res. 2018 32 12 1415 1427 10.1080/14786419.2017.1346648 28670915
    [Google Scholar]
  100. Soorya C. Balamurugan S. Basha A.N. Kandeepan C. Ramya S. Jayakumararaj R. Profile of Bioactive Phyto-compounds in Essential Oil of Cymbopogon martinii from Palani Hills, Western Ghats, INDIA. J. Drug Deliv. Ther. 2021 11 4 60 65 10.22270/jddt.v11i4.4887
    [Google Scholar]
  101. Arantes S.M. Piçarra A. Guerreiro M. Salvador C. Candeias F. Caldeira A.T. Toxicological and pharmacological properties of essential oils of Calamintha nepeta, Origanum virens and Thymus mastichina of Alentejo (Portugal). Food Chem. Toxicol. 2019 133 110747 10.1016/j.fct.2019.110747 31377137
    [Google Scholar]
  102. Bouyahya A. Chamkhi I. Menyiy N.E. Traditional use, phytochemistry, toxicology, and pharmacological properties of Lavandula dentata L.: A comprehensive review. S. Afr. J. Bot. 2023 154 67 87 10.1016/j.sajb.2023.01.023
    [Google Scholar]
  103. Sefidkon F. Emami Bistgani Z. Integrative review on ethnobotany, essential oil, phytochemical, agronomy, molecular and pharmacological properties of Satureja species. J. Essent. Oil Res. 2021 33 2 114 132 10.1080/10412905.2021.1885512
    [Google Scholar]
  104. Mukarram M. Choudhary S. Khan M.A. Poltronieri P. Khan M.M.A. Ali J. Lemongrass essential oil components with antimicrobial and anticancer activities. Antioxidants 2022 35052524
    [Google Scholar]
  105. Noor A.A.M. Melaleuca cajuputi powell essential oil: A review of botanical, phytochemical and pharmacological properties. Borneo J Resour Sci Technol 2023
    [Google Scholar]
  106. Jarić S. Mitrović M. Pavlović P. Review of ethnobotanical, phytochemical, and pharmacological study of thymus serpyllum L. Evid. Based Complement. Alternat. Med. 2015 2015 1 10 10.1155/2015/101978 26265920
    [Google Scholar]
  107. Sharma K. Sharma V. Assessment of Chemical Constituents of Allium sativum Essential Oil Extracted by using Hydrodistillation Technique and their Pharmacological Potential. J. Nat. Rem. 2023 ••• 977 992 10.18311/jnr/2023/32468
    [Google Scholar]
  108. Villa-Ruano N. Pacheco-Hernández Y. Rubio-Rosas E. Lozoya-Gloria E. Mosso-González C. Ramón-Canul L.G. Essential oil composition and biological/pharmacological properties of Salmea scandens (L.) DC. Food Control 2015 57 177 184 10.1016/j.foodcont.2015.04.018
    [Google Scholar]
  109. Duong L. Mentreddy S.R. Satyal R. Satyal P. Setzer W.N. Essential Oil Chemotypes of Four Vietnamese Curcuma Species Cultivated in North Alabama. Horticulturae 2022 8 5 360 10.3390/horticulturae8050360
    [Google Scholar]
  110. Wang Z.J. Heinbockel T. Essential oils and their constituents targeting the gabaergic system and sodium channels as treatment of neurological diseases. Molecules 2018 23 5 1061 10.3390/molecules23051061 29724056
    [Google Scholar]
  111. Rao J. Chen B. McClements D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu. Rev. Food Sci. Technol. 2019 10 1 365 387 10.1146/annurev‑food‑032818‑121727 30653350
    [Google Scholar]
  112. Yuan R. Zhang D. Yang J. Review of aromatherapy essential oils and their mechanism of action against migraines. J. Ethnopharmacol. 2021 265 113326 10.1016/j.jep.2020.113326 32877718
    [Google Scholar]
  113. Owen L. Laird K. Synchronous application of antibiotics and essential oils: Dual mechanisms of action as a potential solution to antibiotic resistance. Crit. Rev. Microbiol. 2018 44 4 414 435 10.1080/1040841X.2018.1423616 29319372
    [Google Scholar]
  114. Angane M. Swift S. Huang K. Butts C.A. Quek S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022 11 3 464 10.3390/foods11030464 35159614
    [Google Scholar]
  115. Liju V.B. Jeena K. Kuttan R. Chemopreventive activity of turmeric essential oil and possible mechanisms of action. Asian Pac. J. Cancer Prev. 2014 15 16 6575 6580 10.7314/APJCP.2014.15.16.6575 25169490
    [Google Scholar]
  116. Álvarez-Martínez F.J. Barrajón-Catalán E. Herranz-López M. Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021 90 153626 10.1016/j.phymed.2021.153626 34301463
    [Google Scholar]
  117. Corrêa E.J.A. Carvalho F.C. de Castro Oliveira J.A. Elucidating the molecular mechanisms of essential oils’ insecticidal action using a novel cheminformatics protocol. Sci. Rep. 2023 13 1 4598 10.1038/s41598‑023‑29981‑3 36944648
    [Google Scholar]
  118. Verdeguer M. Sánchez-Moreiras A.M. Araniti F. Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants 2020 9 11 1571 10.3390/plants9111571 33202993
    [Google Scholar]
  119. Lahlou M. Essential oils and fragrance compounds: Bioactivity and mechanisms of action. Flavour Fragr J 2004
    [Google Scholar]
  120. Borges R.S. Ortiz B.L.S. Pereira A.C.M. Keita H. Carvalho J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019 229 29 45 10.1016/j.jep.2018.09.038 30287195
    [Google Scholar]
  121. Diao W.R. Hu Q.P. Zhang H. Xu J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014 35 1 109 116 10.1016/j.foodcont.2013.06.056
    [Google Scholar]
  122. Chouhan S. Sharma K. Guleria S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017 4 3 58 10.3390/medicines4030058 28930272
    [Google Scholar]
  123. da Rocha Neto A.C. Navarro B.B. Canton L. Maraschin M. Di Piero R.M. Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action. Lebensm. Wiss. Technol. 2019 105 385 392 10.1016/j.lwt.2019.02.060
    [Google Scholar]
  124. Gunasena M.T. Rafi A. Afif S. Zobir M. Hussein M.Z. Ali A. Mechanism of Action of Essential Oil Extracted from Ginger of Rice. Plants 2022 35684239
    [Google Scholar]
  125. Grande-Tovar C.D. Chaves-Lopez C. Serio A. Rossi C. Paparella A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci. Technol. 2018 78 61 71 10.1016/j.tifs.2018.05.019
    [Google Scholar]
  126. da Silva B.D. Bernardes P.C. Pinheiro P.F. Fantuzzi E. Roberto C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021 176 108463 10.1016/j.meatsci.2021.108463 33640647
    [Google Scholar]
  127. Mani-López E. Cortés-Zavaleta O. López-Malo A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021 3 1 44 10.1007/s42452‑020‑04102‑1
    [Google Scholar]
  128. Moussaoui F. Alaoui T. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac. J. Trop. Biomed. 2016 6 1 32 37 10.1016/j.apjtb.2015.09.024
    [Google Scholar]
  129. Worawong K. Borlace G.N. Aiemsaard J. Antifungal activities of azole drugs in combination with clove essential oil against Microsporum gallinae. Sci. Asia 2023
    [Google Scholar]
  130. Prasath D. Nair R.R. Babu P.A. Effect of colchicine induced tetraploids of ginger (Zingiber officinale Roscoe) on cytology, rhizome morphology, and essential oil content. J. Appl. Res. Med. Aromat. Plants 2022 31 100422 10.1016/j.jarmap.2022.100422
    [Google Scholar]
  131. Bhuvaneswari G. Thirugnanasampandan R. Gogulramnath M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 2020 26 2 271 279 10.1007/s12298‑019‑00718‑9 32158134
    [Google Scholar]
  132. Julianto R.P.D. Sumiati A. Agastya D.I.M.I. Pengaruh kolkisin terhadap optimalisasi minyak atsiri tanaman jahE (Zingiber officinale Rosc.). J Buana Sains 2022
    [Google Scholar]
  133. Zălar D.M. Pop C. Buzdugan E. Effects of Colchicine in a Rat Model of Diet-Induced Hyperlipidemia. Antioxidants 2022 11 2 230 10.3390/antiox11020230 35204113
    [Google Scholar]
  134. Julião S.A. Ribeiro C.V. Lopes J.M.L. Induction of Synthetic Polyploids and Assessment of Genomic Stability in Lippia alba. Front Plant Sci 2020 11 292 10.3389/fpls.2020.00292 32273876
    [Google Scholar]
  135. Shariat A. Sefidkon F. Tetraploid induction in savory (Satureja khuzistanica): Cytological, morphological, phytochemical and physiological changes. Plant Cell Tissue Organ Cult. 2021 146 1 137 148 10.1007/s11240‑021‑02053‑y
    [Google Scholar]
  136. Sadat Noori S.A. Norouzi M. Karimzadeh G. Shirkool K. Niazian M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 2017 130 3 543 551 10.1007/s11240‑017‑1245‑0
    [Google Scholar]
  137. Iannicelli J. Elechosa M.A. Juárez M.A. Effect of polyploidization in the production of essential oils in Lippia integrifolia. Ind. Crops Prod. 2016 81 20 29 10.1016/j.indcrop.2015.11.053
    [Google Scholar]
  138. Mohammadi V. Talebi S. Ahmadnasab M. Mollahassanzadeh H. The effect of induced polyploidy on phytochemistry, cellular organelles and the expression of genes involved in thymol and carvacrol biosynthetic pathway in thyme (Thymus vulgaris). Front Plant Sci 2023 14 1228844 10.3389/fpls.2023.1228844 37780500
    [Google Scholar]
  139. Hannweg K. Visser G. de Jager K. Bertling I. In vitro-induced polyploidy and its effect on horticultural characteristics, essential oil composition and bioactivity of Tetradenia riparia. S. Afr. J. Bot. 2016 106 186 191 10.1016/j.sajb.2016.07.013
    [Google Scholar]
  140. Bhattacharya R. Rolta R. Dev K. Sourirajan A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytother. Res. 2021 35 11 6089 6100 10.1002/ptr.7218 34324240
    [Google Scholar]
  141. Basavegowda N. Baek K.H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation. Biomedicines 2022 10 9 2219 10.3390/biomedicines10092219 36140320
    [Google Scholar]
  142. Aleksic V. Mimica-Dukic N. Simin N. Nedeljkovic N.S. Knezevic P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 2014 21 12 1666 1674 10.1016/j.phymed.2014.08.013 25442275
    [Google Scholar]
  143. El Atki Y. Aouam I. El Kamari F. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J. Adv. Pharm. Technol. Res. 2019 10 2 63 67 10.4103/japtr.JAPTR_366_18 31041184
    [Google Scholar]
  144. Kafa A.H.T. Aslan R. Celik C. Hasbek M. Antimicrobial synergism and antibiofilm activities of Pelargonium graveolens, Rosemary officinalis, and Mentha piperita essential oils against extreme drug-resistant Acinetobacter baumannii clinical isolates. Zeitschrift fur Naturforsch - Sect C. J. Biosci. 2022
    [Google Scholar]
  145. Knezevic P. Aleksic V. Simin N. Svircev E. Petrovic A. Mimica-Dukic N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016 178 125 136 10.1016/j.jep.2015.12.008 26671210
    [Google Scholar]
  146. Wannakrairoj S. Tefera W. In vitro chromosome doubling in Korarima [Aframomum corrorima (Braun) P.C.M. Jansen] using colchicine and oryzalin. Witthayasan Kasetsat Witthayasat 2013
    [Google Scholar]
  147. Urwin N.A.R. Generation and characterisation of colchicine-induced polyploid Lavandula × intermedia. Euphytica 2014 197 3 331 339 10.1007/s10681‑014‑1069‑5
    [Google Scholar]
  148. Omidbaigi R. Mirzaei M. Moghadam M.S. Difference of growth traits, essential oil content and compositions between diploid and iinduced tetraploid plants of basil (ocimum basilicum L.). J Essent Oil-Bearing Plants 2010
    [Google Scholar]
  149. Shariat A. Sefidkonb F. Enhanced morphologic traits and medicinal constituents of octaploids in Satureja mutica, a high-yielding medicinal savory. Caryologia 2022 75 1 41 53 10.36253/caryologia‑1264
    [Google Scholar]
  150. Ren A.X. Pan C.X. He J.M. Zhang Z.M. Xiao Y.H. Lin S. Polyploidy of Foeniculum vulgare induced by colchicine. Chinese Tradit Herb Drugs 2010
    [Google Scholar]
  151. Tsuro M. Kondo N. Noda M. Ota K. Nakao Y. Asada S. In vitro induction of autotetraploid of Roman chamomile (Chamaemelum nobile L.) by colchicine treatment and essential oil productivity of its capitulum. Vitr Cell Dev Biol - Plant 2016 10.1007/s11627‑016‑9779‑0
    [Google Scholar]
  152. Amien S. Darmawan N.P. Fathya D. Induction of ploidy level on three patchouli (pogostemon cablin benth) cultivars by colchicine in vitro. Kultivasi 2023
    [Google Scholar]
  153. Oliveira T.R. Teixeira A.L. Barbosa J.P. Busato de Feiria S.N. Boni G.C. Maia F. Melaleuca spp. essential oil and its medical applicability. A brief review. Brazilian J Nat Sci 2020 10.31415/bjns.v3i1.89
    [Google Scholar]
  154. Parrish N. Fisher S.L. Gartling A. Activity of Various Essential Oils Against Clinical Dermatophytes of Microsporum and Trichophyton. Front. Cell. Infect. Microbiol. 2020 10 545913 10.3389/fcimb.2020.545913 33178620
    [Google Scholar]
  155. Adaszynska-Skwirzynska M. Szczerbinska D. Zych S. Antibacterial activity of lavender essential oil and linalool combined with gentamicin on selected bacterial strains. Med. Weter. 2020
    [Google Scholar]
  156. Chraibi M. Fadil M. Farah A. Lebrazi S. Fikri-Benbrahim K. Antimicrobial combined action of Mentha pulegium, Ormenis mixta and Mentha piperita essential oils against S. aureus, E. coli and C. tropicalis: Application of mixture design methodology. Lebensm. Wiss. Technol. 2021 145 111352 10.1016/j.lwt.2021.111352
    [Google Scholar]
  157. Belmehdi O. Bouyahya A. Jekő J. Cziáky Z. Zengin G. Sotkó G. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int J Second Metab 2021 10.21448/ijsm.947033
    [Google Scholar]
  158. Ermenlieva N. Georgieva E. Mihaylova S. Stamova S. Laleva K. Tsankova G. Synergistic interaction between lamiaceae essential oils and antifungal drugs against candida albicans atcc 10231. Farmacia 2022 70 4 720 725 10.31925/farmacia.2022.4.18
    [Google Scholar]
  159. Utchariyakiat I. Surassmo S. Jaturanpinyo M. Khuntayaporn P. Chomnawang M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med. 2016 16 1 158 10.1186/s12906‑016‑1134‑9 27245046
    [Google Scholar]
  160. Saeedi M. Morteza-Semnani K. Effect of the essential oil of eryngium caeruleum on percutaneous absorption of piroxicam through rat skin. J Essent Oil-Bearing Plants 2008
    [Google Scholar]
  161. Samier P. Onaisi A. Fontaine G. Comparisons of uncoupled and various coupling techniques for practical field examples. SPE J. 2006 11 1 89 102 10.2118/79698‑PA
    [Google Scholar]
  162. Yang R. Chen J. Qin X. Huang Z. Li G. Liu L. Stress Evolution and Permeability Enhancement Mechanism of Multistage Cavity Completion in Coalbed Methane Horizontal Wells. SPE J. 2023 28 6 2767 2789 10.2118/215853‑PA
    [Google Scholar]
  163. Samier P. Onaisi A. Fontaine G. Coupled analysis of geomechanics and fluid flow in reservoir simulfation. Paper presented at the SPE Reservoir Simulation Symposium Houston, Texas February 2003 SPE-79698 MS 10.2118/79698‑MS
    [Google Scholar]
  164. Hassan AM Al-Shalabi EW AlAmeri W Kamal MS Patil S Shakil Hussain SM Novel perceptions into hybrid low salinity polymer (LSP) flooding using a coupled geochemical-based modeling approach Dubai, UAE, March 2023 SPE-214181-MS
    [Google Scholar]
  165. Ojo B.T. Aham V.I. Integration of rock properties crossplot and petrophysics for enhancement of litho-fluid discrimination and compartmentalization to reduce uncertainty and mitigate hydrocarbon exploration risk: A case of ‘NICK’ field, onshore Niger Delta. Int J Latest Technol Eng Manag Appl Sci 2023 12 12 10.51583/IJLTEMAS.2023.121209
    [Google Scholar]
  166. Feder J. Coupled 3D Simulator Models Wastewater-Injection-Induced Seismicity. J. Pet. Technol. 2019 71 12 71 72 10.2118/1219‑0071‑JPT
    [Google Scholar]
  167. Yi P. Dingwei W. Yun X. Liwei W. Yongjun L. Zhanjun L. Hydraulic fracturing of ultrahigh stress tight oil reservoir - A case study of yumen oilfield in China. Paper presented at the International Petroleum Technology Conference November Bangkok, Thailand 2016 IPTC-18752-MS 10.2523/IPTC‑18752‑MS
    [Google Scholar]
  168. Gupta S.K. Kumar S. Transdermal drug delivery enhancement by essential oils of eucalyptus globulus. Adv. Biol. Res. 2014 8 6 249 250 10.5829/idosi.abr.2014.8.6.85198
    [Google Scholar]
  169. Das S. Sen Gupta K. A Comprehensive Review on Natural Products as Chemical Penetration Enhancer. J. Drug Deliv. Ther. 2021 11 5-S 176 187 10.22270/jddt.v11i5‑S.5077
    [Google Scholar]
  170. Pathan I.B. Mallikarjuna Setty C. Nanoemulsion system for transdermal delivery of tamoxifen citrate: Design, characterization, effect of penetration enhancers and in vivo studies. Dig J Nanomater Biostructures 2012
    [Google Scholar]
  171. Mustafa Shahwani G. Umer Jan S. Akhtar M. Formulation and evaluation of an ointment from Pinus gerardiana extracts indigenous to Balochistan. Pak. J. Pharm. Sci. 2022 35 6 1819 1825 36861249
    [Google Scholar]
  172. Sudradjat S.E. Pengajar S. Farmasi B. Kedokteran F. Tinjauan Pustaka Pala; dari Obat Tradisional ke Obat Modern Nutmeg; from Traditional to Modern Medicine. J Kedokt Meditek 2017
    [Google Scholar]
  173. Homolya L. Bartos Z. Zambo B. Mozner O. Sarkadi B. Characterization of a newly identified polymorphic variant (M71V) of ABCG2 multidrug transporter. FASEB J. 2019 33 S1 10.1096/fasebj.2019.33.1_supplement.462.2
    [Google Scholar]
  174. Reddy S. Mabaquiao R. Misell L. Pilot, randomized, double-blinded, placebo controlled efficacy and safety study of a transdermal alkalinizing and pain relieving treatment foracute gout flare. Arthritis Rheumatol. 2019
    [Google Scholar]
  175. Abdulbaqi I.M. Darwis Y. Abou Assi R. Abdul Karim Khan N. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther. 2018 12 795 813 10.2147/DDDT.S158018 29670336
    [Google Scholar]
  176. Nasr M. Younes H. Abdel-Rashid R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res. 2020 10 5 1302 1313 10.1007/s13346‑020‑00785‑6 32399604
    [Google Scholar]
  177. Morad H. Jahanshahi M. Akbari J. Saeedi M. Gill P. Enayatifard R. Novel topical and transdermal delivery of colchicine with chitosan based biocomposite nanofiberous system; formulation, optimization, characterization, ex vivo skin deposition/permeation, and anti-melanoma evaluation. Mater. Chem. Phys. 2021 263 124381 10.1016/j.matchemphys.2021.124381
    [Google Scholar]
  178. Zeng Z. One-pot approach to form in situ colchicine-containing nano-hydroxyapatite within microemulsion composite system for sustained transdermal delivery. Compos Commun 2021
    [Google Scholar]
  179. Azeem A. Niosomes in sustained and targeted drug delivery: Some recent advances. J. Drug Target. 2009 17 9 671 689 10.3109/10611860903079454 19845484
    [Google Scholar]
  180. Zhu Y.N. Wang M. Wang L.L. Ju J.M. Zhang Z.H. Preparation of colchicine ethosomes containing TPGS and in vitro transdermal permeation. Chinese Tradit Herb Drugs 2015
    [Google Scholar]
  181. Liu X. Zhang Z.H. Chen Y. Ding A.W. Du M. Jia X. Bin. Preparation of colchicine microemulsion and its transdermal permeation in vitro. Chinese Tradit Herb Drugs 2011
    [Google Scholar]
  182. Singh H.P. Tiwary A.K. Jain S. Preparation and in vitro, in vivo characterization of elastic liposomes encapsulating cyclodextrin-colchicine complexes for topical delivery of colchicine. Yakugaku Zasshi 2010 130 3 397 407 10.1248/yakushi.130.397 20190524
    [Google Scholar]
  183. Zi M. Ke J. Jiang S. Colchicine-loaded transethosomes enhances transdermal permeability and therapeutic effects of acute gouty arthritis via vesicle extrusion and lipid perturbation. Colloids Surf. A Physicochem. Eng. Asp. 2024 687 133582 10.1016/j.colsurfa.2024.133582
    [Google Scholar]
  184. Singh H.P. Utreja P. Tiwary A.K. Jain S. Elastic liposomal formulation for sustained delivery of colchicine: In vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009 11 1 54 64 10.1208/s12248‑008‑9078‑8 19191031
    [Google Scholar]
  185. Piao H. Xie W. Li S. Ternary Deep Eutectic Solvents System of Colchicine, 4-Hydroxyacetophenone, and Protocatechuic Acid and Characterization of Transdermal Enhancement Mechanism. AAPS PharmSciTech 2023 24 8 229 10.1208/s12249‑023‑02681‑x 37964102
    [Google Scholar]
  186. Lei Y. Yang G. Du F. Formulation and Evaluation of a Drug-in-Adhesive Patch for Transdermal Delivery of Colchicine. Pharmaceutics 2022 14 10 2245 10.3390/pharmaceutics14102245 36297680
    [Google Scholar]
  187. Liu Y. Zhu X. Ji S. Transdermal delivery of colchicine using dissolvable microneedle arrays for the treatment of acute gout in a rat model. Drug Deliv. 2022 29 1 2984 2994 10.1080/10717544.2022.2122632 36101018
    [Google Scholar]
  188. Zhang Y. Zhang N. Song H. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv. 2019 26 1 70 77 10.1080/10717544.2018.1559258 30744424
    [Google Scholar]
  189. Mohamed A.L. Elmotasem H. Salama A.A.A. Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management. Int. J. Biol. Macromol. 2020 164 1149 1163 10.1016/j.ijbiomac.2020.07.133 32693125
    [Google Scholar]
  190. Parashar P. Mazhar I. Kanoujia J. Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model. Arch. Physiol. Biochem. 2022 128 2 547 557 10.1080/13813455.2019.1702702 31852265
    [Google Scholar]
  191. Elsewedy H.S. Younis N.S. Shehata T.M. Mohamed M.E. Soliman W.E. Enhancement of Anti-Inflammatory Activity of Optimized Niosomal Colchicine Loaded into Jojoba Oil-Based Emulgel Using Response Surface Methodology. Gels 2021 8 1 16 10.3390/gels8010016 35049551
    [Google Scholar]
  192. Yang Y. Li Z. Huang P. Rapidly separating dissolving microneedles with sustained-release colchicine and stabilized uricase for simplified long-term gout management. Acta Pharm. Sin. B 2023 13 8 3454 3470 10.1016/j.apsb.2023.02.011 37655319
    [Google Scholar]
  193. Etman S.M. Elnaggar Y.S.R. Abdelmonsif D.A. Abdallah O.Y. Oral brain-targeted microemulsion for enhanced piperine delivery in Alzheimer’s disease therapy: In vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech 2018 19 8 3698 3711 10.1208/s12249‑018‑1180‑3 30238305
    [Google Scholar]
  194. Noel N. Wechsler B. Nizard J. Behçet’s disease and pregnancy. Arthritis Rheum. 2013 65 9 2450 2456 10.1002/art.38052 23780828
    [Google Scholar]
  195. Iwanaga K. Kushibiki T. Miyazaki M. Kakemi M. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs. Biol. Pharm. Bull. 2006 29 3 508 512 10.1248/bpb.29.508 16508155
    [Google Scholar]
  196. Guerra E. Byrne R.A. Kastrati A. Pharmacological inhibition of coronary restenosis: Systemic and local approaches. Expert Opin. Pharmacother. 2014 15 15 2155 2171 10.1517/14656566.2014.948844 25145263
    [Google Scholar]
  197. Ergani S.Y. Karadeniz R.S. Sever O. Altay M.M. Familial mediterranean fever affect onto fetal kidney: A case report. J. Turk. Ger. Gynecol. Assoc. 2016
    [Google Scholar]
  198. D’Emanuele A. Jevprasesphant R. Penny J. Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 2004 95 3 447 453 10.1016/j.jconrel.2003.12.006 15023456
    [Google Scholar]
  199. Pal S. Sharma D. Yadav N.P. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect. Oral Dis. 2024 30 2 80 99 10.1111/odi.14485 36565439
    [Google Scholar]
  200. Lei Y. Yang Y. Yang G. Li A. Yang Y. Wang Y. Delivery strategies for colchicine as a critical dose drug: Reducing toxicity and enhancing efficacy. Pharmaceutics 2024 16 2 222 10.3390/pharmaceutics16020222 38399276
    [Google Scholar]
  201. Alhasso B. Ghori M.U. Conway B.R. Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations. Sci. Pharm. 2022 90 1 14 10.3390/scipharm90010014
    [Google Scholar]
  202. Sorathia K. Patel M. Soni T. Vaghasiya V. Patel J. Suhagia B.N. Effect of essential oils on transdermal permeation of metoprolol succinate. Bull Pharm Sci Assiut 2021 10.21608/bfsa.2021.174121
    [Google Scholar]
  203. Aggarwal S. Agarwal S. Jalhan S. Essential oils as novel human skin penetration enhancer for transdermal drug delivery: A review. Int. J. Pharma Bio Sci. 2013
    [Google Scholar]
  204. Barradas T.N. Senna J.P. Cardoso S.A. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur. J. Pharm. Biopharm. 2017 116 38 50 10.1016/j.ejpb.2016.11.018 27867112
    [Google Scholar]
  205. Barradas T.N. Senna J.P. Cardoso S.A. de Holanda e Silva KG, Elias Mansur CR. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater. Sci. Eng. C 2018 92 245 253 10.1016/j.msec.2018.06.049
    [Google Scholar]
  206. Madkaikar N. Shirodker A. Bhangle S. Gude R. Formulation, optimization and evaluation of matrix type transdermal drug delivery system of antiemetic drug using essential oils and non-ionic surfactant as permeation enhancers. Indian Drugs 2018 10.53879/id.55.07.10833
    [Google Scholar]
  207. da Silva T.N. Cardoso S.A. Barradas T.N. Nanostructured pharmaceutical formulations for topical application of clove oil and eugenol. In: Clove (Syzygium aromaticum). Cambridge, Massachusetts Academic Press 2022 363 403 10.1016/B978‑0‑323‑85177‑0.00019‑7
    [Google Scholar]
  208. Das S. Das S. Bahadur S. Mukherjee M. Nandi G. Manna S. Fabrication, evaluation, and enhanced penetration of vinyl and cellulose-engineered transdermal patch of nifedipine using essential oil as penetration enhancer. J. Biomater. Sci. Polym. Ed. 2024 35 9 1400 1420 10.1080/09205063.2024.2330682 38502545
    [Google Scholar]
  209. Sharma A. Baldi A. Nanostructured lipid carriers : A review journal of developing drugs. J. Dev. Drugs 2018
    [Google Scholar]
  210. Lal D.K. Kumar B. Saeedan A.S. Ansari M.N. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023 15 4 1187 10.3390/pharmaceutics15041187 37111672
    [Google Scholar]
  211. Ferreira M.D. Duarte J. Veiga F. Paiva-Santos A.C. Pires P.C. Nanosystems for brain targeting of antipsychotic drugs: An update on the most promising nanocarriers for increased bioavailability and therapeutic efficacy. Pharmaceutics 2023 15 2 678 10.3390/pharmaceutics15020678 36840000
    [Google Scholar]
  212. Ti̇mur S.S. Anticancer potential of novel nanoemulgel formulations in melanoma. Fabad J Pharm Sci 2023
    [Google Scholar]
  213. Ferreira M. Paiva-Santos A.C. Veiga F. Pires P.C. The importance of nanosystems in antipsychotic drugs brain targeting. Eng. Proc. 2023 31 1 70 10.3390/ASEC2022‑13765
    [Google Scholar]
  214. Chen Z. Han B. Liao L. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J. Drug Deliv. Sci. Technol. 2020 55 101487 10.1016/j.jddst.2019.101487
    [Google Scholar]
  215. Vasi İ. Kardaş R.C. Yıldırım D. Is compressed colchicine tablet superior to other colchicine preparations in patients with familial Mediterranean fever? Int. J. Clin. Pharmacol. Ther. 2024 62 2 77 82 10.5414/CP204494 37969097
    [Google Scholar]
  216. Maduri S. Atla V.R. Formulation of colchicine ointment for the treatment of acute gout. Singapore Med. J. 2012 53 11 750 754 23192503
    [Google Scholar]
  217. World Health Organization World Health Organization Evaluation of the colchicine tablet efficacy as an adjuvant therapy for patients with mild to moderate COVID-19 Available from:https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT20200408046990N2
  218. Alsahaf S. Alkurdi K.A. Challacombe S.J. Tappuni A.R. Topical betamethasone and systemic colchicine for treatment of recurrent aphthous stomatitis: A randomised clinical trial. BMC Oral Health 2023
    [Google Scholar]
  219. Köse O. Dinç A. Şimşek İ. Randomized trial of pimecrolimus cream plus colchicine tablets versus colchicine tablets in the treatment of genital ulcers in Behçet’s disease. Dermatology 2009 218 2 140 145 10.1159/000182257 19060462
    [Google Scholar]
  220. Sunil Naik K. Andhalkar N. Pendse S. Effect of colchicine and aspirin given together in patients with moderate COVID-19. Contemp. Clin. Trials Commun. 2023 32 101070 10.1016/j.conctc.2023.101070 36714812
    [Google Scholar]
  221. Pradeep Kumar M. Murthy G.S. Poojitha A.L. Sindhuri P. Sreekanth A. Ramesh Y. Formulation and Evaluation of Colchicine Sustained release tablet by using factorial designs. J. Drug Deliv. Ther. 2021 11 5-S 100 107 10.22270/jddt.v11i5‑S.5028
    [Google Scholar]
  222. Jones G.R. Singer P.P. Bannach B. Application of LC-MS analysis to a colchicine fatality. J. Anal. Toxicol. 2002 26 6 365 369 10.1093/jat/26.6.365 12220019
    [Google Scholar]
  223. Colchichine use for preventing COVID infection in haemodialysis patients 2020 Available from:https://trialsearch.who.int/Trial2.aspx?TrialID=CTRI/2020/08/02710
  224. Maslarska V. Pencheva I. Determination of Colchicine Content in Drug By Rp-Hplc. Int J Adv Pharm Biol Chem 2014
    [Google Scholar]
  225. Schwier N.C. Pharmacotherapeutic considerations for using colchicine to treat idiopathic pericarditis in the USA. Am. J. Cardiovasc. Drugs 2015 15 5 295 306 10.1007/s40256‑015‑0133‑4 26243656
    [Google Scholar]
  226. Kumar V. Kushwaha V. Charde V. The validated pharmaceutical standard operating procedure and quality control study of the coded polyherbal tablet formulation AYUSH SG-5. S. Afr. J. Bot. 2022 151 319 327 10.1016/j.sajb.2022.02.038
    [Google Scholar]
  227. Vatansever G. Karadeniz C. Kendirli T. An insidious danger in children with familial Mediterranean fever: Colchicine intoxication. Pediatr. Emerg. Care 2015 31 9 652 653 10.1097/PEC.0000000000000545 26335230
    [Google Scholar]
  228. Emmungil H. İlgen U. Turan S. Yaman S. Küçükşahin O. Different pharmaceutical preparations of colchicine for Familial Mediterranean Fever: Are they the same? Rheumatol. Int. 2020 40 1 129 135 10.1007/s00296‑019‑04432‑3 31463607
    [Google Scholar]
  229. Zhong H. Zhong Z. Li H. Zhou T. Xie W. A rare case report of heavy dose colchicine induced acute kidney injury. BMC Pharmacol. Toxicol. 2018 19 1 69 10.1186/s40360‑018‑0260‑z 30376897
    [Google Scholar]
  230. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet Respir. Med. 2021 9 12 1419 1426 10.1016/S2213‑2600(21)00435‑5 34672950
    [Google Scholar]
  231. López-López E. Cerda-García-Rojas C.M. Medina-Franco J.L. Consensus Virtual Screening Protocol Towards the Identification of Small Molecules Interacting with the Colchicine Binding Site of the Tubulin‐microtubule System. Mol. Inform. 2023 42 1 2200166 10.1002/minf.202200166 36175374
    [Google Scholar]
  232. Scheen A.J. Anti-inflammatory drugs: From old classical ones to biotherapies and JAK inhibitors. Rev. Med. Liege 2022 77 5-6 399 409 35657200
    [Google Scholar]
  233. Hobbs R Gbinigie O Ogburn E Inhaled Budesonide for COVID-19 in People at Higher Risk of Complications in the Community: The UK National Community Randomi Ann Fam Med 2023 21 21 3859.(Suppl. 1)
    [Google Scholar]
  234. Mardianti D. Analysis of Islamic law on the provision of conditional giveaways in the Instagram account @sakinaholshopsby Undergraduate thesis, UIN Sunan Ampel Surabaya 2019
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878383010250911124710
Loading
/content/journals/raddf/10.2174/0126673878383010250911124710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test