Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Skin cancer is the most common type of cancer among white people, according to the World Health Organisation. The incidence of melanoma and non-melanoma skin cancers has increased to epidemic levels, making them the most widespread type of skin cancer. Melanoma is a very aggressive form of cancer, characterized by limited treatment choices due to multidrug resistance and an extremely low probability of patient survival. This article explores the various impediments and limitations associated with conventionally available treatments. Chemotherapy, radiation, immunotherapy, and targeted therapy are among the conventional treatments for melanoma; however, each of these approaches has several adverse reactions. Recently, there has been a focus on biological and pharmacological research on developing alternative, site-specific therapy approaches. Nanotechnology offers several benefits in this regard, with the potential to enhance the longevity of melanoma patients while minimizing adverse effects. Nanoparticles serve as effective drug carrier systems due to their capacity to improve the solubility of medications with low water solubility, modify pharmacokinetics, prolong drug half-life by reducing immunogenicity, boost bioavailability, and decrease drug metabolism. This article highlights recent advancements in utilizing several nanotechnological techniques, including solid lipid nanoparticles, nanostructured lipid carriers, liposomes, transferosomes, ethosomes, and nanoemulsion polymeric mixed micelles.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385312923240604105336
2024-06-24
2025-11-07
Loading full text...

Full text loading...

References

  1. YanJ.K. PeiJ.J. MaH.L. WangZ.B. LiuY.S. Advances in antitumor polysaccharides from phellinus sensu lato: Production, isolation, structure, antitumor activity, and mechanisms.Crit. Rev. Food Sci. Nutr.20175761256126910.1080/10408398.2014.98480226506312
    [Google Scholar]
  2. RogersH.W. WeinstockM.A. FeldmanS.R. ColdironB.M. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012.JAMA Dermatol.2015151101081108610.1001/jamadermatol.2015.118725928283
    [Google Scholar]
  3. GlazerA.M. WinkelmannR.R. FarbergA.S. RigelD.S. Analysis of trends in US melanoma incidence and mortality.JAMA Dermatol.2017153222522610.1001/jamadermatol.2016.451228002545
    [Google Scholar]
  4. BradfordP.T. Skin cancer in skin of color. Dermatology nursing/Dermatology Nurses’.Association.2009214170
    [Google Scholar]
  5. RogersH.W. WeinstockM.A. HarrisA.R. HinckleyM.R. FeldmanS.R. FleischerA.B. ColdironB.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006.Arch. Dermatol.2010146328328710.1001/archdermatol.2010.1920231499
    [Google Scholar]
  6. NarayananD.L. SaladiR.N. FoxJ.L. Review: Ultraviolet radiation and skin cancer.Int. J. Dermatol.201049997898610.1111/j.1365‑4632.2010.04474.x20883261
    [Google Scholar]
  7. SimõesM.C.F. SousaJ.J.S. PaisA.A.C.C. Skin cancer and new treatment perspectives: A review.Cancer Lett.2015357184210.1016/j.canlet.2014.11.00125444899
    [Google Scholar]
  8. O’DriscollL. McMorrowJ. DoolanP. McKiernanE. MehtaJ. RyanE. GammellP. JoyceH. O’DonovanN. WalshN. ClynesM. Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays.Mol. Cancer2006517410.1186/1476‑4598‑5‑7417173689
    [Google Scholar]
  9. WongC.S.M. StrangeR.C. LearJ.T. Basal cell carcinoma.BMJ2003327741879479810.1136/bmj.327.7418.79414525881
    [Google Scholar]
  10. LomasA. Leonardi-BeeJ. Bath-HextallF. A systematic review of worldwide incidence of nonmelanoma skin cancer.Br. J. Dermatol.201216651069108010.1111/j.1365‑2133.2012.10830.x22251204
    [Google Scholar]
  11. GarbeC. SchadendorfD. StolzW. VolkenandtM. ReinholdU. KortmannR.D. KettelhackC. FrerichB. KeilholzU. DummerR. SebastianG. Short German guidelines: Malignant melanoma.JDDG20166S9S14
    [Google Scholar]
  12. SloraMaligni melanom (C43): Slora, 2016.2010Available From :http://www.slora.si/c/document_library/get_file?uuid=c2e610c7-5353-40dd-93e9-1b1b2320e3e1&groupId=11561
  13. SlovenijiR. Cancer in Slovenia.Onkološki inštitut Ljubljana2010
    [Google Scholar]
  14. ShimizuI. CruzA. ChangK.H. DufresneR.G. Treatment of squamous cell carcinoma in situ: A review.Dermatol. Surg.201137101394141110.1111/j.1524‑4725.2011.02088.x21767324
    [Google Scholar]
  15. MatsuiT. AmagaiM. Dissecting the formation, structure and barrier function of the stratum corneum.Int. Immunol.201527626928010.1093/intimm/dxv01325813515
    [Google Scholar]
  16. ShendeP VaidyaJ GaudRS Pharmacotherapeutic approaches for transportation of anticancer agents via skin.Artif Cells Nanomed Biotechnol201846sup3S423S43310.1080/21691401.2018.1498349
    [Google Scholar]
  17. McGrathJA EadyRA PopeFM Anatomy and organization of human skin.In: Rook's Textbook of Dermatology, Seventh EditionWiley20044512810.1002/9780470750520.ch3
    [Google Scholar]
  18. DepieriL.V. Garcia PraçaF.S. CamposP.M. Lopes Badra BentleyM.V. Advances in the bioanalytical study of drug delivery across the skin.Ther. Deliv.20156557159410.4155/tde.15.2026001174
    [Google Scholar]
  19. Ferreira LimaA.M. DanielC.R. NavarroR.S. BodaneseB. PasqualucciC.A. Tavares PachecoM.T. ZângaroR.A. SilveiraL.Jr Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy.Vib. Spectrosc.201910013114110.1016/j.vibspec.2018.11.009
    [Google Scholar]
  20. P SantosI. van DoornR. CaspersP.J. Bakker SchutT.C. BarrosoE.M. NijstenT.E.C. Noordhoek HegtV. KoljenovićS. PuppelsG.J. Improving clinical diagnosis of early-stage cutaneous melanoma based on Raman spectroscopy.Br. J. Cancer2018119111339134610.1038/s41416‑018‑0257‑930410059
    [Google Scholar]
  21. BaruaS. MitragotriS. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects.Nano Today20149222324310.1016/j.nantod.2014.04.00825132862
    [Google Scholar]
  22. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  23. JainR.K. StylianopoulosT. Delivering nanomedicine to solid tumors.Nat. Rev. Clin. Oncol.201071165366410.1038/nrclinonc.2010.13920838415
    [Google Scholar]
  24. DonahueN.D. AcarH. WilhelmS. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.Adv. Drug Deliv. Rev.2019143689610.1016/j.addr.2019.04.00831022434
    [Google Scholar]
  25. KaksonenM. RouxA. Mechanisms of clathrin-mediated endocytosis.Nat. Rev. Mol. Cell Biol.201819531332610.1038/nrm.2017.13229410531
    [Google Scholar]
  26. WangZ. TiruppathiC. MinshallR.D. MalikA.B. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells.ACS Nano20093124110411610.1021/nn901227419919048
    [Google Scholar]
  27. WuW. LuoL. WangY. WuQ. DaiH.B. LiJ.S. DurkanC. WangN. WangG.X. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.Theranostics20188113038305810.7150/thno.2345929896301
    [Google Scholar]
  28. GereckeC. EdlichA. GiulbudagianM. SchumacherF. ZhangN. SaidA. YeallandG. LohanS.B. NeumannF. MeinkeM.C. MaN. CalderónM. HedtrichS. Schäfer-KortingM. KleuserB. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes.Nanotoxicology201711226727710.1080/17435390.2017.129237128165853
    [Google Scholar]
  29. NikolaouM. PavlopoulouA. GeorgakilasA.G. KyrodimosE. The challenge of drug resistance in cancer treatment: A current overview.Clin. Exp. Metastasis201835430931810.1007/s10585‑018‑9903‑029799080
    [Google Scholar]
  30. Kartal-YandimM. Adan-GokbulutA. BaranY. Molecular mechanisms of drug resistance and its reversal in cancer.Crit. Rev. Biotechnol.201636471672610.3109/07388551.2015.101595725757878
    [Google Scholar]
  31. KalalB.S. UpadhyaD. PaiV.R. Chemotherapy resistance mechanisms in advanced skin cancer.Oncol. Rev.201711132610.4081/oncol.2017.32628382191
    [Google Scholar]
  32. AndreiL. KasasS. Ochoa GarridoI. StankovićT. Suárez KorsnesM. VaclavikovaR. AssarafY.G. PešićM. Advanced technological tools to study multidrug resistance in cancer.Drug Resist. Updat.20204810065810.1016/j.drup.2019.10065831678863
    [Google Scholar]
  33. AlQathamaA. EzuruikeU.F. MazzariA.L.D.A. YonbawiA. ChieliE. PrietoJ.M. Effects of selected Nigerian medicinal plants on the viability, mobility, and multidrug-resistant mechanisms in liver, colon, and skin cancer cell lines.Front. Pharmacol.20201154643910.3389/fphar.2020.54643933071779
    [Google Scholar]
  34. FengS. ZhouH. WuD. ZhengD. QuB. LiuR. ZhangC. LiZ. XieY. LuoH.B. Nobiletin and its derivatives overcome multidrug resistance (MDR) in cancer: Total synthesis and discovery of potent MDR reversal agents.Acta Pharm. Sin. B202010232734310.1016/j.apsb.2019.07.00732082977
    [Google Scholar]
  35. DobiasováS. ŘehořováK. KučerováD. BiedermannD. KáňováK. PetráskováL. KouckáK. VáclavíkováR. ValentováK. RumlT. MacekT. KřenV. ViktorováJ. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential.Antioxidants20209545510.3390/antiox905045532466263
    [Google Scholar]
  36. GeethaT. KapilaM. PrakashO. DeolP.K. KakkarV. KaurI.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.J. Drug Target.201523215916910.3109/1061186X.2014.96571725268273
    [Google Scholar]
  37. de JesusMB FerreiraCV de PaulaE HoekstraD ZuhornIS Design of solid lipid nanoparticles for gene delivery into prostate cancer.J Control Release20101481e89e9010.1016/j.jconrel.2010.07.065
    [Google Scholar]
  38. DianzaniC ZaraGP MainaG PettazzoniP PizzimentiS RossiF GigliottiCL CiamporceroES DagaM BarreraG Drug delivery nanoparticles in skin cancers.Biomed Res Int2014201489598610.1155/2014/895986
    [Google Scholar]
  39. ClementeN. FerraraB. Gigliotti CL, et al. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Inter J Mol Sci2018192255
    [Google Scholar]
  40. BanerjeeI. DeM. DeyG. BhartiR. ChattopadhyayS. AliN. ChakrabartiP. ReisR.L. KunduS.C. MandalM. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model.Biomater. Sci.2019731161117810.1039/C8BM01403E30652182
    [Google Scholar]
  41. MaltaR. LoureiroJ.B. CostaP. SousaE. PintoM. SaraivaL. AmaralM.H. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma.J. Drug Deliv. Sci. Technol.20216110222610.1016/j.jddst.2020.102226
    [Google Scholar]
  42. LiuJ. HuW. ChenH. NiQ. XuH. YangX. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery.Int. J. Pharm.2007328219119510.1016/j.ijpharm.2006.08.00716978810
    [Google Scholar]
  43. LipozencicJ. LjubojevicS. Perioral dermatitis.Clin. Dermatol.201129215716110.1016/j.clindermatol.2010.09.00721396555
    [Google Scholar]
  44. HenggeU.R. RuzickaT. SchwartzR.A. CorkM.J. Adverse effects of topical glucocorticosteroids.J. Am. Acad. Dermatol.200654111510.1016/j.jaad.2005.01.01016384751
    [Google Scholar]
  45. Santos MaiaC. MehnertW. SchallerM. KortingH.C. GyslerA. HaberlandA. Schäfer-kortingM. Drug targeting by solid lipid nanoparticles for dermal use.J. Drug Target.200210648949510.1080/106118602100003836412575739
    [Google Scholar]
  46. PorterC.J.H. WilliamsH.D. TrevaskisN.L. Recent advances in lipid-based formulation technology.Pharm. Res.201330122971297510.1007/s11095‑013‑1229‑724158727
    [Google Scholar]
  47. ZhangN. ZhangN. How nanotechnology can enhance docetaxel therapy.Int. J. Nanomedicine201382927294110.2147/IJN.S4692123950643
    [Google Scholar]
  48. SlingerlandM. GuchelaarH.J. GelderblomH. Liposomal drug formulations in cancer therapy: 15 years along the road.Drug Discov. Today2012173-416016610.1016/j.drudis.2011.09.01521983329
    [Google Scholar]
  49. YanoJ. HirabayashiK. NakagawaS. YamaguchiT. NogawaM. KashimoriI. NaitoH. KitagawaH. IshiyamaK. OhgiT. IrimuraT. Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer.Clin. Cancer Res.200410227721772610.1158/1078‑0432.CCR‑04‑104915570006
    [Google Scholar]
  50. MuthuM.S. FengS.S. Theranostic liposomes for cancer diagnosis and treatment: Current development and pre-clinical success.Expert Opin. Drug Deliv.201310215115510.1517/17425247.2013.72957623061654
    [Google Scholar]
  51. SoenenS.J.H. CocquytJ. DefourL. SaveynP. MeerenP.V. CuyperM.D. Design and development of magnetoliposome-based theranostics.Mater. Manuf. Process.200823661161410.1080/10426910802160635
    [Google Scholar]
  52. HuangS.L. Liposomes in ultrasonic drug and gene delivery.Adv. Drug Deliv. Rev.200860101167117610.1016/j.addr.2008.03.00318479776
    [Google Scholar]
  53. LeeE.H. LimS.J. LeeM.K. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma.Carbohydr. Polym.201922411514310.1016/j.carbpol.2019.11514331472877
    [Google Scholar]
  54. MishraH. MishraP.K. IqbalZ. JaggiM. MadaanA. BhuyanK. GuptaN. GuptaN. VatsK. VermaR. TalegaonkarS. Co-delivery of eugenol and dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma.Pharmaceutics201911416310.3390/pharmaceutics1104016330987266
    [Google Scholar]
  55. du PlessisJ. EgbariaK. RamachandranC. WeinerN. Topical delivery of liposomally encapsulated gamma-interferon.Antiviral Res.1992183-425926510.1016/0166‑3542(92)90059‑E1416907
    [Google Scholar]
  56. RaberA.S. MittalA. SchäferJ. BakowskyU. ReichrathJ. VogtT. SchaeferU.F. HansenS. LehrC.M. Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm.J. Control. Release2014179253210.1016/j.jconrel.2014.01.01824486055
    [Google Scholar]
  57. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta Biomembr.19921104122623210.1016/0005‑2736(92)90154‑E1550849
    [Google Scholar]
  58. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.00324981757
    [Google Scholar]
  59. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research.Int. J. Pharm.20073321-211610.1016/j.ijpharm.2006.12.00517222523
    [Google Scholar]
  60. MahmoodS. TaherM. MandalU.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application.Int. J. Nanomedicine201494331434625246789
    [Google Scholar]
  61. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑712100992
    [Google Scholar]
  62. WalveJR BakliwalSR RaneBR PawarSP Transfersomes: A surrogated carrier for transdermal drug delivery system.Int. J. Appl. Biol. Pharm.201121204213
    [Google Scholar]
  63. ChauhanP. TyagiB.K. Herbal novel drug delivery systems and transfersomes.J. Drug Deliv. Ther.20188316216810.22270/jddt.v8i3.1772
    [Google Scholar]
  64. JiangT. WangT. LiT. MaY. ShenS. HeB. MoR. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma.ACS Nano201812109693970110.1021/acsnano.8b0380030183253
    [Google Scholar]
  65. RajanR. VasudevanD.T. Biju MukundV.P. JoseS. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.8552422171309
    [Google Scholar]
  66. KumarG.P. RajeshwarraoP. Nonionic surfactant vesicular systems for effective drug delivery—an overview.Acta Pharm. Sin. B20111420821910.1016/j.apsb.2011.09.002
    [Google Scholar]
  67. CipollaD. WuH. GondaI. EastmanS. RedelmeierT. ChanH.K. Modifying the release properties of liposomes toward personalized medicine.J. Pharm. Sci.201410361851186210.1002/jps.2396924715635
    [Google Scholar]
  68. DudhipalaN. Phasha MohammedR. Adel Ali YoussefA. BanalaN. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation.Drug Dev. Ind. Pharm.20204681334134410.1080/03639045.2020.178806932598194
    [Google Scholar]
  69. PurohitD.K. NandgudeT.D. PoddarS.S. Nano-lipid carriers for topical application: Current scenario.Asian J. Pharm.201610119
    [Google Scholar]
  70. NatarajanJ. VvsrK. DeA. Nanostructured Lipid Carrier (NLC): A Promising drug delivery system.Glob J Nanomedicine201715555575
    [Google Scholar]
  71. FangC-L. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/18722101380448482722946628
    [Google Scholar]
  72. kaurS. NautyalU. SinghR. SinghS. DeviA. Nanostructure Lipid Carrier (NLC): The new generation of lipid nanoparticles.Asian Pacific Journal of Health Sciences201522769310.21276/apjhs.2015.2.2.14
    [Google Scholar]
  73. DongL. LiY. LiZ. XuN. LiuP. DuH. ZhangY. HuangY. ZhuJ. RenG. XieJ. WangK. ZhouY. ShenC. ZhuJ. TaoJ. Au nanocage-strengthened dissolving microneedles for chemo-photothermal combined therapy of superficial skin tumors.ACS Appl. Mater. Interfaces201810119247925610.1021/acsami.7b1829329493217
    [Google Scholar]
  74. ChoiY.H. Perez-CuevasM.B. KodaniM. ZhangX. PrausnitzM.R. KamiliS. O’ConnorS.M. Feasibility of hepatitis B vaccination by microneedle patch: Cellular and humoral immunity studies in rhesus macaques.J. Infect. Dis.2019220121926193410.1093/infdis/jiz39931408163
    [Google Scholar]
  75. ShreyaA.B. RautS.Y. ManaguliR.S. UdupaN. MutalikS. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: Recent advances.AAPS PharmSciTech20192011510.1208/s12249‑018‑1262‑230564942
    [Google Scholar]
  76. KhosaA SahaRN SinghviG Drug delivery to the brain.Nanomaterials for drug delivery and therapyWilliam Andrew Publishing201946151410.1016/B978‑0‑12‑816505‑8.00005‑9
    [Google Scholar]
  77. DuaK. RapalliV.K. ShuklaS.D. SinghviG. ShastriM.D. ChellappanD.K. SatijaS. MehtaM. GulatiM. PintoT.D.J.A. GuptaG. HansbroP.M. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches.Biomed. Pharmacother.20181071218122910.1016/j.biopha.2018.08.10130257336
    [Google Scholar]
  78. SharmaA. BaldiA. Nanostructured lipid carriers: A review.J. Dev. Drugs20187215
    [Google Scholar]
  79. ShahP.P. DesaiP.R. ChannerD. SinghM. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers.J. Control. Release2012161373574510.1016/j.jconrel.2012.05.01122617521
    [Google Scholar]
  80. Malgarim CordenonsiL. FaccendiniA. CatanzaroM. BonferoniM.C. RossiS. MalavasiL. Platcheck RaffinR. Scherman SchapovalE.E. LanniC. SandriG. FerrariF. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin.Int. J. Pharm.201956711848710.1016/j.ijpharm.2019.11848731271813
    [Google Scholar]
  81. XiaQ. SaupeA. MüllerR.H. SoutoE.B. Nanostructured lipid carriers as novel carrier for sunscreen formulations.Int. J. Cosmet. Sci.200729647348210.1111/j.1468‑2494.2007.00410.x18489386
    [Google Scholar]
  82. Chen-yuG. Chun-fenY. Qi-luL. QiT. Yan-weiX. Wei-naL. Guang-xiZ. Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery.Int. J. Pharm.20124301-229229810.1016/j.ijpharm.2012.03.04222486962
    [Google Scholar]
  83. GantaS. TalekarM. SinghA. ColemanT.P. AmijiM.M. Nanoemulsions in translational research-opportunities and challenges in targeted cancer therapy.AAPS PharmSciTech201415369470810.1208/s12249‑014‑0088‑924510526
    [Google Scholar]
  84. McClementsD.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities.Soft Matter2012861719172910.1039/C2SM06903B
    [Google Scholar]
  85. GiH.J. ChenS.N. HwangJ.S. TienC. KuoM.T. Studies of formation and interface of oil-water microemulsion.Zhongguo Wuli Xuekan1992305665678
    [Google Scholar]
  86. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  87. TiwariS. TanY.M. AmijiM. Preparation and in vitro characterization of multifunctional nanoemulsions for simultaneous MR imaging and targeted drug delivery.J. Biomed. Nanotechnol.20062321722410.1166/jbn.2006.038
    [Google Scholar]
  88. NatesanS. SugumaranA. PonnusamyC. ThiagarajanV. PalanichamyR. KandasamyR. Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode.Int. J. Biol. Macromol.2017104Pt B1846185210.1016/j.ijbiomac.2017.05.12728545970
    [Google Scholar]
  89. ChangH.B. ChenB.H. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.Int. J. Nanomedicine2015105059508026345201
    [Google Scholar]
  90. MaY. LiuD. WangD. WangY. FuQ. FallonJ.K. YangX. HeZ. LiuF. Combinational delivery of hydrophobic and hydrophilic anticancer drugs in single nanoemulsions to treat MDR in cancer.Mol. Pharm.20141182623263010.1021/mp400778r24712391
    [Google Scholar]
  91. PeriasamyV.S. AthinarayananJ. AlshatwiA.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells.Ultrason. Sonochem.20163144945510.1016/j.ultsonch.2016.01.03526964971
    [Google Scholar]
  92. MahatoR. Nanoemulsion as targeted drug delivery system for cancer therapeutics.J. Pharm. Sci. Pharmacol.201732839710.1166/jpsp.2017.1082
    [Google Scholar]
  93. ChrastinaA. BaronV.T. AbedinpourP. RondeauG. WelshJ. BorgströmP. Plumbagin-loaded nanoemulsion drug delivery formulation and evaluation of antiproliferative effect on prostate cancer cells.BioMed Res. Int.201820181710.1155/2018/903545230534567
    [Google Scholar]
  94. DeliG. HatziantoniouS. NikasY. DemetzosC. Solid lipid nanoparticles and nanoemulsions containing ceramides: Preparation and physicochemical characterization.J. Liposome Res.200919318018810.1080/0898210080270204619552579
    [Google Scholar]
  95. VermaP. MeherJ.G. AsthanaS. PawarV.K. ChaurasiaM. ChourasiaM.K. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer.Drug Deliv.201623247948810.3109/10717544.2014.92043024901205
    [Google Scholar]
  96. PrimoF.L. RodriguesM.M.A. SimioniA.R. BentleyM.V.L.B. MoraisP.C. TedescoA.C. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. In: J. Magn. Magn. Mater.200832014e211e21410.1016/j.jmmm.2008.02.050
    [Google Scholar]
  97. PrimoF.L. MichieletoL. RodriguesM.A.M. MacaroffP.P. MoraisP.C. LacavaZ.G.M. BentleyM.V.L.B. TedescoA.C. Magnetic nanoemulsions as drug delivery system for Foscan®: Skin permeation and retention in vitro assays for topical application in photodynamic therapy (PDT) of skin cancer.J. Magn. Magn. Mater.2007311135435710.1016/j.jmmm.2006.10.1183
    [Google Scholar]
  98. FalamasA. DeheleanC.A. Cinta PinzaruS. Monitoring of betulin nanoemulsion treatment and molecular changes in mouse skin cancer using surface enhanced Raman spectroscopy.Vib. Spectrosc.201895445010.1016/j.vibspec.2018.01.004
    [Google Scholar]
  99. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑910699298
    [Google Scholar]
  100. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery.Int. J. Pharm.20063221-2606610.1016/j.ijpharm.2006.05.02716806755
    [Google Scholar]
  101. AinbinderD. TouitouE. Testosterone ethosomes for enhanced transdermal delivery.Drug Deliv.200512529730310.1080/1071754050017691016188729
    [Google Scholar]
  102. TouitouE. GodinB. DayanN. WeissC. PiliponskyA. Levi-SchafferF. Intracellular delivery mediated by an ethosomal carrier.Biomaterials200122223053305910.1016/S0142‑9612(01)00052‑711575480
    [Google Scholar]
  103. HadidiM. KarimabadiK. GhanbariE. RezakhaniL. KhazaeiM. Stem cells and exosomes: As biological agents in the diagnosis and treatment of polycystic ovary syndrome (PCOS).Front. Endocrinol.202314126926610.3389/fendo.2023.126926637964963
    [Google Scholar]
  104. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  105. KwonGS Polymeric micelles for delivery of poorly water-soluble compounds.Crit Rev Ther Drug Carrier Syst.200320535740310.1615/CritRevTherDrugCarrierSyst.v20.i5.20
    [Google Scholar]
  106. TongR. ChengJ. Anticancer polymeric nanomedicines.J. Macromol. Sci. Part C Polym. Rev.2007473345381
    [Google Scholar]
  107. LiS.D. HuangL. Pharmacokinetics and biodistribution of nanoparticles.Mol. Pharm.20085449650410.1021/mp800049w18611037
    [Google Scholar]
  108. RiessG. Micellization of block copolymers.Prog. Polym. Sci.20032871107117010.1016/S0079‑6700(03)00015‑7
    [Google Scholar]
  109. CroyS. KwonG. Polymeric micelles for drug delivery.Curr. Pharm. Des.200612364669468410.2174/13816120677902624517168771
    [Google Scholar]
  110. ChiappettaD.A. SosnikA. Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs.Eur. J. Pharm. Biopharm.200766330331710.1016/j.ejpb.2007.03.02217481869
    [Google Scholar]
  111. MorettonM.A. GlisoniR.J. ChiappettaD.A. SosnikA. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles.Colloids Surf. B Biointerfaces201079246747910.1016/j.colsurfb.2010.05.01620627665
    [Google Scholar]
  112. MorettonM.A. HochtC. TairaC. SosnikA. Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid.Nanomedicine (Lond.)20149111635165010.2217/nnm.13.15424410279
    [Google Scholar]
  113. KahramanE. KaragözA. DinçerS. özsoyY. Polyethylenimine modified and non-modified polymeric micelles used for nasal administration of carvedilol.J. Biomed. Nanotechnol.201511589089910.1166/jbn.2015.191526349400
    [Google Scholar]
  114. Ebrahim AttiaA.B. OngZ.Y. HedrickJ.L. LeeP.P. EeP.L.R. HammondP.T. YangY.Y. Mixed micelles self-assembled from block copolymers for drug delivery.Curr. Opin. Colloid Interface Sci.201116318219410.1016/j.cocis.2010.10.003
    [Google Scholar]
  115. AllenC. MaysingerD. EisenbergA. Nano-engineering block copolymer aggregates for drug delivery.Colloids Surf. B Biointerfaces1999161-432710.1016/S0927‑7765(99)00058‑2
    [Google Scholar]
  116. KimS. ShiY. KimJ.Y. ParkK. ChengJ.X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction.Expert Opin. Drug Deliv.201071496210.1517/1742524090338044620017660
    [Google Scholar]
  117. WiradharmaN. ZhangY. VenkataramanS. HedrickJ.L. YangY.Y. Self-assembled polymer nanostructures for delivery of anticancer therapeutics.Nano Today20094430231710.1016/j.nantod.2009.06.001
    [Google Scholar]
  118. RapoportN. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery.Prog. Polym. Sci.2007328-996299010.1016/j.progpolymsci.2007.05.009
    [Google Scholar]
  119. KimS.H. TanJ.P.K. NederbergF. FukushimaK. YangY.Y. WaymouthR.M. HedrickJ.L. Mixed micelle formation through stereocomplexation between enantiomeric poly (lactide) block copolymers.Macromolecules2009421252910.1021/ma801739x
    [Google Scholar]
  120. LoC.L. LinS.J. TsaiH.C. ChanW.H. TsaiC.H. ChengC.H.D. HsiueG.H. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery.Biomaterials20093023-243961397010.1016/j.biomaterials.2009.04.00219406466
    [Google Scholar]
  121. WangY. YuL. HanL. ShaX. FangX. Difunctional Pluronic copolymer micelles for paclitaxel delivery: Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines.Int. J. Pharm.20073371-2637310.1016/j.ijpharm.2006.12.03317289311
    [Google Scholar]
  122. YangL. WuX. LiuF. DuanY. LiS. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs.Pharm. Res.200926102332234210.1007/s11095‑009‑9949‑419669098
    [Google Scholar]
  123. YooH.S. ParkT.G. Folate receptor targeted biodegradable polymeric doxorubicin micelles.J. Control. Release200496227328310.1016/j.jconrel.2004.02.00315081218
    [Google Scholar]
  124. EkladiousI. ColsonY.L. GrinstaffM.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects.Nat. Rev. Drug Discov.201918427329410.1038/s41573‑018‑0005‑030542076
    [Google Scholar]
  125. MatsumuraY. HamaguchiT. UraT. MuroK. YamadaY. ShimadaY. ShiraoK. OkusakaT. UenoH. IkedaM. WatanabeN. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin.Br. J. Cancer200491101775178110.1038/sj.bjc.660220415477860
    [Google Scholar]
  126. CabralH KataokaK. 22. The impact of "Development of the polymer micelles carrier system for doxorubicin" on the nanomedicine realm: Original research article: Development of the polymer micelle carrier system for doxorubicin, 2001.J Control Release2001190707225356495
    [Google Scholar]
  127. ParkJ.H. LeeS. KimJ.H. ParkK. KimK. KwonI.C. Polymeric nanomedicine for cancer therapy.Prog. Polym. Sci.200833111313710.1016/j.progpolymsci.2007.09.003
    [Google Scholar]
  128. KimT.Y. KimD.W. ChungJ.Y. ShinS.G. KimS.C. HeoD.S. KimN.K. BangY.J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies.Clin. Cancer Res.200410113708371610.1158/1078‑0432.CCR‑03‑065515173077
    [Google Scholar]
  129. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  130. SathishkumarP. PreethiJ. VijayanR. Mohd YusoffA.R. AmeenF. SureshS. BalagurunathanR. PalvannanT. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract.J. Photochem. Photobiol. B2016163697610.1016/j.jphotobiol.2016.08.00527541567
    [Google Scholar]
  131. AlNadhariS. Al-EnaziN.M. AlshehreiF. AmeenF. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications.Environ. Res.202119411067210.1016/j.envres.2020.11067233373611
    [Google Scholar]
  132. AmeenF. Al-HomaidanA.A. Al-SabriA. AlmansobA. AlNAdhariS. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans.Appl. Nanosci.202313162363110.1007/s13204‑021‑01874‑9
    [Google Scholar]
  133. RajaduraiU.M. HariharanA. DurairajS. AmeenF. DawoudT. AlwakeelS. PalanivelI. AzhagiyamanavalanL.P. JacobJ.A. Assessment of behavioral changes and antitumor effects of silver nanoparticles synthesized using diosgenin in mice model.J. Drug Deliv. Sci. Technol.20216610276610.1016/j.jddst.2021.102766
    [Google Scholar]
  134. MohantaY.K. PandaS.K. SyedA. AmeenF. BastiaA.K. MohantaT.K. Bio‐inspired synthesis of silver nanoparticles from leaf extracts of Cleistanthus collinus (Roxb.): Its potential antibacterial and anticancer activities.IET Nanobiotechnol.201812334334810.1049/iet‑nbt.2017.0203
    [Google Scholar]
  135. Sangeetha VidhyaM. AmeenF. DawoudT. YuvakkumarR. RaviG. KumarP. VelauthapillaiD. Anti-cancer applications of Zr, Co, Ni-doped ZnO thin nanoplates.Mater. Lett.202128312876010.1016/j.matlet.2020.128760
    [Google Scholar]
  136. SaadhM.J. BaherH. LiY. chaitanyaM. Arias-GonzálesJ.L. AllelaO.Q.B. MahdiM.H. Carlos Cotrina-AliagaJ. LakshmaiyaN. AhjelS. AminA.H. Gilmer Rosales RojasG. AmeenF. AhsanM. Akhavan-SigariR. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery.Environ. Res.202323311649010.1016/j.envres.2023.11649037354932
    [Google Scholar]
  137. RahimM. IramS. SyedA. AmeenF. HodhodM.S. KhanM.S. Nutratherapeutics approach against cancer: Tomato‐mediated synthesised gold nanoparticles.IET Nanobiotechnol.20181211510.1049/iet‑nbt.2017.0068
    [Google Scholar]
  138. AmeenF. Green synthesis spinel ferrite nanosheets and their cytotoxicity and antibacterial activity.Biomass Convers. Biorefin.202210.1007/s13399‑022‑03638‑z
    [Google Scholar]
  139. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  140. Zambrano-RománM. Padilla-GutiérrezJ.R. ValleY. Muñoz-ValleJ.F. Valdés-AlvaradoE. Non-melanoma skin cancer: A genetic update and future perspectives.Cancers20221410237110.3390/cancers1410237135625975
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385312923240604105336
Loading
/content/journals/pnt/10.2174/0122117385312923240604105336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test