Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Additive Manufacturing (AM) has emerged as a transformative force in the pharmaceutical industry, establishing itself as a cornerstone of Industry 4.0. This review explores the capability of 3D printing (3DP) technologies that facilitate the creation of individualized dosage forms, precise drug release control, and customized drug delivery systems. These innovations have significantly improved treatment outcomes and efficiency. The study identifies key challenges hindering the widespread adoption of AM in pharmaceuticals, including issues related to material selection, regulatory compliance, and process efficiency. By analyzing the interrelationship between AM and the fundamental pillars of Industry 4.0, we demonstrate how AM can optimize manufacturing costs, reduce production time, and minimize waste. The review also presents a strategic roadmap for future research, emphasizing the need for interdisciplinary collaboration to overcome regulatory barriers, develop medical-grade materials, and optimize manufacturing processes through advanced computational models and machine learning. This approach aims to accelerate the integration of AM into pharmaceutical manufacturing, ultimately enhancing personalized patient care and therapeutic effectiveness.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878339327250227021950
2025-03-05
2025-11-01
Loading full text...

Full text loading...

References

  1. GestionaleI. MagistraleL. The avocado market with focus on Colombian production and its potential export to Italy.Doctoral dissertation, Polytechnic University of Turin2024
    [Google Scholar]
  2. ArdenN.S. FisherA.C. TynerK. YuL.X. LeeS.L. KopchaM. Industry 4.0 for pharmaceutical manufacturing: Preparing for the smart factories of the future.Int. J. Pharm.202160212055410.1016/j.ijpharm.2021.12055433794326
    [Google Scholar]
  3. SugandhaS. Role of digital transformation and technology adoption in the efficiency of the pharmaceutical industry section a-research paper eur.Eur. Chem. Bull.202312568626874
    [Google Scholar]
  4. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916
    [Google Scholar]
  5. RužarovskýR. R.Holubek M.Janíček K.Velíšek G.O.Tirian Analysis of the Industry 4.0 key elements and technologies implementation in the Festo Didactic educational systems MPS 203 I4. 0.In Journal of physics: conference series,202117811012030
    [Google Scholar]
  6. VaidyaS. AmbadP. BhosleS. Industry 4.0 – A Glimpse.Procedia Manuf.20182023323810.1016/j.promfg.2018.02.034
    [Google Scholar]
  7. StrandhagenJ.W. AlfnesE. StrandhagenJ.O. VallandinghamL.R. VallandinghamL.R. The fit of Industry 4.0 applications in manufacturing logistics: A multiple case study.Adv. Manuf.20175434435810.1007/s40436‑017‑0200‑y
    [Google Scholar]
  8. SepasgozarS.M.E. ShiA. YangL. ShirowzhanS. EdwardsD.J. Additive manufacturing applications for industry 4.0: A systematic critical review.Buildings2020101223110.3390/buildings10120231
    [Google Scholar]
  9. ErbozG. How to define industry 4.0: Main pillars of industry 4.0. Managerial trends in the development of enterprises in globalization era.Slovak University of Agriculture in Nitra, Slovakia, 2017 November,761-7
    [Google Scholar]
  10. WangX. GongX. ChouK. Review on powder-bed laser additive manufacturing of Inconel 718 parts.J Eng Manuf201511410.1115/MSEC2015‑9322
    [Google Scholar]
  11. GuoN. LeuM.C. Additive manufacturing: Technology, applications and research needs.Front. Mech. Eng.20138321524310.1007/s11465‑013‑0248‑8
    [Google Scholar]
  12. IftekarS.F. AabidA. AmirA. BaigM. Advancements and limitations in 3D printing materials and technologies: A critical review.Polymerss20231511251910.3390/polym1511251937299318
    [Google Scholar]
  13. DevS. SrivastavaR. Additive manufacturing.In: Sustainability, Innovation and Procurement. 1st ed. CRC Press 2019pp. 2760
    [Google Scholar]
  14. DevS. SrivastavaR. Experimental investigation and optimization of FDM process parameters for material and mechanical strength.Mater. Today Proc.20202621995199910.1016/j.matpr.2020.02.435
    [Google Scholar]
  15. DevS. SrivastavaR. Statistical analysis and multi-criteria optimization of fused deposition additive manufacturing process for acrylic butadiene styrene parts.Proc. Inst. Mech. Eng., E J. Process Mech. Eng.202323762496250910.1177/09544089221139607
    [Google Scholar]
  16. SrivastavaS.D. Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: A case study.Prog Addit Manuf2021112
    [Google Scholar]
  17. JamrózW. SzafraniecJ. KurekM. JachowiczR. 3D printing in pharmaceutical and medical applications.Pharm. Res.201835917610.1007/s11095‑018‑2454‑x29998405
    [Google Scholar]
  18. MathewE. PitzantiG. LarrañetaE. LamprouD.A. Three-dimensional printing of pharmaceuticals and drug delivery devices.Pharmaceutics20201231910.3390/pharmaceutics1203026632183435
    [Google Scholar]
  19. HuanbuttaK. BurapapadhK. SriamornsakP. SangnimT. Practical application of 3D printing for pharmaceuticals in hospitals and pharmacies.Pharmaceutics2023157187710.3390/pharmaceutics1507187737514063
    [Google Scholar]
  20. SerranoD.R. KaraA. YusteI. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals.Pharmaceutics202315231310.3390/pharmaceutics1502031336839636
    [Google Scholar]
  21. ChakkaL.R.J. ChedeS. 3D printing of pharmaceuticals for disease treatment.Front. Med. Technol.20234January104005210.3389/fmedt.2022.104005236704231
    [Google Scholar]
  22. MazaruraK.R. KumarP. ChoonaraY.E. Customized 3D printed multi-drug systems: An effective and efficient approach to polypharmacy.Expert Opin. Drug Deliv.20221991149116310.1080/17425247.2022.212181636059243
    [Google Scholar]
  23. Sánchez-GuiralesS.A. JuradoN. KaraA. LalatsaA. SerranoD.R. Understanding direct powder extrusion for fabrication of 3D printed personalised medicines: A case study for nifedipine minitablets.Pharmaceutics20211310158310.3390/pharmaceutics1310158334683875
    [Google Scholar]
  24. MudieD.M. BuchananS. StewartA.M. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets.Int. J. Pharm. X20202February10004210.1016/j.ijpx.2020.10004232154509
    [Google Scholar]
  25. ThakkarR. PillaiA.R. ZhangJ. ZhangY. KulkarniV. ManiruzzamanM. Novel on-demand 3-dimensional (3D) printed tablets using fill density as an effective release-controlling tool.Polymerss2020129187210.3390/polym1209187232825229
    [Google Scholar]
  26. CerdaJ.R. ArifiT. AyyoubiS. Personalised 3d printed medicines: Optimising material properties for successful passive diffusion loading of filaments for fused deposition modelling of solid dosage forms.Pharmaceutics202012434510.3390/pharmaceutics1204034532290400
    [Google Scholar]
  27. SolankiN.G. TahsinM. ShahA.V. SerajuddinA.T.M. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: Screening polymers for drug release, drug-polymer miscibility and printability.J. Pharm. Sci.2018107139040110.1016/j.xphs.2017.10.02129066279
    [Google Scholar]
  28. Aguilar-de-LeyvaÁ. CasasM. FerreroC. LinaresV. CaraballoI. 3D printing direct powder extrusion in the production of drug delivery systems: State of the art and future perspectives.Pharmaceutics202416443710.3390/pharmaceutics1604043738675099
    [Google Scholar]
  29. BoniattiJ. JanuskaiteP. FonsecaL.B. Direct powder extrusion 3D printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations.Pharmaceutics2021138111410.3390/pharmaceutics1308111434452075
    [Google Scholar]
  30. CailleauxS. Sanchez-BallesterN.M. GuecheY.A. BatailleB. SoulairolI. Fused deposition modeling (FDM), the new asset for the production of tailored medicines.J. Control. Release202133082184110.1016/j.jconrel.2020.10.05633130069
    [Google Scholar]
  31. CrișanA.G. PorfireA. AmbrusR. Polyvinyl alcohol-based 3d printed tablets: Novel insight into the influence of polymer particle size on filament preparation and drug release performance.Pharmaceuticalss202114541810.3390/ph1405041834062744
    [Google Scholar]
  32. AlqahtaniA. AhmedM. MohammedA. AhmadJ. 3D printed pharmaceutical systems for personalized treatment in metabolic syndrome.Pharmaceutics2023154115210.3390/pharmaceutics1504115237111638
    [Google Scholar]
  33. MathiyalaganR. SjöholmE. ManandharS. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing.Eur. J. Pharm. Sci.2023188March10649710.1016/j.ejps.2023.10649737329925
    [Google Scholar]
  34. GottschalkN. BogdahnM. QuodbachJ. 3D printing of amorphous solid dispersions: A comparison of fused deposition modeling and drop-on-powder printing.Int. J. Pharm. X20235March10017910.1016/j.ijpx.2023.10017937025187
    [Google Scholar]
  35. HussainA. MahmoodF. ArshadM.S. Personalised 3D printed fast-dissolving tablets for managing hypertensive crisis: In-vitro/in-vivo studies.Polymerss20201212305710.3390/polym1212305733419348
    [Google Scholar]
  36. EnglezosK. WangL. TanE.C.K. KangL. 3D printing for personalised medicines: Implications for policy and practice.Int. J. Pharm.2023635February12278510.1016/j.ijpharm.2023.12278536849040
    [Google Scholar]
  37. AmekyehH. TarlochanF. BillaN. Practicality of 3D printed personalized medicines in therapeutics.Front. Pharmacol.202112April64683610.3389/fphar.2021.64683633912058
    [Google Scholar]
  38. AyyoubiS. CerdaJ.R. Fernández-GarcíaR. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms.Int. J. Pharm.202159712033610.1016/j.ijpharm.2021.12033633545280
    [Google Scholar]
  39. GuecheY.A. Sanchez-BallesterN.M. CailleauxS. BatailleB. SoulairolI. Selective laser sintering (Sls), a new chapter in the production of solid oral forms (sofs) by 3D printing.Pharmaceutics2021138121210.3390/pharmaceutics1308121234452173
    [Google Scholar]
  40. MendibilX. TenaG. DuqueA. UrangaN. CampaneroM.Á. AlonsoJ. Direct powder extrusion of paracetamol loaded mixtures for 3D printed pharmaceutics for personalized medicine via low temperature thermal processing.Pharmaceutics202113690710.3390/pharmaceutics1306090734205280
    [Google Scholar]
  41. OkwuosaTC Demand manufacturing of solid dosage forms via fused deposition modelling (FDM) 3D printing.Doctor of Philosophy at the University of Central Lancashire 2018.
    [Google Scholar]
  42. Li ChewS. de MohacL.M. Raimi-AbrahamB.T. 3D-printed solid dispersion drug.Prod. Pharm.20191112112
    [Google Scholar]
  43. De LisboaU. 3D printing of personalized medicines for paediatric use.Doctoral dissertation2019
    [Google Scholar]
  44. GoyanesA. Robles MartinezP. BasitA. GaisfordS. Effect of geometry on dissolution profiles of 3D printed tablets 1 2.Int. J. Pharm.2015494265766310.1016/j.ijpharm.2015.04.06925934428
    [Google Scholar]
  45. SkowyraJ. PietrzakK. AlhnanM.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing.Eur. J. Pharm. Sci.201568111710.1016/j.ejps.2014.11.00925460545
    [Google Scholar]
  46. KhaledS.A. BurleyJ.C. AlexanderM.R. YangJ. RobertsC.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.J. Control. Release201521730831410.1016/j.jconrel.2015.09.02826390808
    [Google Scholar]
  47. GoyanesA. BuanzA.B.M. GaisfordS. HattonG.B. AbdulW. 3D printing of modified-release dosage forms loaded with 1 aminosalicylates (4-ASA and 5-ASA).Eur. J. Pharm. Biopharm.20158915716210.1016/j.ejpb.2014.12.00325497178
    [Google Scholar]
  48. KatstraW.E. TullerH.L. Fabrication of complex oral drug delivery forms by three dimensional printing.Doctoral dissertation, Massachusetts Institute of Technology2001
    [Google Scholar]
  49. JacobS. NairA.B. PatelV. ShahJ. 3D printing technologies: Recent development and emerging applications in various drug delivery systems.AAPS PharmSciTech202021622010.1208/s12249‑020‑01771‑432748243
    [Google Scholar]
  50. WangC.C. Tejwani MotwaniM.R. RoachW.J. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology.Drug Dev. Ind. Pharm.200632336737610.1080/0363904050051930016556541
    [Google Scholar]
  51. PietrzakK. IsrebA. AlhnanM.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets.Eur. J. Pharm. Biopharm.20159638038710.1016/j.ejpb.2015.07.02726277660
    [Google Scholar]
  52. HuangW. ZhengQ. SunW. XuH. YangX. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique.Int. J. Pharm.20073391-2333810.1016/j.ijpharm.2007.02.02117412538
    [Google Scholar]
  53. WuW. YeC. ZhengQ. WuG. ChengZ. A therapeutic delivery system for chronic osteomyelitis via a multi-drug implant based on three-dimensional printing technology.J. Biomater. Appl.201631225026010.1177/088532821664066027013218
    [Google Scholar]
  54. LuY. ManthaS.N. CrowderD.C. Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays.Biofabrication20157404500110.1088/1758‑5090/7/4/04500126418306
    [Google Scholar]
  55. LimS.H. NgJ.Y. KangL. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger.Biofabrication20179101501010.1088/1758‑5090/9/1/01501028071597
    [Google Scholar]
  56. PereC.P.P. EconomidouS.N. LallG. 3D printed microneedles for insulin skin delivery.Int. J. Pharm.2018544242543210.1016/j.ijpharm.2018.03.03129555437
    [Google Scholar]
  57. ChenH. YangX. ChenL. WangY. SunY. Application of FDM three- dimensional printing technology in the digital manufacture of custom edentulous mandible trays.Nat Publ Gr2015201616
    [Google Scholar]
  58. WellerC. KleerR. PillerF.T. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited.Int. J. Prod. Econ.2015164435610.1016/j.ijpe.2015.02.020
    [Google Scholar]
  59. WangS. ChenX. HanX. A review of 3D printing technology in pharmaceutics: Technology and applications, now and future.Pharmaceutics202315241610.3390/pharmaceutics1502041636839738
    [Google Scholar]
  60. KrausS. JonesP. KailerN. WeinmannA. Chaparro-BanegasN. Roig-TiernoN. Digital transformation: An overview of the current state of the art of research.SAGE Open20211132158244021104757610.1177/21582440211047576
    [Google Scholar]
  61. PrasharG. VasudevH. BhuddhiD. Additive manufacturing: Expanding 3D printing horizon in industry 4.0.Int J Interact Des Manuf2022172221223510.1007//s12008‑022‑00956‑4
    [Google Scholar]
  62. BhamraT. HernandezR.J. Thirty years of design for sustainability: An evolution of research, policy and practice.Des Sci2021711710.1017/dsj.2021.2
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878339327250227021950
Loading
/content/journals/raddf/10.2174/0126673878339327250227021950
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test