Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Background

Genistein (GEN) shows significant anticancer potential, particularly against prostate cancer. However, its clinical application is limited by poor water solubility, rapid metabolism and excretion, low bioavailability, and lack of targeted delivery to cancer cells, hindering its effectiveness as a chemopreventive or therapeutic agent.

Objective

In this study, poly-ε-caprolactone (PCL) nanoparticles incorporating polyvinyl alcohol (PVA) as a stabilizer were engineered to encapsulate genistein (GEN) effectively. Utilizing a Quality by Design (QbD) methodology, the development and optimization of these nanoparticles were systematically approached.

Methods

GEN-loaded PCL nanoparticles (NPs) were prepared using the Solvent Evaporation Technique, ideal for encapsulating hydrophobic drugs. A Plackett–Burman design (PBD) identified key factors, followed by a Box–Behnken design (BBD) to optimize nanoparticle quality. The NPs were evaluated for particle size, zeta potential (ZP), polydispersity index (PDI), morphology, encapsulation efficiency (EE), drug release, and cytotoxicity.

Results

The optimized formulation containing PCL, PVA, and Volume of organic solvent as 43.7 mg, 6.2 mg, and 10.0 ml, respectively was chosen because it showed EE (%) of 94.0%, average particle size of 150 nm, PDI of 0.10, ZP of -28.0 and exhibited sustained release of GEN for around four days. The antiproliferative activities of GEN PCL NPs were confirmed by the MTT test on malignant prostate carcinoma cell lines (PC3). Flow cytometric analysis showed that the inhibition of cell proliferation of more potent GEN PCL NPs is comparable with the effects of free GEN.

Conclusion

The findings indicate that genistein-loaded PCL nanoparticles have the potential to augment the anticancer efficacy of genistein, both and . This suggests their promise as a viable candidate for prostate cancer treatment.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878321778241010121358
2024-10-28
2025-09-05
Loading full text...

Full text loading...

References

  1. ZhaoJ. ZhangC. WangW. LiC. MuX. HuK. Current progress of nanomedicine for prostate cancer diagnosis and treatment.Biomed. Pharmacother.202215511371410.1016/j.biopha.2022.113714 36150309
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  3. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  4. OlivasA. PriceR.S. Obesity, inflammation, and advanced prostate cancer.Nutr. Cancer20217311-122232224810.1080/01635581.2020.1856889 33287566
    [Google Scholar]
  5. HuangY.T. TsengN.C. ChenY.K. The detection performance of 18F–prostate-specific membrane Antigen-1007 PET/CT in primary prostate cancer.Clin. Nucl. Med.202247975576210.1097/RLU.0000000000004228 35452013
    [Google Scholar]
  6. SulaimanG.M. WaheebH.M. JabirM.S. KhazaalS.H. DewirY.H. NaidooY. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model.Sci. Rep.2020101936210.1038/s41598‑020‑66419‑6 32518242
    [Google Scholar]
  7. LiQ.S. LiC.Y. LiZ.L. ZhuH.L. Genistein and its synthetic analogs as anticancer agents.Anticancer. Agents Med. Chem.201212327128110.2174/187152012800228788 22043996
    [Google Scholar]
  8. UllahM.F. AhmadA. ZubairH. Soy isoflavone genistein induces cell death in breast cancer cells through mobilization of endogenous copper ions and generation of reactive oxygen species.Mol. Nutr. Food Res.201155455355910.1002/mnfr.201000329 21462322
    [Google Scholar]
  9. HussainA. HarishG. PrabhuS.A. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression.Cancer Epidemiol.2012366e387e39310.1016/j.canep.2012.07.005 22884883
    [Google Scholar]
  10. LiH.Q. LuoY. QiaoC.H. The mechanisms of anticancer agents by genistein and synthetic derivatives of isoflavone.Mini Rev. Med. Chem.201212435036210.2174/138955712799829258 22303948
    [Google Scholar]
  11. VodnikV.V. MojićM. StamenovićU. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines.Mater. Sci. Eng. C202112411207810.1016/j.msec.2021.112078 33947570
    [Google Scholar]
  12. WangG. ZhangD. YangS. WangY. TangZ. FuX. Co-administration of genistein with doxorubicin-loaded polypeptide nanoparticles weakens the metastasis of malignant prostate cancer by amplifying oxidative damage.Biomater. Sci.20186482783510.1039/C7BM01201B 29480308
    [Google Scholar]
  13. GaoX. WangB. WeiX. Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer.Nanoscale20124227021703010.1039/c2nr32181e 23044718
    [Google Scholar]
  14. GongC. DengS. WuQ. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles.Biomaterials20133441413143210.1016/j.biomaterials.2012.10.068 23164423
    [Google Scholar]
  15. HuangL. ChenH. ZhengY. Nanoformulation of d -α-tocopheryl polyethylene glycol 1000 succinate-b-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy.Integr. Biol.2011310993100210.1039/c1ib00026h 21938302
    [Google Scholar]
  16. ZhangH. CuiW. BeiJ. WangS. Preparation of poly(lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution.Polym. Degrad. Stabil.20069191929193610.1016/j.polymdegradstab.2006.03.004
    [Google Scholar]
  17. HansM.L. LowmanA.M. Biodegradable nanoparticles for drug delivery and targeting.Curr. Opin. Solid State Mater. Sci.20026431932710.1016/S1359‑0286(02)00117‑1
    [Google Scholar]
  18. TroianoG. NolanJ. ParsonsD. Van Geen HovenC. ZaleS. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products.AAPS J.20161861354136510.1208/s12248‑016‑9969‑z 27631558
    [Google Scholar]
  19. SoniG. KaleK. ShettyS. GuptaM.K. YadavK.S. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer.Heliyon202064e0384610.1016/j.heliyon.2020.e03846 32373744
    [Google Scholar]
  20. HassanH. AdamS.K. AliasE. Meor Mohd AffandiM.M.R. ShamsuddinA.F. BasirR. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir.Molecules20212618543210.3390/molecules26185432 34576904
    [Google Scholar]
  21. RathodV.R. ShahD.A. DaveR.H. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: Preformulation screening studies and statistical hybrid-design for optimization of variables.Drug Dev. Ind. Pharm.202046344345510.1080/03639045.2020.1724135 32037896
    [Google Scholar]
  22. JainP. MirzaM.A. ReyazE. QbD-Assisted development and optimization of doxycycline hyclate- and hydroxyapatite-loaded nanoparticles for periodontal delivery.ACS Omega2024944455446510.1021/acsomega.3c07092 38313517
    [Google Scholar]
  23. TangJ. XuN. JiH. LiuH. WangZ. WuL. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment.Int. J. Nanomedicine2011624292435 22072878
    [Google Scholar]
  24. BohreyS. ChourasiyaV. PandeyA. Polymeric nanoparticles containing diazepam: Preparation, optimization, characterization, in-vitro drug release and release kinetic study.Nano Converg.201631310.1186/s40580‑016‑0061‑2 28191413
    [Google Scholar]
  25. RybakE. KowalczykP. Czarnocka-ŚniadałaS. WojasińskiM. TrzcińskiJ. CiachT. Microfluidic-assisted formulation of ε-polycaprolactone nanoparticles and evaluation of their properties and in vitro cell uptake.Polymers (Basel)20231522437510.3390/polym15224375 38006099
    [Google Scholar]
  26. ChenT. XingF. SunY. Facile fabrication of TPGS-PCL polymeric nanoparticles for paclitaxel delivery to breast cancer: Investigation of antiproliferation and apoptosis induction.J. Exp. Nanosci.2024191228193810.1080/17458080.2023.2281938
    [Google Scholar]
  27. AmasyaG. BadilliU. AksuB. TarimciN. Quality by design case study 1: Design of 5-fluorouracil loaded lipid nanoparticles by the W/O/W double emulsion — Solvent evaporation method.Eur. J. Pharm. Sci.2016849210210.1016/j.ejps.2016.01.003 26780593
    [Google Scholar]
  28. Laime-OviedoL.A. Arenas-ChávezC.A. YáñezJ.A. Vera-GonzálesC.A. Plackett-Burman design in the biosynthesis of silver nanoparticles with Mutisia acuminatta (Chinchircoma) and preliminary evaluation of its antibacterial activity.F1000 Res.202312146210.12688/f1000research.140883.1 38434649
    [Google Scholar]
  29. YerlikayaF. OzgenA. VuralI. Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach.J. Pharm. Sci.2013102103748376110.1002/jps.23686 23918313
    [Google Scholar]
  30. CanchiA. KhosaA. SinghviG. BanerjeeS. DubeyS.K. Design and characterization of polymeric nanoparticles of pioglitazone hydrochloride and study the effect of formulation variables using qbd approach.J. Drug Deliv. Ther.201723162168
    [Google Scholar]
  31. EkinciM. YeğenG. AksuB. İlem-ÖzdemirD. Preparation and evaluation of poly(lactic acid)/poly(vinyl alcohol) nanoparticles using the quality by design approach.ACS Omega2022738337933380710.1021/acsomega.2c02141 36188287
    [Google Scholar]
  32. MirnezamiS.M.S. HeydarinasabA. AkbarzadehkhyaviA. AdrjmandM. Development and optimization of lipid-polymer hybrid nanoparticles containing melphalan using central composite design and its effect on ovarian cancer cell lines.Iran. J. Pharm. Res.2021204213228 35194441
    [Google Scholar]
  33. NikaeenG. YousefinejadS. RahmdelS. SamariF. MahdaviniaS. Central composite design for optimizing the biosynthesis of silver nanoparticles using plantago major extract and investigating antibacterial, antifungal and antioxidant activity.Sci. Rep.2020101964210.1038/s41598‑020‑66357‑3 32541669
    [Google Scholar]
  34. KhanM.M. ZaidiS.S. SiyalF.J. Statistical optimization of co-loaded rifampicin and pentamidine polymeric nanoparticles for the treatment of cutaneous leishmaniasis.J. Drug Deliv. Sci. Technol.20237910400510.1016/j.jddst.2022.104005
    [Google Scholar]
  35. MurdandeS.B. ShahD.A. DaveR.H. Impact of nanosizing on solubility and dissolution rate of poorly soluble pharmaceuticals.J. Pharm. Sci.201510462094210210.1002/jps.24426 25821105
    [Google Scholar]
  36. SantosS. NevesA.R. SilvaA. BarbosaM. ReisS. BarbosaJ. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells.Int. J. Nanomedicine2016113501351610.2147/IJN.S108694 27555771
    [Google Scholar]
  37. KoshyO. SubramanianL. ThomasS. Differential scanning calorimetry in nanoscience and nanotechnology. In: Thermal and Rheological Measurement Techniques for Nanomaterials Characterization.Amsterdam, NetherlandsElsevier201710912210.1016/B978‑0‑323‑46139‑9.00005‑0
    [Google Scholar]
  38. WengJ. TongH.H.Y. ChowS.F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method.Pharmaceutics202012873210.3390/pharmaceutics12080732 32759786
    [Google Scholar]
  39. MeadH. ParaskevopoulouV. SmithN. Developing a robust in vitro release method for a polymeric nanoparticle: Challenges and learnings.Int. J. Pharm.202364412331710.1016/j.ijpharm.2023.123317 37586575
    [Google Scholar]
  40. AbbadS. WangC. WaddadA.Y. LvH. ZhouJ. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate.Int. J. Nanomedicine2015101305320 25609946
    [Google Scholar]
  41. SunY. LiB. CaoQ. LiuT. LiJ. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment.Stem Cell Res. Ther.202213148910.1186/s13287‑022‑03180‑9 36182897
    [Google Scholar]
  42. GuinartA. PerryH.L. Wilton-ElyJ.D.E.T. TetleyT.D. Gold nanomaterials in the management of lung cancer.Emerg. Top. Life Sci.20204662764310.1042/ETLS20200332 33270840
    [Google Scholar]
  43. ThakurR. SharmaA. AroraV. Nanoparticles methods for hydrophobic drugs — A novel approach: Graphical abstract.Materials Open20231235000210.1142/S2811086223500024
    [Google Scholar]
  44. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnol2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  45. IqbalM. ZafarN. FessiH. ElaissariA. Double emulsion solvent evaporation techniques used for drug encapsulation.Int. J. Pharm.2015496217319010.1016/j.ijpharm.2015.10.057 26522982
    [Google Scholar]
  46. HoaL.T.M. ChiN.T. NguyenL.H. ChienD.M. Preparation and characterisation of nanoparticles containing ketoprofen and acrylic polymers prepared by emulsion solvent evaporation method.J. Exp. Nanosci.20127218919710.1080/17458080.2010.515247
    [Google Scholar]
  47. KızılbeyK. Optimization of rutin-loaded plga nanoparticles synthesized by single-emulsion solvent evaporation method.ACS Omega20194155556210.1021/acsomega.8b02767
    [Google Scholar]
  48. NordströmP. Formation of polymeric nanoparticles encapsulating and releasing a new hydrophobic cancer drug2011
    [Google Scholar]
  49. UllahF. IqbalZ. KhanA. Formulation development and characterization of ph responsive polymeric nano-pharmaceuticals for targeted delivery of anti-cancer drug (methotrexate).Front. Pharmacol.20221391177110.3389/fphar.2022.911771 35860013
    [Google Scholar]
  50. WangJ. SuiM. FanW. Nanoparticles for tumor targeted therapies and their pharmacokinetics.Curr. Drug Metab.201011212914110.2174/138920010791110827 20359289
    [Google Scholar]
  51. PandeyA.P. KarandeK.P. SonawaneR.O. DeshmukhP.K. Applying quality by design (QbD) concept for fabrication of chitosan coated nanoliposomes.J. Liposome Res.2014241375210.3109/08982104.2013.826243 23941613
    [Google Scholar]
  52. LiuD. GeY. TangY. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: Preparation, characterization and in vitro studies.J. Microencapsul.201027872673410.3109/02652048.2010.513456 21034365
    [Google Scholar]
  53. PatraA. SatpathyS. NaikP.K. KaziM. HussainM.D. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of genistein in ovarian cancer.Artif. Cells Nanomed. Biotechnol.202250122823910.1080/21691401.2022.2118758 36330543
    [Google Scholar]
  54. DewanganH.K. MauryaL. SharmaR. ShahK. SoniS. SinghS. Optimization, evaluation and delivery of genistein loaded long circulating nanostructured lipid carriers for treatment of cancer melanoma cells.Res Square2023
    [Google Scholar]
  55. BadriW. MiladiK. NazariQ.A. FessiH. ElaissariA. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement.Colloids Surf. A Physicochem. Eng. Asp.201751623824410.1016/j.colsurfa.2016.12.029
    [Google Scholar]
  56. ChornyM. FishbeinI. DanenbergH.D. GolombG. Study of the drug release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods.J. Control. Release200283340141410.1016/S0168‑3659(02)00210‑9 12387948
    [Google Scholar]
  57. Gonzalez-MiraE. EgeaM.A. SoutoE.B. CalpenaA.C. GarcíaM.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.Nanotechnology201122404510110.1088/0957‑4484/22/4/045101
    [Google Scholar]
  58. SantosD.T. MartínÁ. MeirelesM.A.A. CoceroM.J. Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions.J. Supercrit. Fluids20126116717410.1016/j.supflu.2011.09.011
    [Google Scholar]
  59. BaoY. MaekiM. IshidaA. TaniH. TokeshiM. Effect of organic solvents on a production of plga-based drug-loaded nanoparticles using a microfluidic device.ACS Omega2022737330793308610.1021/acsomega.2c03137 36157756
    [Google Scholar]
  60. JavaidS. AhmadN.M. MahmoodA. Cefotaxime loaded polycaprolactone based polymeric nanoparticles with antifouling properties for in-vitro drug release applications.Polymers (Basel)20211313218010.3390/polym13132180 34209144
    [Google Scholar]
  61. ErfleP. RieweJ. BunjesH. DietzelA. Stabilized production of lipid nanoparticles of tunable size in taylor flow glass devices with high-surface-quality 3d microchannels.Micromachines (Basel)201910422010.3390/mi10040220 30934803
    [Google Scholar]
  62. OuchiH. IshiguroH. IkedaN. HoriM. KubotaY. UemuraH. Genistein induces cell growth inhibition in prostate cancer through the suppression of telomerase activity.Int. J. Urol.2005121738010.1111/j.1442‑2042.2004.00973.x 15661057
    [Google Scholar]
  63. TuliH.S. TuorkeyM.J. ThakralF. Molecular mechanisms of action of genistein in cancer: Recent advances.Front. Pharmacol.201910133610.3389/fphar.2019.01336 31866857
    [Google Scholar]
  64. JiangM. GuD. DaiJ. HuangQ. TianL. Dark side of cytotoxic therapy: Chemoradiation-induced cell death and tumor repopulation.Trends Cancer20206541943110.1016/j.trecan.2020.01.018 32348737
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878321778241010121358
Loading
/content/journals/raddf/10.2174/0126673878321778241010121358
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test