Skip to content
2000
Volume 19, Issue 3
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction/ Objective

The Musa genus, which includes bananas and plantains, offers a natural source of polymers. These polymers are finding applications in various industries, such as pharmaceuticals, where they are used as drug delivery systems. Additionally, Musa species are used in the creation of biopolymer composites, which are eco-friendly materials, and in the production of nanocellulose, a nanomaterial with promising properties. The versatility of Musa species makes it a valuable resource for developing sustainable materials and exploring new applications. This review aims to highlight recent advances in the applications of bio-polymers, biocomposites, nanocellulose, and novel drug delivery systems using Musa species.

Methods

The review likely examines existing literature, research studies, and experimental findings related to Musa species. It may analyze the characterization, treatment, and fabrication techniques of Musa species for these applications.

Results

The multifaceted role of Musa species is emphasized, including its contribution to pharmaceutical advancements, eco-friendly polymer production, and innovative nanocellulose applications.

Conclusion

In summary, this review paper explores how Musa species can be harnessed for various technological and scientific purposes, particularly in the fields of biopolymers, biocomposites, and drug delivery systems. The tropical plant’s versatility and significance are underscored throughout the review.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878329777250311072638
2025-03-21
2025-12-08
Loading full text...

Full text loading...

References

  1. JainN.K. Controlled and Novel drug delivery.4th EdNew Delhi, IndiaCBS Publishers201916
    [Google Scholar]
  2. GanesanP. Deepa JohnA.J. SabapathyL. DuraikannuA. Review on microsphere.Amer J Drug Discov Develop20144315317910.3923/ajdd.2014.153.179
    [Google Scholar]
  3. WhelehanM. MarisonI.W. Microencapsulation using vibrating technology.J. Microencapsul.201128866968810.3109/02652048.2011.58606822047545
    [Google Scholar]
  4. YangQ. ForrestL. Drug delivery to the lymphatic system. Drug Delivery Principles and Applications.2nd EdHobokenJohn Wiley and Sons Inc201650354810.1002/9781118833322.ch21
    [Google Scholar]
  5. Vijaya ShantiB. MrudulaT.P.K.V. An imperative note on novel drug delivery systems.J. Nanomed. Nanotechnol.201127100012510.4172/2157‑7439
    [Google Scholar]
  6. ZahraZ. HabibZ. ChungS. BadshahM.A. Exposure route of TiO2 nps from industrial applications to wastewater treatment and their impacts on the agro-environment.Nanomaterials (Basel)2020108146910.3390/nano1008146932727126
    [Google Scholar]
  7. LiuZ. TabakmanS. WelsherK. DaiH. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery.Nano Res.2009228512010.1007/s12274‑009‑9009‑820174481
    [Google Scholar]
  8. OriveG. GascónA.R. HernándezR.M. Domínguez-GilA. PedrazJ.L. Techniques: New approaches to the delivery of biopharmaceuticals.Trends Pharmacol. Sci.200425738238710.1016/j.tips.2004.05.00615219981
    [Google Scholar]
  9. Zafar RazzackiS. ThwarP.K. YangM. UgazV.M. BurnsM.A. Integrated microsystems for controlled drug delivery.Adv. Drug Deliv. Rev.200456218519810.1016/j.addr.2003.08.01214741115
    [Google Scholar]
  10. ArayneM.S. SultanaN. QureshiF. Review: Nanoparticles in delivery of cardiovascular drugs.Pak. J. Pharm. Sci.2007204340348[PMID: 17604260
    [Google Scholar]
  11. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors afecting synthesis and characterization techniques.J. Nanomater.20142014141730510.1155/2014/417305
    [Google Scholar]
  12. JosephR.R. VenkatramanS.S. Drug delivery to the eye: What benefits do nanocarriers offer?Nanomedicine (Lond.)201712668370210.2217/nnm‑2016‑037928186436
    [Google Scholar]
  13. MirzaA.Z. SiddiquiF.A. Nanomedicine and drug delivery: A mini review.Int. Nano Lett.2014419410.1007/s40089‑014‑0094‑7
    [Google Scholar]
  14. RudramurthyG. SwamyM. SinniahU. GhasemzadehA. Nano- particles: Alternatives against drug-resistant pathogenic microbes.Molecules201621783610.3390/molecules2107083627355939
    [Google Scholar]
  15. GovaertsR. Nic LughadhaE. BlackN. TurnerR. PatonA. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity.Sci. Data20218121510.1038/s41597‑021‑00997‑634389730
    [Google Scholar]
  16. TaylorJ.L.S. RabeT. McGawL.J. JägerA.K. van StadenJ. Towards the scientific validation of traditional medicinal plants.Plant Growth Regul.2001341233710.1023/A:1013310809275
    [Google Scholar]
  17. ScotlandR.W. WortleyA.H. How many species of seed plants are there?Taxon200352110110410.2307/3647306
    [Google Scholar]
  18. PatonA.J. BrummittN. GovaertsR. HarmanK. HinchcliffeH. AllkinB. Towards target 1 of the global strategy for plant conservation: A working list of all known plant species: Progress and prospects.Taxon2008572602611
    [Google Scholar]
  19. ThanarajT. TerryL.A. Tropical fruit (Banana, pineapple, papaya and mango). Health-promoting properties of fruit and vegetables.OxfordshireCAB Int201135237010.1079/9781845935283.0352
    [Google Scholar]
  20. GuptaR.K. KumarS. TrivediA. VermaR Yogesh. Vitamin c and its role in body.Int. J. Pharm. Pharm. Sci.20221421510.22159/ijpps.2022v14i2.43394
    [Google Scholar]
  21. LópezG.B. MontanoF.J.G. Propiedadesfuncionales del plátano (Musa sp).Rev Med UV2014142226
    [Google Scholar]
  22. ShepherdK. Observations on musa taxonomy identification of genetic diversity in the genus Musa Proceedings of an International Workshop Held at Los Baos.Los Baos, Philippines, 5–10 Sept 1988,pp. 158165
    [Google Scholar]
  23. SimmondsN.W. ShepherdK. The taxonomy and origins of the cultivated bananas.J. Linn. Soc. Lond. Bot.19555535930231210.1111/j.1095‑8339.1955.tb00015.x
    [Google Scholar]
  24. AlvesE.J. A cultura da banana: Aspectostécnicos, socioeconômicos e agroindustriais.2nd EdBrasíliaEMBRAPA1999
    [Google Scholar]
  25. RevadigarV. Al-MansoubM.A. AsifM. Anti-oxidative and cytotoxic attributes of phenolic rich ethanol extract of Musa balbisiana colla inflorescence.J. Appl. Pharm. Sci.2017710311010.7324/JAPS.2017.70518
    [Google Scholar]
  26. SsebulibaR. TalengeraD. MakumbiD. Reproductive efficiency and breeding potential of east african highland (Musa AAA-EA) bananas.Field Crops Res.2006952-325025510.1016/j.fcr.2005.03.004
    [Google Scholar]
  27. PriceN.S. The origin and development of banana and plantain cultivation. Bananas and plantains.ChamSpringer199511310.1007/978‑94‑011‑0737‑2_1
    [Google Scholar]
  28. ChevironP. GouanvéF. EspucheE. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites.Carbohydr. Polym.201410829129810.1016/j.carbpol.2014.02.05924751276
    [Google Scholar]
  29. HuangH. YangX. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method.Carbohydr. Res.2004339152627263110.1016/j.carres.2004.08.00515476726
    [Google Scholar]
  30. ShuklaM.K. SinghR.P. ReddyC.R.K. JhaB. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications.Bioresour. Technol.201210729530010.1016/j.biortech.2011.11.09222244898
    [Google Scholar]
  31. PelissariF.M. Andrade-MahechaM.M. SobralP.J.A. MenegalliF.C. Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca).Food Hydrocoll.201330268169010.1016/j.foodhyd.2012.08.007
    [Google Scholar]
  32. PereiraA. MaraschinM. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health.J. Ethnopharmacol.201516014916310.1016/j.jep.2014.11.00825449450
    [Google Scholar]
  33. SothornvitR. PitakN. Oxygen permeability and mechanical properties of banana films.Food Res. Int.200740336537010.1016/j.foodres.2006.10.010
    [Google Scholar]
  34. WaliszewskiK.N. AparicioM.A. BelloL.A. MonroyJ.A. Changes of banana starch by chemical and physical modification.Carbohydr. Polym.200352323724210.1016/S0144‑8617(02)00270‑9
    [Google Scholar]
  35. YadavA. Banana Musa acuminata: Most popular and common indian plant with multiple pharmacological potentialsJ Pharm Biol Sci 202171364410.30574/wjbphs.2021.7.1.0073
    [Google Scholar]
  36. SimmondsN.W. ShepherdK. The taxonomy and origins of the cultivated bananas.J Linn Soci Lond Bota Bann195555302312
    [Google Scholar]
  37. SwennenR. Limits of morphotaxonomy: Names and synonyms of plantain in africa and elsewhere.Proceedings of an International Workshop (INIBAP)Montpellier, France1990172210
    [Google Scholar]
  38. BadanayakP. JoseS. BoseG. Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification.J. Nat. Fibers2023201216882110.1080/15440478.2023.2168821
    [Google Scholar]
  39. NguyenT.A. NguyenT.H. Study on mechanical properties of banana fiberreinforced materials poly (lactic acid) composites.Int. J. Chem. Eng.202212022
    [Google Scholar]
  40. RoselanM.A. AshariS.E. FaujanN.H. Mohd FaudziS.M. MohamadR. An improved nanoemulsion formulation containing kojic monooleate: Optimization, characterization and in vitro studies.Molecules20202511261610.3390/molecules2511261632512808
    [Google Scholar]
  41. PelissariF.M. Andrade-MahechaM.M. SobralP.J.A. MenegalliF.C. Biodegradable films based on rice starch and rice flour.J. Cere Sci.201351221321910.1016/j.jcs.2009.11.014
    [Google Scholar]
  42. AlothmanM. BhatR. KarimA.A. Antioxidant capacity and phenolic content of selected tropical fruits from malaysia, extracted with different solvents.Food Chem.2009115378578810.1016/j.foodchem.2008.12.005
    [Google Scholar]
  43. KalitaH. HazarikaA. KandimallaR. Development of banana (Musa paradisiaca) pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections.RSC Adv201883679136801
    [Google Scholar]
  44. OrsuwanA. ShankarS. WangL.F. SothornvitR. RhimJ.W. One-step preparation of banana powder/silver nanoparticles composite films.J. Food Sci. Technol.201754249750610.1007/s13197‑017‑2491‑128242949
    [Google Scholar]
  45. LiyanageR. RizliyaV. JayathilakeC. JayawardanaB.C. VidanarachchiJ.K. Hypolipidemic Activity and Hypoglycemic Effects of Banana Blossom (Musa acuminate Colla) Incorporated Experimental Diets in Wistar Rats.Sri Lanka Association for the Advancement of Science Proceedings of the 71st Annual Sessions, Part I Section E2 601/E2. Gangodawila, Nugegoda, Sri Lanka, 2015,pp. 16
    [Google Scholar]
  46. OkonJ.E. EsenowoG.J. AfahaI.P. UmohN.S. Haematopoietic properties of ethanolic fruit extract of musa acuminata on albino rats.Bull Env Pharmacol Life Sci201322226
    [Google Scholar]
  47. J Immunol Res 20162016408659110.1155/2016/4086591 27294156
    [Google Scholar]
  48. BennyP. ViswanathanG. ThomasS. NairA. Investigation of immunostimulatory behaviour of Musa acuminata peel extract in clarias batrachus.Inst Int Omics Appl Biotech J201013943
    [Google Scholar]
  49. SinghalM. RatraP. Investigation of immunomodulatory potential of methanolic and hexane extract of Musa acuminata peel (plantain) extracts.Glob. J. Pharmacol.20137697410.5829/idosi.gjp.2013.7.1.71145
    [Google Scholar]
  50. LeeK.H. PadzilA.M. SyahidaA. AbdullahN. ZuhainisS.W. MaziahM. Evaluation of anti-inflflammatory, antioxidant and antinociceptive activities of six malaysian medicinal plants.J. Med. Plants Res.201155555556310.5897/JMPR.9000612
    [Google Scholar]
  51. SumathyV. LachumyS.J. ZakariaZ. SasidharanS. In vitro bioactivity and phytochemical screening of Musa acuminata flower.Pharmacologyonline20112118127
    [Google Scholar]
  52. LingS.S.C. ChangS.K. SiaW.C.M. YimH.S. Antioxidant effcacy of unripe banana (Musa acuminata colla) peel extracts in sunflower oil during accelerated storage.Acta Sci. Pol. Technol. Aliment.201514434335610.17306/J.AFS.2015.4.3428068040
    [Google Scholar]
  53. AnalA.K. JaisantiS. NoomhormA. Enhanced yield of phenolic extracts from banana peels (Musa acuminata colla aaa) and cinnamon barks (Cinnamomum varum) and their antioxidative potentials in fish oil.J. Food Sci. Technol.201451102632263910.1007/s13197‑012‑0793‑x25328205
    [Google Scholar]
  54. Mohd RasidekN.A. Mad NordinM.F. ShameliK. Formulation and evaluation of semisolid jelly produced by Musa acuminata colla (aaa group) peels.Asian Pac. J. Trop. Biomed.201661555910.1016/j.apjtb.2015.09.025
    [Google Scholar]
  55. LeeE.H. YeomH.J. HaM.S. BaeD.H. Development of banana peel jelly and its antioxidant and textural properties.Food Sci. Biotechnol.201019244945510.1007/s10068‑010‑0063‑5
    [Google Scholar]
  56. UgboguE.A. UdeV.C. ElekwaI. ArunsiU.O. Uche-IkonneC. NwakanmaC. Toxicological profile of the aqueous-fermented extract of Musa paradisiaca in rats.Avicenna J. Phytomed.201886478487[PMID: 30456195
    [Google Scholar]
  57. JawaidM. ThariqM. SabaN. Durability and life prediction in bio composites, fibre-reinforced composites and hybrid composites.Cambridge, UKWoodhead Publishing201816
    [Google Scholar]
  58. RameshM. Jafrey Daniel JamesD. Sathish kumar G, Vijayan V, Raja Narayanan S, Teklemariam A. Synthesis and characterization of banana and pineapple reinforced hybrid polymer composite for reducing environmental pollution.Bioinorg. Chem. Appl.202220221634417910.1155/2022/634417935601028
    [Google Scholar]
  59. MotalebK.Z.M.A. AhadA. LaureckieneG. MilasiusR. Innovative banana fiber nonwoven reinforced polymer composites: Pre-and post-treatment effects on physical and mechanical properties.Polymers (Basel)20211321374410.3390/polym1321374434771301
    [Google Scholar]
  60. KennedJ.J. SankaranarayanasamyK. BinojJ.S. ChelliahS.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites.Compos. Sci. Technol.202018510789010.1016/j.compscitech.2019.107890
    [Google Scholar]
  61. SubramanyaR. ReddyD.N.S. SathyanarayanaP.S. Tensile, impact and fracture toughness properties of banana fibre-reinforced polymer composites.Advances in Materials and Processing Technologies20206466166810.1080/2374068X.2020.1734350
    [Google Scholar]
  62. LakshamS. HitishH. Experimental investigations of epoxy-resin-banana-fiber-saw dust bio-composite material for potential application as partitioning board.Mater. Today Proc.202310.1016/j.matpr.2023.01.237
    [Google Scholar]
  63. HirpaH.K. WangatiaL.M. DembobaS.M. Synthesizing high-strength biodegradable polymer film from ethiopian false banana pseudo-stem using poss and chitosan as a filler.J. Packa. Technol. Res.20226211512410.1007/s41783‑022‑00135‑6
    [Google Scholar]
  64. BalavairavanB. SaravanakumarS.S. Characterization of ecofriendly poly (vinyl alcohol) and green banana peel filler (gbpf) reinforced bio-films.J. Polym. Environ.20212992756277110.1007/s10924‑021‑02056‑y
    [Google Scholar]
  65. RabbiM.S. IslamT. IslamG.M.S. Injection-molded natural fiber-reinforced polymer composites–A review.Int J Mechan Mater Enginee20211611510.1186/s40712‑021‑00139‑1
    [Google Scholar]
  66. KueteM.A. Van VelthemP. BalloutW. Integrated approach to eco-friendly thermoplastic composites based on chemically recycled pet co-polymers reinforced with treated banana fibres.Polymers (Basel)20221422479110.3390/polym1422479136432919
    [Google Scholar]
  67. ArumugamC. ArumugamG.S. GanesanA. MuthusamyS. Mechanical and water absorption properties of short banana fiber/unsaturated polyester/molecular sieves+ zno nanorod hybrid nanobiocomposites.ACS Omega2021651352563527110.1021/acsomega.1c0266234984258
    [Google Scholar]
  68. BalajiA. SivaramakrishnanK. KarthikeyanB. Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites.J. Braz. Soc. Mech. Sci. Eng.201941938610.1007/s40430‑019‑1881‑x
    [Google Scholar]
  69. KumarV. ChakrabortyP. JanghuP. Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges.Carbohydrate Polymer Technol. Appl.2023610036610.1016/j.carpta.2023.100366
    [Google Scholar]
  70. TaiN.V. LinhM.N. ThuyN.M. Optimization of extraction conditions of phytochemical compounds in “xiem” banana peel powder using response surface methodology.J. Appl. Biol. Biotechnol.202196566210.7324/JABB.2021.9607
    [Google Scholar]
  71. AvramI. GateaF. VamanuE. Functional compounds from banana peel used to decrease oxidative stress effects.Processes (Basel)202210224810.3390/pr10020248
    [Google Scholar]
  72. EngL Z LooK P Microwave-assisted extraction of banana peel bio-flocculant and its potential in wastewater treatment.Glob J Eng Technol Adv 2019;1001-910.30574/gjeta.2019.1.1.0001
    [Google Scholar]
  73. AjijolakewuK.A. AyoolaA.S. AgbabiakaT.O. A review of the ethnomedicinal, antimicrobial, and phytochemical properties of Musa paradisiaca (plantain).Bull. Natl. Res. Cent.20214518610.1186/s42269‑021‑00549‑3
    [Google Scholar]
  74. AdatJ. VrunalM. MithunM. Formulation and evaluation of capsules containing herbal extracts of Musa paradisiaca for treatment of anaemia.Eur. Chem. Bull.2023121021302136
    [Google Scholar]
  75. RizkaR. Development of a gel spray formulation based on banana peel (Musa paradisiaca l.) as an approach to support environmental sustainability.2023 IOP Conf Ser: Earth Environ Sci 2023124110.1088/1755‑1315/1241/1/012102
    [Google Scholar]
  76. Al-HakimN.A. FidriannyI. AnggadiredjaK. Effect of banana (Musa sp.) peels extract in nanoemulsion dosage forms for the improvement of memory: In vitro and in vivo studies.Pharm. Nanotechnol.202210429910.2174/2211738510666220422135519
    [Google Scholar]
  77. BudiH.S. AnitasariS. UlfaN.M. Topical medicine potency of musa paradisiaca var. sapientum (l.) kuntze as oral gel for wound healing: An in vitro , in vivo study.Eur. J. Dent.202216484885510.1055/s‑0041‑174022635181871
    [Google Scholar]
  78. GozalilD. SopyanI. MustarichiR. LegowoW.P. The potential of banana fruit ranggap (Musa paradisiaca var. troglodytarum) as an excipient alternative to oral tablet dosage form.Pharmacy Education20212129810710.46542/pe.2021.212.98107
    [Google Scholar]
  79. ThanyapanichN. JimtaisongA. RawdkuenS. Functional properties of banana starch (Musa spp.) and its utilization in cosmetics.Molecules20212612363710.3390/molecules2612363734198695
    [Google Scholar]
  80. PrasadK.D. SujanaA. Formulation and evaluation of fast dissolving tablets by using Musa paradisiaca.J. Emerg. Technol. Innov. Res.202072
    [Google Scholar]
  81. AlamsyahN. DjamilR. RahmatD. Antioxidant activity of combination banana peel (Musa paradisiaca) and watermelon rind (citrullus vulgaris) extract in lotion dosage form.Asian J. Pharm. Clin. Res.20169930010.22159/ajpcr.2016.v9s3.14926
    [Google Scholar]
  82. BansalJ. MalviyaR. MalaviyaT. BhardwajV. SharmaP.K. Evaluation of banana peel pectin as excipient in solid oral dosage form.Glob. J. Pharmacol.20148275278
    [Google Scholar]
  83. ReddyV.R. Evaluation of Musa paradisiaca (banana peel) mucilage as pharmaceutical excipient.Int. J. Pharm Sci.20132416
    [Google Scholar]
  84. PorzioS. CaselliG. PellegriniL. PallottiniV. Efficacy of a new topical gel-spray formulation of ketoprofen lysine salt in the rat: Percutaneous permeation in vitro and in vivo and pharmacological activity.Pharmacol. Res.19983714710.1006/phrs.1997.0260
    [Google Scholar]
  85. AlrabiahA. AlbalawiF. AljazeaS.A. Effect of banana peels on dental bleaching: An in vitro study.Annals of Dental Specialty2024121212510.51847/Wr7Ti8B3yO
    [Google Scholar]
  86. SalmanS. G. BokhariS. W. A. AhmedH. AsadU. NaqviS. KiranR. ShahS. F. GilaniS. U. NoorA. AbidiS. MujahidS. Formulation and evaluation of novel herbal toothpaste in oral care cosmetology.J. Pharm. Negat.202220222310232310.47750/pnr.2022.13.S10.271.
    [Google Scholar]
  87. BenahmedA.G. GasmiA. MenzelA. A review on natural teeth whitening.J Oral Biosci202112223223510.1016/j.job.2021.12.002
    [Google Scholar]
  88. KumarP.S. DurgadeviS. SaravananA. UmaS. Antioxidant potential and antitumour activities of nendran banana peels in breast cancer cell line.Indian J. Pharm. Sci.201981346447310.36468/pharmaceutical‑sciences.531
    [Google Scholar]
  89. RathinamoorthyR KeerthanaS Design and development of anti-heel crack band using banana peel extract.Int. J. Mech. Eng.20216309745823
    [Google Scholar]
  90. AdetuyiB.O. OgundipeA.E. OgunlanaO.O. Banana peel as a source of nutraceuticals. Food and agricultural byproducts as important source of valuable nutraceuticals.ChamSpringer202224325010.1007/978‑3‑030‑98760‑2_17
    [Google Scholar]
  91. PrashanthiD. ChaitanyaM. A review on multiple uses of banana peel.Int. J. Sci. Res.202053120122
    [Google Scholar]
  92. CendanaW. DiadoraA.D.S. MartinusA.R. IkhtiariR. Potential effect of Musa paradisiaca peel extract on skin hydration.Semant Schol202011610.5220/0009515803790386
    [Google Scholar]
  93. MaskeA.O. Formulation and evaluation of herbal face pack for glowing skin.Int J Adv Pharm2019801e518410.7439/ijap.v8i1.5184
    [Google Scholar]
  94. WahyuniD.F. MustaryM. SyafruddinS. DeviyantiD. Formulasi masker gel peel off dari kulit pisang ambon (Musa paradisiaca var).Jurnal Sains dan Kesehatan202241485510.25026/jsk.v4i1.875
    [Google Scholar]
  95. AgustinaL. PertiwiD.M.A. YuliatiN. Optimasi dan uji mutu fisik formulasi masker gel peel – off kulit pisang (Musa paradisiaca l).J of Pharm Sci and Tech20223116317110.30649/pst.v3i1.36
    [Google Scholar]
  96. BrotoW. ArifanF. WardaniO.K. FaisalM.M. NugraheniA. Shampoo formulation based on banana extract using the maceration method.Water Technol.2022102677010.14710/10.2.67‑70
    [Google Scholar]
  97. AdeelS. HabibaM. KiranS. IqbalS. AbrarS. HassanC.M. Utilization of colored extracts for the formulation of ecological friendly plant-based green products.Sustainability (Basel)202214181175810.3390/su141811758
    [Google Scholar]
  98. SavitriD. WahyuniS. BukhariA. Anti-inflammatory effects of banana (Musa balbisiana) peel extract on acne vulgaris: in vivo and in silico study.J. Taibah Univ. Med. Sci.20231861586159810.1016/j.jtumed.2023.07.00837693819
    [Google Scholar]
  99. Fitria AprianiE. MiksusantiM. FransiskaN. Formulation and optimization peel-off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (Musa paradisiaca l) as antioxidant.Indones. J. Pharm.2022332261268
    [Google Scholar]
  100. IndrawatiT. SimanjuntakL. PratamiD.K. Hair tonic shampoo formulation with ambon banana (Musa acuminata colla) corm extract.Int J Appl Pharma202012527928510.22159/ijap.2020v12i5.37918
    [Google Scholar]
  101. ChoiD.Y. LeeY.J. HongJ.T. LeeH.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease.Brain Res. Bull.2012872-314415310.1016/j.brainresbull.2011.11.01422155297
    [Google Scholar]
  102. PilusS.S.B.M. RosliN F B.M. HassanN F B. Banana skin and glutinous rice (banana peelskin refine 2 in 1): An innovation in the field of beauty.2021Available from: [https://scholar.google.com/ scholar?
    [Google Scholar]
  103. BhavaniM. MoryaS. SaxenaD. AwuchiC.G. Bioactive, antioxidant, industrial, and nutraceutical applications of banana peel.Int. J. Food Prop.20232611277128910.1080/10942912.2023.2209701
    [Google Scholar]
  104. FarooqM.A. AliS. HassanA. TahirH.M. MumtazS. MumtazS. Biosynthesis and industrial applications of α-amylase: A review.Arch. Microbiol.202120341281129210.1007/s00203‑020‑02128‑y33481073
    [Google Scholar]
  105. SinghA. BajarS. DeviA. PantD. An overview on the recent developments in fungal cellulase production and their industrial applications.Bioresour. Technol. Rep.20211410065210.1016/j.biteb.2021.100652
    [Google Scholar]
  106. ZainiH.B.M. SintangM.D.B. PindiW. The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage.Food Sci. Nutr.20208105497550710.1002/fsn3.184733133552
    [Google Scholar]
  107. SaeedS. Ur Rehman BaigU. TayyabM. Valorization of banana peels waste into biovanillin and optimization of process parameters using submerged fermentation.Biocatal. Agric. Biotechnol.20213610215410.1016/j.bcab.2021.102154
    [Google Scholar]
  108. Kumar RanaG. SinghY. MishraS.P. RahangdaleH.K. Potential use of banana and its by-products: A review.Int. J. Curr. Microbiol. Appl. Sci.2018761827183210.20546/ijcmas.2018.706.218
    [Google Scholar]
  109. RadziH. Incorporation of banana peel fiber in jelly as a functional food precursor.Kedah, MalaysiaMalaysian Academic Library Institutional Repository20201610.3390/foods10071486
    [Google Scholar]
  110. RamliS. AlkarkhiA.F.M. ShinY.Y. Min-TzeL. EasaA.M. Effect of banana peel flour substitution on physical characteristic of yellow noodles.Int. J. Food Sci.200916032634010.1080/0963748090318350319757248
    [Google Scholar]
  111. ShafiA. AhmadF. MohammadZ.H. Effect of the addition of banana peel flour on the shelf life and antioxidant properties of cookies.ACS Food Science Technology 2022281355136310.1021/acsfoodscitech.2c00159
    [Google Scholar]
  112. AhmadM.S. SiddiquiM.W. SinghJ.P. MirH. NayyerM.A. Pre-treatments maintain the quality of banana flakes.Curr J Appl Sci Technol20193321810.9734/cjast/2019/v33i230055
    [Google Scholar]
  113. DhakeK. JainS.K. LakhawatS.S. Value addition in green banana for rural employment generation.Food Eng. Rev.2019591111
    [Google Scholar]
  114. MasekoK.M. RegnierT. MeiringB. Musa species variation, production, and the application of its processed flour: A review. Scientia Horticulturae2024325211268810.1016/j.scienta.2023.112688
    [Google Scholar]
  115. KabirM.R. HasanM.M. IslamM.R. HaqueA.R. HasanS.M.K. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties.J. Food Process. Preserv.2021453e1519110.1111/jfpp.15191
    [Google Scholar]
  116. SijabatE.K. NuruddinA. AditiawatiP. PurwasasmitaB.S. Synthesis and characterization of bacterial nanocellulose from banana peel for water filtration membrane application.J. Phys. Conf. Series.2019123001208510.1088/1742‑6596/1230/1/012085
    [Google Scholar]
  117. AhmadK. Preparation and characterization of bio-based nanocomposites packaging films reinforced with cellulose nanofibers from unripe banana peels.Starch-Starke202274210028310.1002/star.202100283
    [Google Scholar]
  118. Flores-JerónimoG. Silva-MendozaJ. Morales-San ClaudioP.C. Toxqui-TeránA. Aguilar-MartínezJ.A. Chávez-GuerreroL. Chemical and mechanical properties of films made of cellulose nanoplatelets and cellulose fibers obtained from banana pseudostem.Waste Biomass Valoriz.202112105715572310.1007/s12649‑021‑01377‑2
    [Google Scholar]
  119. SrivastavaK. DixitS. PalD. MishraP. SrivastavaP. SrivastavaN. Effect of nanocellulose on mechanical and barrier properties of pva–banana pseudostem fiber composite films.Environ. Technol. Innov.20212110131210.1016/j.eti.2020.101312
    [Google Scholar]
  120. ZhangM. GuoN. SunY. Nanocellulose aerogels from banana pseudo-stem as a wound dressing.Ind. Crops Prod.202319411638310.1016/j.indcrop.2023.116383
    [Google Scholar]
  121. FaradillaRHF Risaldi TamrinTAM Low energy and solvent free technique for the development of nanocellulose based bioplastic from banana pseudostem juice.Carbohydr. Polym. Technol. Appl.2022410026110.1016/j.carpta.2022.100261
    [Google Scholar]
  122. HariniK. RamyaK. SukumarM. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose.Carbohydr. Polym.201820132933910.1016/j.carbpol.2018.08.08130241826
    [Google Scholar]
  123. ShreedhanaK. IlavarasiR. 2020Fabrication of nanocrystalline cellulose from banana peel obtained from unripe plantain bananas.j. phys. conf. series.164401200210.1088/1742‑6596/1644/1/012002
    [Google Scholar]
  124. Alzate-ArbeláezA.F. DortaE. López-AlarcónC. CortésF.B. RojanoB.A. Immobilization of andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties.Food Chem.201929450351710.1016/j.foodchem.2019.05.08531126493
    [Google Scholar]
  125. BasumataryB. MahantaC.L. Isolation of cellulose and synthesis of nanocellulose from banana (Musa acuminata) rachis fibre and their utilization and characterization as bioactive aerogels.Biomass Convers. Biorefin.202312023
    [Google Scholar]
  126. KhanH. RaghuvanshiS. SarohaV. Biotransformation of banana peel waste into bacterial nanocellulose and its modification for active antimicrobial packaging using polyvinyl alcohol with in-situ generated silver nanoparticles.Food Packag. Shelf Life20233810111510.1016/j.fpsl.2023.101115
    [Google Scholar]
  127. Fiallos-CardenasM. Perez-MartínezS. RamirezA.D. Prospectives for the development of a circular bioeconomy around the banana value chain. sustainable production and consumption.Carbohydrate. Polymer Technologies and Applications202230541555
    [Google Scholar]
  128. MeraisM.S. KhairuddinN. SalehudinM.H. Mobin SiddiqueM.B. LepunP. ChuongW.S. Preparation and characterization of cellulose nanofibers from banana pseudostem by acid hydrolysis: Physico-chemical and thermal properties.Membranes (Basel)202212545110.3390/membranes1205045135629777
    [Google Scholar]
  129. Chávez-GuerreroL. Silva-MendozaJ. Toxqui-TeránA. Vega-BecerraO.E. Salinas-MontelongoJ.A. Pérez-CamachoO. Direct observation of endoglucanase fibrillation and rapid thickness identification of cellulose nanoplatelets using constructive interference.Carbohydr. Polym.2021254911746310.1016/j.carbpol.2020.11746333357922
    [Google Scholar]
  130. ThokchomR. DasM.J. MuchaharyS. GhoshT. DekaS.C. Nanocellulose fibers derived from culinary banana flower (Musa abb) waste: Its characterization and application.J. Packa. Technol. Res.20237311312510.1007/s41783‑023‑00156‑9
    [Google Scholar]
  131. SonawaneA. BhambarR. NeheteJ. A comprehensive review of the phytochemistry and pharmacological profiles of Musa acuminata (family: Musaceae).Int. J. Pharm. Sci. Drug Res.202416588889910.25004/IJPSDR.2024.160516
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878329777250311072638
Loading
/content/journals/raddf/10.2174/0126673878329777250311072638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test