Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The process of producing the metallic nanoparticles (MNPs) in a sustainable and environment-friendly process is very desirable due to environmental hazards posed by climatic changes. Biomedical one of the fields classified under nanoscience, nanoparticles have a potential synthetic application, which makes it a vast area of research. These particles can be prepared using chemical, physical, and biological methods. One of the methods of synthesis of nanoparticles is by the use of plant extracts, known as green synthesis. Because of its low cost and nontoxicity, it has gained attention in recent times. This review was conducted to find the possible outcomes and uses of metallic nanoparticles synthesized using different parts like gum, root, stem, leaf, fruits, . of (AI). AI, a popular medicinal plant commonly known as neem, has been studied for the green synthesis of NPs by using the capping and reducing agents secreted by the plant. Various phytochemicals identified in neem are capable of metal ion reduction. Green synthesis of NPs from neem is an eco-friendly and low-cost method. These NPs are reported to exhibit good antimicrobial activity. The review covers the preparation, characterization, and mechanism associated with the antibacterial, anticancer, and neurological diseases of the MNPs. Furthermore, the limitations associated with the existing NPs and the prospects of these NPs are also examined.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385262947240206055107
2024-02-22
2025-11-06
Loading full text...

Full text loading...

References

  1. VivehananthanK. Sudha LakshmiS.Y. De SilvaW.H. KumarS.A. Silver nanoparticles of Azadirachta indica: Biological method of synthesis and characterization.World J. Pharm. Res.201547786
    [Google Scholar]
  2. JavedMN DahiyaES IbrahimAM AlamMS KhanFA PottooFH Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs.Nanophytomedicine: Concept to Clinic202015117210.1007/978‑981‑15‑4909‑0_9
    [Google Scholar]
  3. YuanC. WuH.B. XieY. LouX.W.D. Mixed transition-metal oxides: Design, synthesis, and energy-related applications.Angew. Chem. Int. Ed.20145361488150410.1002/anie.20130397124382683
    [Google Scholar]
  4. KadianR. Nanoparticles: A promising drug delivery approach.Asian J. Pharm. Clin. Res.2018111303510.22159/ajpcr.2018.v11i1.22035
    [Google Scholar]
  5. NamrathaN. MonicaP.V. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification.Asian J. Pharm. Technol.201334170174
    [Google Scholar]
  6. JavedMN PottooFH AlamMS Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions.Patent acquired on October20161040
    [Google Scholar]
  7. DuhanJ.S. KumarR. KumarN. KaurP. NehraK. DuhanS. Nanotechnology: The new perspective in precision agriculture.Biotechnol. Rep.201715112310.1016/j.btre.2017.03.00228603692
    [Google Scholar]
  8. JavedMN AlamMS WaziriA PottooFH YadavAK HasnainMS AlmalkiFA QbD applications for the development of nanopharmaceutical products.Pharmaceutical quality by designAcademic Press201922925310.1016/B978‑0‑12‑815799‑2.00013‑7
    [Google Scholar]
  9. DubchakS. OgarA. MietelskiJ.W. TurnauK. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. In: Span. J. Agric. Res.20108S110310810.5424/sjar/201008S1‑1228
    [Google Scholar]
  10. PanditJ. AlamM.S. AnsariJ.R. SinghalM. GuptaN. WaziriA. SharmaK. PottoF.H. Multifaced applications of nanoparticles in biological science. In: Nanomaterials in the Battle Against Pathogens and Disease Vectors.CRC Press20221750
    [Google Scholar]
  11. SauTK BiswasA RayP Metal nanoparticles in nanomedicine: Advantages and scope. In: Metal nanoparticles: Synthesis and applications in pharmaceutical sciences2018121
    [Google Scholar]
  12. TavakoliA SohrabiM KargariA. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds.Chem.20071613151170
    [Google Scholar]
  13. KhanM. ShaikM.R. AdilS.F. KhanS.T. Al-WarthanA. SiddiquiM.R.H. TahirM.N. TremelW. Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis.Dalton Trans.20184735119881201010.1039/C8DT01152D29971317
    [Google Scholar]
  14. AntonyE. GunasekaranS. SathiaveluM.Y. ArunachalamS.A. A review on use of plant extracts for gold and silver nanoparticle synthesis and their potential activities against food pathogens.Asian J. Pharm. Clin. Res.201691823
    [Google Scholar]
  15. GirishK ShankaraBS Neem–a green treasure.Electron. J. Biol.200843102111
    [Google Scholar]
  16. AlamM.S. NasehM.F. AnsariJ.R. WaziriA. JavedM.N. AhmadiA. SaifullahM.K. GargA. Synthesis approaches for higher yields of nanoparticles. In: Nanomaterials in the Battle Against Pathogens and Disease Vectors.CRC Press20225182
    [Google Scholar]
  17. PanditJ AlamMS AnsariJR SinghalM GuptaN WaziriA SharmaK PottooFH 2 multifaced applications. In: Nanomaterials in the battle against pathogens and disease vectors.202217
    [Google Scholar]
  18. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  19. KumarV.S. NavaratnamV. Neem (Azadirachta indica): Prehistory to contemporary medicinal uses to humankind.Asian Pac. J. Trop. Biomed.20133750551410.1016/S2221‑1691(13)60105‑723835719
    [Google Scholar]
  20. SarahR. TabassumB. IdreesN. HussainM.K. Bio-active compounds isolated from neem tree and their applications.Natural Bio-active Compounds.Production and Applications2019Vol. 1509528
    [Google Scholar]
  21. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  22. GovindappaM. HemashekharB. ArthikalaM.K. Ravishankar RaiV. RamachandraY.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract.Results Phys.2018940040810.1016/j.rinp.2018.02.049
    [Google Scholar]
  23. IijimaY.A. IijimaS. Preparation of carbon nanotubes by arc-discharge evaporation.Jpn. J. Appl. Phys.1993321AL10710.1143/JJAP.32.L107
    [Google Scholar]
  24. CarriçoAD CarvalhoJF MedeirosSN MoralesMA DantasAL Synthesis of magnetite nanoparticles by high energy ball milling.Appl Surf Sci20132758487
    [Google Scholar]
  25. LowndesD.H. GeoheganD.B. PuretzkyA.A. NortonD.P. RouleauC.M. Synthesis of novel thin-film materials by pulsed laser deposition.Science1996273527789890310.1126/science.273.5277.8988688065
    [Google Scholar]
  26. FanterD.L. LevyR.L. WolfC.J. Laser pyrolysis of polymers.Anal. Chem.1972441434810.1021/ac60309a037
    [Google Scholar]
  27. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms1709153427649147
    [Google Scholar]
  28. ChenX. CharrierM. SrubarW.V.III Nanoscale construction biotechnology for cementitious materials: A prospectus.Front. Mater.2021759498910.3389/fmats.2020.594989
    [Google Scholar]
  29. KimJ.S. KukE. YuK.N. KimJ.H. ParkS.J. LeeH.J. KimS.H. ParkY.K. ParkY.H. HwangC.Y. KimY.K. LeeY.S. JeongD.H. ChoM.H. Antimicrobial effects of silver nanoparticles.Nanomedicine2007319510110.1016/j.nano.2006.12.00117379174
    [Google Scholar]
  30. LiX XuH ChenZS ChenG Biosynthesis of nanoparticles by microorganisms and their applications.J. Nanomater.2011201110.1155/2011/270974
    [Google Scholar]
  31. ZhangX. YanS. TyagiR.D. SurampalliR.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates.Chemosphere201182448949410.1016/j.chemosphere.2010.10.02321055786
    [Google Scholar]
  32. SureshK. PrabagaranS.R. SenguptaS. ShivajiS. Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India.Int. J. Syst. Evol. Microbiol.20045441369137510.1099/ijs.0.03047‑015280316
    [Google Scholar]
  33. BhainsaK.C. D’SouzaS.F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus.Colloids Surf. B Biointerfaces200647216016410.1016/j.colsurfb.2005.11.02616420977
    [Google Scholar]
  34. TaoA. SinsermsuksakulP. YangP. Polyhedral silver nanocrystals with distinct scattering signatures.Angew. Chem. Int. Ed.200645284597460110.1002/anie.20060127716791902
    [Google Scholar]
  35. ByrappaK. AdschiriT. Hydrothermal technology for nanotechnology.Prog. Cryst. Growth Charact. Mater.200753211716610.1016/j.pcrysgrow.2007.04.001
    [Google Scholar]
  36. López PérezJ.A. López QuintelaM.A. MiraJ. RivasJ. CharlesS.W. Advances in the preparation of magnetic nanoparticles by the microemulsion method.J. Phys. Chem. B1997101418045804710.1021/jp972046t
    [Google Scholar]
  37. NadagoudaM.N. SpethT.F. VarmaR.S. Microwave-assisted green synthesis of silver nanostructures.Acc. Chem. Res.201144746947810.1021/ar100145721526846
    [Google Scholar]
  38. WatanabeK. MenzelD. NiliusN. FreundH.J. Photochemistry on metal nanoparticles.Chem. Rev.2006106104301432010.1021/cr050167g17031988
    [Google Scholar]
  39. DevathaCP ThallaAK Green synthesis of nanomaterials In: Synthesis of inorganic nanomaterials Woodhead Publishing201816918410.1016/B978‑0‑08‑101975‑7.00007‑5
    [Google Scholar]
  40. SrivastavaJ ChandraH NautiyalAR KalraSJ Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDA ms) as an alternative drug line to control infections.3 Biotech20144451460
    [Google Scholar]
  41. ChandraH. BishnoiP. YadavA. PatniB. MishraA. NautiyalA. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review.Plants2017641610.3390/plants602001628394295
    [Google Scholar]
  42. SongJ.Y. KimB.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.Bioprocess Biosyst. Eng.2009321798410.1007/s00449‑008‑0224‑618438688
    [Google Scholar]
  43. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.20152014219219
    [Google Scholar]
  44. ResmiC.R. SreejamolP. PillaiP. Green synthesis of silver nanoparticles using Azadirachta indica leaves extract and evaluation of antibacterial activities.Int. J. Adv. Biotechnol. Res.20144300303
    [Google Scholar]
  45. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  46. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑430373622
    [Google Scholar]
  47. DekaN.J. NathR. Shantanu TamulyM. PeguSR. DekaSM. Green synthesis and characterization of silver nanoparticles using leaves extract of Neem (Azadirachtaindica L.) and assessment of its in vitro antioxidant and antibacterial activity.Ann. Phytomed.202110117117710.21276/ap.2021.10.1.17
    [Google Scholar]
  48. de JesusR.A. de AssisG.C. OliveiraR.J. CostaJ.A.S. da SilvaC.M.P. IqbalH.M.N. FerreiraL.F.R. Metal/metal oxide nanoparticles: A revolution in the biosynthesis and medical applications.Nano-Structures & Nano-Objects20243710107110.1016/j.nanoso.2023.101071
    [Google Scholar]
  49. MustaphaT. MisniN. IthninN.R. DaskumA.M. UnyahN.Z. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications.Int. J. Environ. Res. Public Health202219267410.3390/ijerph1902067435055505
    [Google Scholar]
  50. RamazanliV.N. AhmadovI.S. Synthesis of silver nanoparticles by using extract of Olive leaves.Adv Biol Earth Sci.202273238244
    [Google Scholar]
  51. HanoC. AbbasiB.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications.Biomolecules20211213110.3390/biom1201003135053179
    [Google Scholar]
  52. JaggessarA. YarlagaddaP.K.D.V. Modelling the growth of hydrothermally synthesised bactericidal nanostructures, as a function of processing conditions.Mater. Sci. Eng. C202010811043410.1016/j.msec.2019.11043431924013
    [Google Scholar]
  53. AkhtarM.S. PanwarJ. YunY.S. Biogenic synthesis of metallic nanoparticles by plant extracts.ACS Sustain. Chem.& Eng.20131659160210.1021/sc300118u
    [Google Scholar]
  54. GopinathV. MubarakAliD. PriyadarshiniS. PriyadharsshiniN.M. ThajuddinN. VelusamyP. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach.Colloids Surf. B Biointerfaces201296697410.1016/j.colsurfb.2012.03.02322521683
    [Google Scholar]
  55. MubarakAliD. ThajuddinN. JeganathanK. GunasekaranM. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.Colloids Surf. B Biointerfaces201185236036510.1016/j.colsurfb.2011.03.00921466948
    [Google Scholar]
  56. Hemanth KumarN.K. AndiaJ.D. ManjunathaS. MuraliM. AmrutheshK.N. JagannathS. Antimitotic and DNA-binding potential of biosynthesized ZnO-NPs from leaf extract of Justicia wynaadensis (Nees) Heyne - A medicinal herb.Biocatal. Agric. Biotechnol.20191810102410.1016/j.bcab.2019.101024
    [Google Scholar]
  57. PriyadarshiniS. MainalA. SonsudinF. YahyaR. AlyousefA.A. MohammedA. Biosynthesis of TiO2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens.Res. Chem. Intermed.20204621077108910.1007/s11164‑019‑03857‑6
    [Google Scholar]
  58. VermaA MehataMS Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci.20169110911510.1016/j.jrras.2015.11.001
    [Google Scholar]
  59. SinghA. Neelam KaushikM. Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta Indica (Neem) leaf extract and their interaction with Calf-Thymus DNA.Results Phys.20191310216810.1016/j.rinp.2019.102168
    [Google Scholar]
  60. AhmadH. VenugopalK. BhatA.H. KavithaK. RamananA. RajagopalK. SrinivasanR. ManikandanE. Enhanced biosynthesis synthesis of copper oxide nanoparticles (CuO-NPs) for their antifungal activity toxicity against major phyto-pathogens of apple orchards.Pharm. Res.2020371224610.1007/s11095‑020‑02966‑x33215292
    [Google Scholar]
  61. NayakD. AsheS. RautaP.R. KumariM. NayakB. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma.Mater. Sci. Eng. C201658445210.1016/j.msec.2015.08.02226478285
    [Google Scholar]
  62. NazeruddinG.M. PrasadN.R. PrasadS.R. ShaikhY.I. WaghmareS.R. AdhyapakP. Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity.Ind. Crops Prod.20146021221610.1016/j.indcrop.2014.05.040
    [Google Scholar]
  63. GopalakrishnanV. MunirajS. In vitro anti-oxidant and in-vitro anti-diabetic studies of silver, gold and copper nanoparticles synthesized using the flowers of Azhadirachta indica.Indian J. Chem. Technol.2022285580586
    [Google Scholar]
  64. ZambriN.D.S. TaibN.I. Abdul LatifF. MohamedZ. Utilization of neem leaf extract on biosynthesis of iron oxide nanoparticles.Molecules20192420380310.3390/molecules2420380331652583
    [Google Scholar]
  65. ShnoudehAJ HamadI AbdoRW QadumiiL JaberAY SurchiHS AlkelanySZ Synthesis, characterization, and applications of metal nanoparticles. In:Biomaterials and bionanotechnologyAcademic Press201952761210.1016/B978‑0‑12‑814427‑5.00015‑9
    [Google Scholar]
  66. EliaP. ZachR. HazanS. KolushevaS. PoratZ. ZeiriY. Green synthesis of gold nanoparticles using plant extracts as reducing agents.Int. J. Nanomedicine201494007402125187704
    [Google Scholar]
  67. AlamM.S. GargA. PottooF.H. SaifullahM.K. TareqA.I. ManzoorO. MohsinM. JavedM.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design.Int. J. Biol. Macromol.2017104Pt A75876710.1016/j.ijbiomac.2017.05.12928601649
    [Google Scholar]
  68. AlamM.S. JavedM.N. PottooF.H. WaziriA. AlmalkiF.A. HasnainM.S. GargA. SaifullahM.K. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto‐dye.Appl. Organomet. Chem.2019339e507110.1002/aoc.5071
    [Google Scholar]
  69. Yadeta GemachuL. Lealem BirhanuA. Green synthesis of ZnO, CuO and NiO nanoparticles using Neem leaf extract and comparing their photocatalytic activity under solar irradiation.Green Chem. Lett. Rev.2024171229384110.1080/17518253.2023.2293841
    [Google Scholar]
  70. VadakkanK. RumjitN.P. NgangbamA.K. VijayanandS. NedumpillilN.K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications.Coord. Chem. Rev.202449921552810.1016/j.ccr.2023.215528
    [Google Scholar]
  71. DeepakV. UmamaheshwaranP.S. GuhanK. NanthiniR.A. KrithigaB. JaithoonN.M.H. GurunathanS. Synthesis of gold and silver nanoparticles using purified URAK.Colloids Surf. B Biointerfaces201186235335810.1016/j.colsurfb.2011.04.01921592748
    [Google Scholar]
  72. FayyazZ. FarrukhM.A. Ul-HamidA. ChongK.K. Elucidating the structural, catalytic, and antibacterial traits of Ficus carica and Azadirachta indica leaf extract‐mediated synthesis of the Ag / CuO / rGO nanocomposite.Microsc. Res. Tech.2024jemt.2448710.1002/jemt.2448738174385
    [Google Scholar]
  73. KalishwaralalK. DeepakV. Ram Kumar PandianS. KottaisamyM. BarathManiKanthS. KartikeyanB. GurunathanS. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.Colloids Surf. B Biointerfaces201077225726210.1016/j.colsurfb.2010.02.00720197229
    [Google Scholar]
  74. ThirumuruganA. AswithaP. KiruthikaC. NagarajanS. ChristyA.N. Green synthesis of platinum nanoparticles using Azadirachta indica – An eco-friendly approach.Mater. Lett.201617017517810.1016/j.matlet.2016.02.026
    [Google Scholar]
  75. ShankarS.S. RaiA. AhmadA. SastryM. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.J. Colloid Interface Sci.2004275249650210.1016/j.jcis.2004.03.00315178278
    [Google Scholar]
  76. PattanayakM NayakPL Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J. Nano Sci. Technol.20132169
    [Google Scholar]
  77. FengQ.L. WuJ. ChenG.Q. CuiF.Z. KimT.N. KimJ.O. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus.J. Biomed. Mater. Res.200052466266810.1002/1097‑4636(20001215)52:4<662::AID‑JBM10>3.0.CO;2‑311033548
    [Google Scholar]
  78. (a CruzD.M. MostafaviE. Vernet-CruaA. BarabadiH. ShahV. Cholula-DíazJ.L. GuisbiersG. WebsterT.J. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review.Phys Materials.202033034005
    [Google Scholar]
  79. (a CruzD.M. MostafaviE. Vernet-CruaA. BarabadiH. ShahV. Cholula-DíazJ.L. GuisbiersG. WebsterT.J. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review.Phys Materials.202033034005
    [Google Scholar]
  80. QiP. ZhangD. WanY. Sulfate-reducing bacteria detection based on the photocatalytic property of microbial synthesized ZnS nanoparticles.Anal. Chim. Acta2013800657010.1016/j.aca.2013.09.01524120169
    [Google Scholar]
  81. OudhiaA. KulkarniP. SharmaS. Green synthesis of ZnO nanotubes for bioapplications.Int. J. Curr. Eng. Technol.20151280281
    [Google Scholar]
  82. BindhuM.R. UmadeviM. Antibacterial and catalytic activities of green synthesized silver nanoparticles.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513537337810.1016/j.saa.2014.07.04525093965
    [Google Scholar]
  83. Hosseinpour-MashkaniS.M. RamezaniM. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition.Mater. Lett.2014130259262[REMOVED HYPERLINK FIELD]. [REMOVED HYPERLINK FIELD].10.1016/j.matlet.2014.05.133
    [Google Scholar]
  84. AbidJ.P. WarkA.W. BrevetP.F. GiraultH.H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation.Chem. Commun.2002779279310.1039/b200272h12119726
    [Google Scholar]
  85. MallickK. WitcombM.J. ScurrellM.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route.J. Mater. Sci.200439144459446310.1023/B:JMSC.0000034138.80116.50
    [Google Scholar]
  86. ThakurB.K. KumarA. KumarD. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity.S. Afr. J. Bot.201912422322710.1016/j.sajb.2019.05.024
    [Google Scholar]
  87. NoruziM. Biosynthesis of gold nanoparticles using plant extracts.Bioprocess Biosyst. Eng.201538111410.1007/s00449‑014‑1251‑025090979
    [Google Scholar]
  88. BohrenCF HuffmanDR Absorption and scattering of light by small particles.John Wiley & Sons2008
    [Google Scholar]
  89. TempletonA.C. PietronJ.J. MurrayR.W. MulvaneyP. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters.J. Phys. Chem. B2000104356457010.1021/jp991889c
    [Google Scholar]
  90. Al-MafarjyS.S. SuardiN. AhmedN.M. KernainD. Hisham AlkatibH. DheyabM.A. Green synthesis of gold nanoparticles from Coleus scutellarioides (L.) Benth leaves and assessment of anticancer and antioxidant properties.Inorg. Chem. Commun.202416111205210.1016/j.inoche.2024.112052
    [Google Scholar]
  91. KumarV. YadavS.K. Plant‐mediated synthesis of silver and gold nanoparticles and their applications. Journal of chemical technology & biotechnology: International research in process.Clean Technol. Environ.2009842151157
    [Google Scholar]
  92. VijayaraghavanK. AshokkumarT. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications.J. Environ. Chem. Eng.2017554866488310.1016/j.jece.2017.09.026
    [Google Scholar]
  93. KhanM.Z.H. TareqF.K. HossenM.A. RokiM.N.A.M. Green synthesis and characterization of silver nanoparticles using coriandrum sativum leaf extract.J. Eng. Sci. Technol.20181158166
    [Google Scholar]
  94. HuangJ. LiQ. SunD. LuY. SuY. YangX. WangH. WangY. ShaoW. HeN. HongJ. ChenC. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf.Nanotechnology2007181010510410.1088/0957‑4484/18/10/105104
    [Google Scholar]
  95. LiR. ChenX. YeH. ShengX. Green synthesis of gold nanoparticles from the extract of Crocus sativus to study the effect of antidepressant in adolescence and to observe its aggressive and impulsive behavior in rat models.S. Afr. J. Bot.202416545546510.1016/j.sajb.2023.12.029
    [Google Scholar]
  96. MengF. MorinS.A. ForticauxA. JinS. Screw dislocation driven growth of nanomaterials.Acc. Chem. Res.20134671616162610.1021/ar400003q23738750
    [Google Scholar]
  97. PawleyJ. The development of field-emission scanning electron microscopy for imaging biological surfaces.Scanning19971953243369262017
    [Google Scholar]
  98. WangZ.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies.J. Phys. Chem. B200010461153117510.1021/jp993593c
    [Google Scholar]
  99. StrasserP. KohS. AnniyevT. GreeleyJ. MoreK. YuC. LiuZ. KayaS. NordlundD. OgasawaraH. ToneyM.F. NilssonA. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts.Nat. Chem.20102645446010.1038/nchem.62320489713
    [Google Scholar]
  100. YaoH KimuraK Field emission scanning electron microscopy for structural characterization of 3D gold nanoparticle superlattices.In: Modern research and educational topics in microscopy20072568576
    [Google Scholar]
  101. SchafferB. HohenesterU. TrüglerA. HoferF. High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy.Phys. Rev. B Condens. Matter Mater. Phys.200979404140110.1103/PhysRevB.79.041401
    [Google Scholar]
  102. OlusanyaT.O. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer.Doctoral dissertation, University of Portsmouth2015
    [Google Scholar]
  103. TomaszewskaE. SoliwodaK. KadziolaK. Tkacz-SzczesnaB. CelichowskiG. CichomskiM. SzmajaW. GrobelnyJ. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids.J. Nanomater.2013201311010.1155/2013/313081
    [Google Scholar]
  104. HowlandR BenatarL. A practical guide: To scanning probe microscopy.In: ScienceDIANE Publishing Company1996
    [Google Scholar]
  105. GriffithJ.E. GriggD.A. Dimensional metrology with scanning probe microscopes.J. Appl. Phys.1993749R83R10910.1063/1.354175
    [Google Scholar]
  106. HowaldL. HaefkeH. LüthiR. MeyerE. GerthG. RudinH. GüntherodtH.J. Ultrahigh-vacuum scanning force microscopy: Atomic-scale resolution at monatomic cleavage steps.Phys. Rev. B Condens. Matter19944985651565610.1103/PhysRevB.49.565110011523
    [Google Scholar]
  107. PottooF.H. SharmaS. JavedM.N. BarkatM.A. Harshita AlamM.S. NaimM.J. AlamO. AnsariM.A. BarretoG.E. AshrafG.M. Lipid-based nanoformulations in the treatment of neurological disorders.Drug Metab. Rev.202052118520410.1080/03602532.2020.172694232116044
    [Google Scholar]
  108. PottooF.H. TabassumN. JavedM.N. NigarS. RasheedR. KhanA. BarkatM.A. AlamM.S. MaqboolA. AnsariM.A. BarretoG.E. AshrafG.M. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy.Mol. Neurobiol.20195621233124710.1007/s12035‑018‑1121‑x29881945
    [Google Scholar]
  109. PottooF.H. JavedM.N. BarkatM.A. AlamM.S. NowshehriJ.A. AlshaybanD.M. AnsariM.A. Estrogen and serotonin: Complexity of interactions and implications for epileptic seizures and epileptogenesis.Curr. Neuropharmacol.201917321423110.2174/1570159X1666618062816443229956631
    [Google Scholar]
  110. PottooF.H. TabassumN. JavedM.N. NigarS. SharmaS. BarkatM.A. Harshita AlamM.S. AnsariM.A. BarretoG.E. AshrafG.M. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice.Eur. J. Pharm. Sci.202014610526110.1016/j.ejps.2020.10526132061655
    [Google Scholar]
  111. IbrahimA.M. ChauhanL. BhardwajA. SharmaA. FayazF. KumarB. AlhashmiM. AlHajriN. AlamM.S. PottooF.H. Brain-derived neurotropic factor in neurodegenerative disorders.Biomedicines2022105114310.3390/biomedicines1005114335625880
    [Google Scholar]
  112. WaziriA BhartiC AslamM JamilP MirzaM JavedMN PottooU AhmadiA AlamMS Probiotics for the Chemoprotective role against the toxic effect of cancer chemotherapy.Anticancer Agents Med Chem202222465466710.2174/1871520621666210514000615
    [Google Scholar]
  113. SinghalS. GuptaM. AlamM.S. JavedM.N. AnsariJ.R. Carbon allotropes-based nanodevices: Graphene in biomedical applications.In: Nanotechnology.CRC Press202224126910.1201/9781003220350‑14
    [Google Scholar]
  114. AslamM. JavedM.N. DeebH.H. NicolaM.K. SabirA.M. HasnainM.S. AlamM.S. WaziriA. Lipid carriers mediated targeted delivery of nutraceuticals: Challenges, role of blood brain barrier and promises of nanotechnology based ap-proaches in neuronal disorders.Curr. Drug Metab.2020212110.2174/1389200221999200728143511
    [Google Scholar]
  115. KumariN DaramN AlamMS VermaAK Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases.CNS & Neurological Disorders-Drug Targets20222110966976
    [Google Scholar]
  116. BhandariM. RajS. ManchandaR. AlamM.S. Review on natural bioactive products as radioprotective therapeutics: Present and past perspective.Curr. Pharm. Biotechnol.202223141721173810.2174/138920102366622011010464535016594
    [Google Scholar]
  117. JavedMN AkhterMH TaleuzzamanM FaiyazudinM AlamMS Cationic nanoparticles for treatment of neurological diseases.In: Fundamentals of BionanomaterialsElsevier202227329210.1016/B978‑0‑12‑824147‑9.00010‑8
    [Google Scholar]
  118. KumarR. DhamijaG. AnsariJ.R. JavedM.N. AlamM.S. C-Dot nanoparticulated devices for biomedical applications.In: Nanotechnology.CRC Press2022271299
    [Google Scholar]
  119. BhartiC. AlamM.S. JavedM.N. KhalidM. SaifullahF.A. ManchandaR. Silica based nanomaterial for drug delivery.In: Nanomaterials Evolution and Advance Towards Therapeutic Drug Delivery2021Part 25789
    [Google Scholar]
  120. PanditJ AlamMS JavedMN WaziriA ImamSS Emerging roles of carbon nanohorns as sustainable nanomaterials in sensor, catalyst, and biomedical applications.Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and ApplicationsCham: Springer International Publishing.2023127
    [Google Scholar]
  121. Priya SS. S RS. Plant-based carbon dots are a sustainable alternative to conventional nanomaterials for biomedical and sensing applications.Nano Express20245101200210.1088/2632‑959X/ad100c
    [Google Scholar]
  122. MellitiE MejriA AlamMS AnsariJR ElfilH MarsA MNPs for remediation of toxicants and wastewater treatment.In: Metallic Nanoparticles for Health and the EnvironmentCRC Press.202326028810.1201/9781003317319‑11
    [Google Scholar]
  123. DeviL. AnsariT.M. AlamM.S. KumarA. KushwahaP. Metallic (Inorganic) Nanoparticles: Classification, Synthesis, Mechanism, and Scope. InMetallic Nanoparticles for Health and the Environment.CRC Press2024121
    [Google Scholar]
  124. KadianR. PanditJ. BhartiC. WaziriA. KumariP. GargA. JavedM.N. AnsariJ.R. AlamM.S. Application of MNPs in targeted delivery and genetic manipulations.In: Metallic Nanoparticles for Health and the Environment.CRC Press20244569
    [Google Scholar]
  125. AlamM.S. JavedM.N. AnsariJ.R. Metallic Nanoparticles for Health and the Environment.CRC Press202310.1201/9781003317319
    [Google Scholar]
  126. AlamMS JavedMN AlamMN AnsariJR Catalyst metallic nanoparticles: Types, mechanism, and trends.Metallic Nanoparticles for Health and the Environment CRC Press2024238259
    [Google Scholar]
  127. KumarM MehanN BhattS AlamMS GautamRK Metallic nanoparticles for skins and photothermal therapy.Metallic Nanoparticles for Health and the Environment CRC Press202318520810.1201/9781003317319‑8
    [Google Scholar]
  128. KarB. BoseA. RoyS. ChakrabortyP. ChakrabortyS. DasS.K. PalG. WaziriF. AlamM.S. In vivo and in vitro toxicity study of metallic nanoparticles.In: Metallic Nanoparticles for Health and the EnvironmentCRC Press202316018410.1201/9781003317319‑7
    [Google Scholar]
  129. AlamM.S. GargM. BhallaV. KumariP. KadyanR. AnjumM.M. YadavT. YadavM. KumarM. WaziriA. MunawarS.M. Trends in theranostic applications of metallic nanoparticles.In: Metallic Nanoparticles for Health and the Environment.CRC Press2024121159
    [Google Scholar]
  130. Kumar SethiyaN. GhiloriaN. SrivastavA. BishtD. Kumar ChaudharyS. WaliaV. Sabir AlamM. Therapeutic potential of myricetin in the treatment of neurological, neuropsychiatric, and neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202337461364
    [Google Scholar]
  131. HoodaN AhlawatA KumariP AlamS AnsariJR Role of nanomedicine for targeted drug delivery in livestock: Future prospective.Pharm. Nanotechnol.2023
    [Google Scholar]
  132. SaravananM. BarikS.K. MubarakAliD. PrakashP. PugazhendhiA. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria.Microb. Pathog.201811622122610.1016/j.micpath.2018.01.03829407231
    [Google Scholar]
  133. ShanmuganathanR. KaruppusamyI. SaravananM. MuthukumarH. PonnuchamyK. RamkumarV.S. PugazhendhiA. Synthesis of silver nanoparticles and their biomedical applications-a comprehensive review.Curr. Pharm. Des.201925242650266010.2174/138161282566619070818550631298154
    [Google Scholar]
  134. BapatR.A. ChaubalT.V. JoshiC.P. BapatP.R. ChoudhuryH. PandeyM. GorainB. KesharwaniP. An overview of application of silver nanoparticles for biomaterials in dentistry.Mater. Sci. Eng. C20189188189810.1016/j.msec.2018.05.06930033323
    [Google Scholar]
  135. DarroudiM. HakimiM. GoodarziE. Kazemi OskueeR. Superparamagnetic iron oxide nanoparticles (SPIONs): Green preparation, characterization and their cytotoxicity effects.Ceram. Int.2014409146411464510.1016/j.ceramint.2014.06.051
    [Google Scholar]
  136. IvaskA. ElBadawyA. KaweeteerawatC. BorenD. FischerH. JiZ. ChangC.H. LiuR. TolaymatT. TelescaD. ZinkJ.I. CohenY. HoldenP.A. GodwinH.A. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver.ACS Nano20148137438610.1021/nn404404724341736
    [Google Scholar]
  137. RamalingamB. ParandhamanT. DasS.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa.ACS Appl. Mater. Interfaces2016874963497610.1021/acsami.6b0016126829373
    [Google Scholar]
  138. JungW.K. KooH.C. KimK.W. ShinS. KimS.H. ParkY.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli.Appl. Environ. Microbiol.20087472171217810.1128/AEM.02001‑0718245232
    [Google Scholar]
  139. KumarA. PandeyA.K. SinghS.S. ShankerR. DhawanA. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli.Free Radic. Biol. Med.201151101872188110.1016/j.freeradbiomed.2011.08.02521920432
    [Google Scholar]
  140. LiM. ZhuL. LinD. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components.Environ. Sci. Technol.20114551977198310.1021/es102624t21280647
    [Google Scholar]
  141. YamanakaM. HaraK. KudoJ. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis.Appl. Environ. Microbiol.200571117589759310.1128/AEM.71.11.7589‑7593.200516269810
    [Google Scholar]
  142. RehanaD. MahendiranD. KumarR.S. RahimanA.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.Biomed. Pharmacother.2017891067107710.1016/j.biopha.2017.02.10128292015
    [Google Scholar]
  143. DasP.E. Abu-YousefI.A. MajdalawiehA.F. NarasimhanS. PoltronieriP. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities.Molecules202025355510.3390/molecules2503055532012912
    [Google Scholar]
  144. RanaA. PathakS. KumarK. KumariA. ChopraS. KumarM. KamilD. SrivastavaR. KimS.K. VermaR. SharmaS.N. Multifaceted properties of TiO2 nanoparticles synthesized via mangifera indica and azadirachta indica plant extracts: antimicrobial, antioxidant, and non-linear optical investigations for sustainable agriculture applications.Materials Advances2024
    [Google Scholar]
  145. GeethaR. AshokkumarT. TamilselvanS. GovindarajuK. SadiqM. SingaraveluG. Green synthesis of gold nanoparticles and their anticancer activity.Cancer Nanotechnol.201344-5919810.1007/s12645‑013‑0040‑926069504
    [Google Scholar]
  146. WassieAT PandeyDP BachhetiA HusenA VashishthDS BachhetiRK Use of green synthesized platinum nanoparticles for biomedical applications.In: Metal and Metal-Oxide Based Nanomaterials: Synthesis, Agricultural, Biomedical and Environmental InterventionsSpringer Nature SingaporeSingapore202427128510.1007/978‑981‑99‑7673‑7_13
    [Google Scholar]
  147. SinghalM ManchandaR SyedA BahkaliAH NimeshS GuptaN Design, synthesis and optimization of silver nanoparticles using Azadirachta indica bark extract and its antibacterial application.ResearchGate
    [Google Scholar]
  148. SohailM.F. RehmanM. HussainS.Z. HumaZ. ShahnazG. QureshiO.S. KhalidQ. MirzaS. HussainI. WebsterT.J. Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents.J. Drug Deliv. Sci. Technol.20205910191110.1016/j.jddst.2020.101911
    [Google Scholar]
  149. ParagasD.S. CruzK.D.C. FiegalanE.R. Fermented Neem (Azadirachta indica) leaves-metal nanoparticles and their insecticidal properties against Bactrocera dorsalis (Hendel).Indian J. Sci. Technol.202114171338134610.17485/IJST/v14i17.631
    [Google Scholar]
  150. NigatuT. DanielS. EndalamawG. BeyeneP. StinaO. Cytotoxicity of selected Ethiopian medicinal plants used in traditional breast cancer treatment against breast-derived cell lines.J. Med. Plants Res.201913918819810.5897/JMPR2019.6772
    [Google Scholar]
  151. Van WilpeS. KoornstraR. Den BrokM. De GrootJ.W. BlankC. De VriesJ. GerritsenW. MehraN. Lactate dehydrogenase: A marker of diminished antitumor immunity.OncoImmunology202091173194210.1080/2162402X.2020.173194232158624
    [Google Scholar]
  152. ShittuK.O. BankoleM.T. AbdulkareemA.S. AbubakreO.K. UbakaA.U. Application of gold nanoparticles for improved drug efficiency.Advances in Natural Sciences: Nanoscience and Nanotechnology20178303501410.1088/2043‑6254/aa7716
    [Google Scholar]
  153. GolombekS.K. MayJ.N. TheekB. AppoldL. DrudeN. KiesslingF. LammersT. Tumor targeting via EPR: Strategies to enhance patient responses.Adv. Drug Deliv. Rev.2018130173810.1016/j.addr.2018.07.00730009886
    [Google Scholar]
  154. VeisehO. SunC. FangC. BhattaraiN. GunnJ. KievitF. DuK. PullarB. LeeD. EllenbogenR.G. OlsonJ. ZhangM. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier.Cancer Res.200969156200620710.1158/0008‑5472.CAN‑09‑115719638572
    [Google Scholar]
  155. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  156. KikuchiT. IshiiK. NotoT. TakahashiA. TabataK. SuzukiT. AkihisaT. Cytotoxic and apoptosis-inducing activities of limonoids from the seeds of Azadirachta indica (neem).J. Nat. Prod.201174486687010.1021/np100783k21381696
    [Google Scholar]
  157. AsimuddinM. ShaikM.R. AdilS.F. SiddiquiM.R.H. AlwarthanA. JamilK. KhanM. Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects.J. King Saud Univ. Sci.202032164865610.1016/j.jksus.2018.09.014
    [Google Scholar]
  158. DeyA. MannaS. ChattopadhyayS. MondalD. ChattopadhyayD. RajA. DasS. BagB.G. RoyS. Azadirachta indica leaves mediated green synthesized copper oxide nanoparticles induce apoptosis through activation of TNF-α and caspases signaling pathway against cancer cells.J. Saudi Chem. Soc.201923222223810.1016/j.jscs.2018.06.011
    [Google Scholar]
  159. KannanV.D. JaisankarA. RajendranV. AhmedM.Z. AlqahtaniA.S. KazmiS. MadavE. SampathS. AsaithambiP. Ecofriendly bio-synthesis and spectral characterization of copper nanoparticles using fruit extract of Pedalium murex L.: in vitro evaluation of antimicrobial, antioxidant and anticancer activities on human lung cancer A549 cell line.Mater. Technol.2024391228681810.1080/10667857.2023.2286818
    [Google Scholar]
  160. Tehrani NejadS. RahimiR. NajafiM. RostamniaS. Sustainable gold nanoparticle (Au-NP) growth within interspaces of porphyrinic zirconium-based metal–organic frameworks: Green synthesis of PCN-224/Au-NPs and its anticancer effect on colorectal cancer cells assay.ACS Appl. Mater. Interfaces2024acsami.3c1539810.1021/acsami.3c1539838194287
    [Google Scholar]
  161. HeJ. FeizipourS. VeisiH. AmraiiS.A. ZangenehM.M. HemmatiS. Panax ginseng root aqueous extract mediated biosynthesis of silver nanoparticles under ultrasound condition and investigation of the treatment of human lung adenocarcinoma with following the PI3K/AKT/mTOR signaling pathway.Inorg. Chem. Commun.202416011202110.1016/j.inoche.2024.112021
    [Google Scholar]
  162. AlharbiN.S. AlsubhiN.S. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. J. Radiat. Res. Appl. Sci.202215333534510.1016/j.jrras.2022.08.009
    [Google Scholar]
  163. KummaraS. PatilM.B. UriahT. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study.Biomed. Pharmacother.201684102110.1016/j.biopha.2016.09.00327621034
    [Google Scholar]
  164. FloraR.M.N. PalaniS. SharmilaJ. ChamundeeswariM. Green synthesis and optimization of zinc oxide quantum dots using the Box–Behnken design, with anticancer activity against the MCF-7 cell line.Appl. Phys., A Mater. Sci. Process.2022128435910.1007/s00339‑022‑05466‑4
    [Google Scholar]
  165. a) JayakodiS. ShanmugamR. AlmutairiB.O. AlmutairiM.H. MahboobS. KavipriyaM.R. GandusekarR. NicolettiM. GovindarajanM. Azadirachta indica-wrapped copper oxide nanoparticles as a novel functional material in cardiomyocyte cells: An ecotoxicity assessment on the embryonic development of Danio rerio.Environ. Res.2022212Pt A11315310.1016/j.envres.2022.11315335341753
    [Google Scholar]
  166. b) PaciottiGF TamarkinL Biological and engineering considerations for developing tumor-targeting metallic nanoparticle drugdelivery systems. InNanoparticulate Drug Delivery Systems2007Mar 30141158CRC Press.]
    [Google Scholar]
  167. AndleebA. AndleebA. AsgharS. ZamanG. TariqM. MehmoodA. NadeemM. HanoC. LorenzoJ.M. AbbasiB.H. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy.In: Cancers20211311281810.3390/cancers1311281834198769
    [Google Scholar]
  168. RaiM. IngleA.P. BirlaS. YadavA. SantosC.A. Strategic role of selected noble metal nanoparticles in medicine.Crit. Rev. Microbiol.201642569671926089024
    [Google Scholar]
  169. SinghA. Comparative therapeutic effects of plant-extract synthesized and traditionally synthesized gold nanoparticles on alcohol-induced inflammatory activity in SH-SY5Y cells in vitro.Biomedicines2017547010.3390/biomedicines504007029244731
    [Google Scholar]
  170. OuyangL. ShiZ. ZhaoS. WangF.T. ZhouT.T. LiuB. BaoJ.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis.Cell Prolif.201245648749810.1111/j.1365‑2184.2012.00845.x23030059
    [Google Scholar]
  171. SlavinY.N. AsnisJ. HäfeliU.O. BachH. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity.J. Nanobiotechnology20171516510.1186/s12951‑017‑0308‑z28974225
    [Google Scholar]
  172. SunT YanY ZhaoY GuoF JiangC Copper oxide nanoparticles induce autophagic cell death in A549 cells.Plos One201210.1371/journal.pone.0043442
    [Google Scholar]
  173. De StefanoD CarnuccioR MaiuriMC Nanomaterials toxicity and cell death modalities.J. Drug Deliv.2012201210.1155/2012/167896
    [Google Scholar]
  174. Halamoda KenzaouiB. Chapuis BernasconiC. Guney-AyraS. Juillerat-JeanneretL. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells.Biochem. J.2012441381382110.1042/BJ2011125222026563
    [Google Scholar]
  175. GhotekarS. BasnetP. LinK.Y.A. RahdarA. LariosA.P. GandhiV. OzaR. Green synthesis of CeVO4 nanoparticles using Azadirechta indica leaves extract and their promising applications as an antioxidant and anticancer agent.J. Sol-Gel Sci. Technol.2023106372673610.1007/s10971‑023‑06105‑x
    [Google Scholar]
  176. DuttY. PandeyR.P. DuttM. GuptaA. VibhutiA. RajV.S. ChangC.M. PriyadarshiniA. Silver nanoparticles phytofabricated through azadirachta indica: Anticancer, apoptotic, and wound-healing properties.Antibiotics202312112110.3390/antibiotics1201012136671322
    [Google Scholar]
  177. RaniN RawatK SainiM YadavS SyedaS SainiK ShrivastavaA. Comparative in vitro anticancer study of cisplatin drug with green synthesized zno nanoparticles on cervical squamous carcinoma (siha) cell lines.ACS Omega2023
    [Google Scholar]
  178. KumariS.A. PatlollaA.K. MadhusudhanacharyP. Biosynthesis of silver nanoparticles using azadirachta indica and their antioxidant and anticancer effects in cell lines.Micromachines2022139141610.3390/mi1309141636144039
    [Google Scholar]
  179. RaniN. RawatK. SainiM. YadavS. ShrivastavaA. SainiK. MaityD. Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide nanoparticles for in vitro lung cancer treatment.Mater. Sci. Eng. B202228411585110.1016/j.mseb.2022.115851
    [Google Scholar]
  180. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  181. BaeY.H. ParkK. Targeted drug delivery to tumors: Myths, reality and possibility.J. Control. Release2011153319820510.1016/j.jconrel.2011.06.00121663778
    [Google Scholar]
  182. ChoiC.H.J. AlabiC.A. WebsterP. DavisM.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles.Proc. Natl. Acad. Sci. USA201010731235124010.1073/pnas.091414010720080552
    [Google Scholar]
  183. PaciottiG.F. TamarkinL. Biological and engineering considerations for developing tumor-targeting metallic nanoparticle drug-delivery systems. Nanoparticulate Drug Deliv Syst.CRC Press2019141158
    [Google Scholar]
  184. DongJ. TaoL. AbourehabM.A.S. HussainZ. Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: Fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration.Int. J. Biol. Macromol.20181161268128110.1016/j.ijbiomac.2018.05.11629782984
    [Google Scholar]
  185. SintovA.C. Velasco-AguirreC. Gallardo-ToledoE. ArayaE. KoganM.J. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier.Int. Rev. Neurobiol.201613019922710.1016/bs.irn.2016.06.00727678178
    [Google Scholar]
  186. WarisA. DinM. AliA. AfridiS. BasetA. KhanA.U. AliM. Green fabrication of Co and Co 3 O 4 nanoparticles and their biomedical applications: A review.Open Life Sci.2021161143010.1515/biol‑2021‑000333817294
    [Google Scholar]
  187. WarisA. DinM. AliA. AliM. AfridiS. BasetA. Ullah KhanA. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications.Inorg. Chem. Commun.202112310836910.1016/j.inoche.2020.108369
    [Google Scholar]
  188. DawoudM. AbourehabM.A.S. AbdouR. Monoolein cubic nanoparticles as novel carriers for docetaxel.J. Drug Deliv. Sci. Technol.20205610150110.1016/j.jddst.2020.101501
    [Google Scholar]
  189. ModyV. SiwaleR. SinghA. ModyH. Introduction to metallic nanoparticles.J. Pharm. Bioallied Sci.20102428228910.4103/0975‑7406.7212721180459
    [Google Scholar]
  190. FengX. ChenA. ZhangY. WangJ. ShaoL. WeiL. Central nervous system toxicity of metallic nanoparticles.Int. J. Nanomedicine2015104321434026170667
    [Google Scholar]
  191. SriramojuB. KanwarR. KanwarJ. Nanomedicine based nanoparticles for neurological disorders.Curr. Med. Chem.201421364154416810.2174/092986732166614071609564425039778
    [Google Scholar]
  192. AyazM OvaisM AhmadI SadiqA KhalilAT UllahF Biosynthesized metal nanoparticles as potential Alzheimer’s disease therapeutics.In: InMetal nanoparticles for drug delivery and diagnostic applicationsElsevier2020314210.1016/B978‑0‑12‑816960‑5.00003‑3
    [Google Scholar]
  193. AbdulW. MuhammadA. Atta UllahK. AsmatA. AbdulB. Role of nanotechnology in diagnosing and treating COVID-19 during the Pandemi.Int. J. Clin. Virol.20204106507010.29328/journal.ijcv.1001017
    [Google Scholar]
  194. ShanD. MaC. YangJ. Enabling biodegradable functional biomaterials for the management of neurological disorders.Adv. Drug Deliv. Rev.201914821923810.1016/j.addr.2019.06.00431228483
    [Google Scholar]
  195. MuheemA. JahangirM.A. JaiswalC.P. JafarM. AhmadM.Z. AhmadJ. WarsiM.H. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders.Curr. Drug Metab.202122426327910.2174/18755453MTEyjMzIn333305703
    [Google Scholar]
  196. MallS.K. YadavT. WaziriA. AlamM.S. Treatment opportunities with Fernandoa adenophylla and recent novel approaches for natural medicinal phytochemicals as a drug delivery system.Exploration of Medicine20223651653910.37349/emed.2022.00111
    [Google Scholar]
  197. HinglajiaH. PrajapatiB. PatelG. Targeting brain disorders using lipid-based formulations.In: Lipid-Based Drug Delivery Systems.Jenny Stanford Publishing2024549590
    [Google Scholar]
  198. MajerJ. KindermannM. PinkasD. ChvatilD. CiglerP. LibusovaL. Cellular uptake and fate of cationic polymer-coated nanodiamonds delivering siRNA: A mechanistic study.Nanoscale202410.1039/D3NR05738K38197438
    [Google Scholar]
  199. KatiyarS KumariS DevA TripathiRS SrivastavaPK MishraA Herbal nanoparticles drug-loaded for the treatment of neurodegenerative diseases.In: Nanoarchitectonics for Brain Drug Delivery.202426610.1201/9781032661964‑12
    [Google Scholar]
  200. KoyyaP. ManthariR.K. PandrangiS.L. Brain-derived neurotrophic factor–the protective agent against neurological disorders.In: CNS & Neurological Disorders-Drug Targets.Formerly Current Drug Targets-CNS & Neurological Disorders2024
    [Google Scholar]
  201. VermaN. SharmaS. ThakurN. KaurN. DuaK. Nanotherapeutics for Alzheimer’s disease using metal nanocomposites.Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic Disorders2024372391
    [Google Scholar]
  202. SinghC. SinghK. Biosynthesis, purification and antibacterial activity against aquatic pathogens.Int. J. Res. Appl. Sci. Biotechnol.20174618
    [Google Scholar]
  203. ShobanaN. PrakashP. SamrotA.V. SaigeethaS. SathiyasreeM. ThirugnanasambandamR. SrideviV. Basanta KumarM. Gokul ShankarS. DhivaS. RemyaR.R. Nanotoxicity studies of Azadirachta indica mediated silver nanoparticles against Eudrilus eugeniae, Danio rerio and its embryos.Biocatal. Agric. Biotechnol.20234710256110.1016/j.bcab.2022.102561
    [Google Scholar]
  204. PhadkeC. DharmattiR. SharonC. MewadaA. BedekarM. SharonM. Azadirachta indica (Neem) gum coated gold nanoparticles as nano-go-karts to dispatch haloperidol across blood-brain-barrier.Int. J. Pharm. Sci. Rev. Res.201638167172
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385262947240206055107
Loading
/content/journals/pnt/10.2174/0122117385262947240206055107
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test