Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanotechnology has advanced significantly in recent years and is currently used in a wide range of sectors. Only a handful of the many diverse issues covered by nanotechnology include nanoscale gadgets, nanomaterials, nanoparticles, and nanomedicines. Its performance in treating a range of grave conditions, such as cancer, early detection of infections, analysis, bio-imaging, and bio sensing, suggests that it is highly advanced. Nanoscale materials have been employed for medicine delivery, pharmaceutics, and a range of diagnostic techniques due to their various biochemical and physical features. The use of nanoparticles that are based on nanotechnology can significantly improve the drug delivery mechanism. It is believed that nanoparticles capacity to improve the stability and solubility of drugs and shield them from impulsive inactivation during drug transfer makes it possible for them to capture, encapsulate, or bond with the molecules. The use of nanomedicine or nanoparticle-based tactics to combat viruses has emerged as a potentially life-saving tactic. These approaches have the power to protect both humans and animals against viruses. In order to inactivate a virus, nanoparticles have the unique capacity to connect with the virus epitope. Many nanocarriers have the potential to replace current drug delivery methods with focused drug delivery. Small dosages, low toxicity, and targeted flow of drug release at the infected location are all characteristics of nanocarriers or nanomedicine. Due to their distinct physicochemical and biological features, nanomaterial-based drug delivery systems (NBDDS) are frequently employed to enhance the safety and therapeutic efficacy of encapsulated pharmaceuticals. The program’s objective can be supported by the applications that have so far been developed. This idea is therefore essential and sophisticated for the development of civilization. Our research will therefore concentrate on how human use of nanomedicines has changed through time in many domains.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385267911231109184511
2023-11-28
2025-11-14
Loading full text...

Full text loading...

References

  1. SadikotR.T. RubinsteinI. Long-acting, multi-targeted nanomedicine: addressing unmet medical need in acute lung injury.J. Biomed. Nanotechnol.20095661461910.1166/jbn.2009.107820201223
    [Google Scholar]
  2. KooO.M. RubinsteinI. OnyukselH. Role of nanotechnology in targeted drug delivery and imaging: a concise review.Nanomedicine20051319321210.1016/j.nano.2005.06.00417292079
    [Google Scholar]
  3. WagnerV. DullaartA. BockA.K. ZweckA. The emerging nanomedicine landscape.Nat. Biotechnol.200624101211121710.1038/nbt1006‑121117033654
    [Google Scholar]
  4. SinghalS. GuptaM. AlamM.S. JavedM.N. AnsariJ.R. Carbon Allotropes-Based Nanodevices: Graphene in Biomedical Applications. InNanotechnology.CRC Press202224126910.1201/9781003220350‑14
    [Google Scholar]
  5. BhandariM. RajS. ManchandaR. AlamM.S. Review on natural bioactive products as radioprotective therapeutics: Present and past perspective.Curr. Pharm. Biotechnol.202223141721173810.2174/138920102366622011010464535016594
    [Google Scholar]
  6. KumarR. DhamijaG. AnsariJ.R. JavedM.N. AlamM.S. C-Dot nanoparticulated devices for biomedical applications. In: NanotechnologyCRC Press2022271299
    [Google Scholar]
  7. BhartiC. AlamM.S. JavedM.N. KhalidM. SaifullahF.A. ManchandaR. Silica based nanomaterial for drug delivery. Nanomaterials.Evolution and Advance Towards Therapeutic Drug Delivery2021Part 25789
    [Google Scholar]
  8. PanditJ AlamMS JavedMN WaziriA ImamSS Emerging roles of carbon nanohorns as sustainable nanomaterials in sensor, catalyst, and biomedical applications. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and ApplicationsChamSpringer International Publishing2023127
    [Google Scholar]
  9. MallS.K. YadavT. WaziriA. AlamM.S. Treatment opportunities with Fernandoa adenophylla and recent novel approaches for natural medicinal phytochemicals as a drug delivery system.Exploration of Medicine20223651653910.37349/emed.2022.00111
    [Google Scholar]
  10. BhandariM KaurDP RajS YadavT AbourehabMA AlamMS Electrically conducting smart biodegradable polymers and their applications. In: Handbook of Biodegradable MaterialsChamSpringer International Publishing202339141310.1007/978‑3‑031‑09710‑2_64
    [Google Scholar]
  11. NasehMF AnsariJR AlamMS JavedMN Sustainable nanotorus for biosensing and therapeutical applications. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and ApplicationsChamSpringer International Publishing202212110.1007/978‑3‑030‑69023‑6_47‑1
    [Google Scholar]
  12. SunilbhaiCA AlamMS SadasivuniKK AnsariJR SPR assisted diabetes detection. In: Advanced Bioscience and Biosystems for Detection and Management of DiabetesChamSpringer International Publishing20229113110.1007/978‑3‑030‑99728‑1_6
    [Google Scholar]
  13. SinghalS. GuptaM. AlamM.S. JavedM.N. AnsariJ.R. Carbon allotropes-based nanodevices: Graphene in biomedical applications. In: NanotechnologyCRC Press202224126910.1201/9781003220350‑14
    [Google Scholar]
  14. RampadoR. PeerD. Design of experiments in the optimization of nanoparticle-based drug delivery systems.J. Control. Release202335839841910.1016/j.jconrel.2023.05.00137164240
    [Google Scholar]
  15. RamazanliV.N. Effect of ph and temperature on the synthesis of silver nano particles extracted from olive leaf.https://www.ablesci.com/assist/detail?id=X1zbZA
  16. NasibovaA. Generation Of Nanoparticles In Biological Systems And Their Application Prospects, Advances in Biology &.Earth Sci.n.d.82023
    [Google Scholar]
  17. AhmadovI.S. BandaliyevaA.A. NasibovaA.N. HasanovaF.V. KhalilovR.I. The synthesis of the silver nanodrugs in the medicinal plant baikal skullcap (scutellaria baicalensis georgi) and their antioxidant, antibacterial activity. In: Advances in Biology & Earth Sciences2020
    [Google Scholar]
  18. OuyangJ. ZhangZ. DengB. LiuJ. WangL. LiuH. KooS. ChenS. LiY. YaremenkoA.V. HuangX. ChenW. LeeY. TaoW. Oral drug delivery platforms for biomedical applications.Mater. Today20236229632610.1016/j.mattod.2023.01.002
    [Google Scholar]
  19. CookeJ.P. AtkinsJ. Nanotherapeutic solutions for cardiovascular disease.Methodist DeBakey Cardiovasc. J.201612313213310.14797/mdcj‑12‑3‑13227826365
    [Google Scholar]
  20. ZhouX. HaoY. YuanL. PradhanS. ShresthaK. PradhanO. LiuH. LiW. Nano-formulations for transdermal drug delivery: A review.Chin. Chem. Lett.201829121713172410.1016/j.cclet.2018.10.037
    [Google Scholar]
  21. MatobaT. KogaJ. NakanoK. EgashiraK. TsutsuiH. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease.J. Cardiol.201770320621110.1016/j.jjcc.2017.03.00528416142
    [Google Scholar]
  22. Tiance AN, Zhang L Versatile flexible azolate-based metal-organic frameworks possessing different bridging ligands.J. Mater. Res201642
    [Google Scholar]
  23. Landesman-MiloD. GoldsmithM. Leviatan Ben-AryeS. WitenbergB. BrownE. LeibovitchS. AzrielS. TabakS. MoradV. PeerD. Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells.Cancer Lett.2013334222122710.1016/j.canlet.2012.08.02422935680
    [Google Scholar]
  24. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  25. ChandrasekaranS. KingM. Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy.Int. J. Mol. Sci.20141511202092023910.3390/ijms15112020925380524
    [Google Scholar]
  26. Chapoy-VillanuevaH. Martinez-CarlinI. Lopez-BeresteinG. Chavez-ReyesA. Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity.J. BUON20152061471147926854443
    [Google Scholar]
  27. FanY. ChenC. HuangY. ZhangF. LinG. Study of the pH-sensitive mechanism of tumor-targeting liposomes.Colloids Surf. B Biointerfaces2017151192510.1016/j.colsurfb.2016.11.04227940165
    [Google Scholar]
  28. ShiC. HeY. DingM. WangY. ZhongJ. Nanoimaging of food proteins by atomic force microscopy. Part I: Components, imaging modes, observation ways, and research types.Trends Food Sci. Technol.20198731310.1016/j.tifs.2018.11.028
    [Google Scholar]
  29. ShiC. HeY. DingM. WangY. ZhongJ. Nanoimaging of food proteins by atomic force microscopy. Part II: Application for food proteins from different sources.Trends Food Sci. Technol.201987142510.1016/j.tifs.2018.11.027
    [Google Scholar]
  30. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
  31. WeiD. QiaoR. DaoJ. SuJ. JiangC. WangX. GaoM. ZhongJ. Soybean lecithin‐mediated nanoporous PLGA microspheres with highly entrapped and controlled released BMP‐2 as a stem cell platform.Small20181422180006310.1002/smll.20180006329682876
    [Google Scholar]
  32. ZhaoL. DingJ. XiaoC. HeP. TangZ. PangX. ZhuangX. ChenX. Glucose-sensitive polypeptide micelles for self-regulated insulin release at physiological pH.J. Mater. Chem.20122224123191232810.1039/c2jm31040f
    [Google Scholar]
  33. AfsharzadehM. HashemiM. MokhtarzadehA. AbnousK. RamezaniM. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment.Artif. Cells Nanomed. Biotechnol.20184661095111010.1080/21691401.2017.137667528954547
    [Google Scholar]
  34. WangW. DingJ. XiaoC. TangZ. LiD. ChenJ. ZhuangX. ChenX. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.Biomacromolecules20111272466247410.1021/bm200668n21649444
    [Google Scholar]
  35. YangC. GaoS. Dagnæs-HansenF. JakobsenM. KjemsJ. Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo.ACS Appl. Mater. Interfaces2017914122031221610.1021/acsami.6b1655628332829
    [Google Scholar]
  36. SunP. HuangW. KangL. JinM. FanB. JinH. WangQ. GaoZ. siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis.Int. J. Nanomedicine2017123221323410.2147/IJN.S12943628458542
    [Google Scholar]
  37. NewkomeG.R. YaoZ. BakerG.R. GuptaV.K. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol.J. Org. Chem.198550112003200410.1021/jo00211a052
    [Google Scholar]
  38. KesharwaniP. GajbhiyeV. JainN.K. A review of nanocarriers for the delivery of small interfering RNA.Biomaterials201233297138715010.1016/j.biomaterials.2012.06.06822796160
    [Google Scholar]
  39. BaezaA. Ruiz-MolinaD. Vallet-RegíM. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.Expert Opin. Drug Deliv.201714678379610.1080/17425247.2016.122929827575454
    [Google Scholar]
  40. AlamM.S. GargA. PottooF.H. SaifullahM.K. TareqA.I. ManzoorO. MohsinM. JavedM.N. Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design.Int. J. Biol. Macromol.2017104Pt A75876710.1016/j.ijbiomac.2017.05.12928601649
    [Google Scholar]
  41. AlamM.S. JavedM.N. PottooF.H. WaziriA. AlmalkiF.A. HasnainM.S. GargA. SaifullahM.K. QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nirto‐dye.Appl. Organomet. Chem.2019339e507110.1002/aoc.5071
    [Google Scholar]
  42. JavedMN PottooFH AlamMS Metallic nanoparticle alone and/or in combination as novel agent for the treatment of uncontrolled electric conductance related disorders and/or seizure, epilepsy & convulsions.WO Patent 2017060916A12016
  43. PanditJ AlamMS AnsariJR SinghalM GuptaN WaziriA SharmaK PottooFH Multifaced applications of nanoparticles in biological science.In: Nanomaterials in the Battle Against Pathogens and Disease VectorsCRC Press2022175010.1201/9781003126256‑2
    [Google Scholar]
  44. AlamMS NasehMF AnsariJR WaziriA JavedMN AhmadiA SaifullahMK GargA 3 Synthesis Approaches.In: Nanomaterials in the Battle Against Pathogens and Disease Vectors.202251
    [Google Scholar]
  45. Di PietroP. StranoG. ZuccarelloL. SatrianoC. Gold and silver nanoparticles for applications in theranostics.Curr. Top. Med. Chem.201616273069310210.2174/156802661666616071516334627426869
    [Google Scholar]
  46. LiangJ.J. ZhouY.Y. WuJ. DingY. Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy.Curr. Drug Metab.201415662063110.2174/138920021566614060513142724909418
    [Google Scholar]
  47. KhafajiM. ZamaniM. GolizadehM. BaviO. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment.Biophys. Rev.201911333535210.1007/s12551‑019‑00532‑331102198
    [Google Scholar]
  48. HauserA.K. MitovM.I. DaleyE.F. McGarryR.C. AndersonK.W. HiltJ.Z. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.Biomaterials201610512713510.1016/j.biomaterials.2016.07.03227521615
    [Google Scholar]
  49. JayagopalA. SuY.R. BlakemoreJ.L. LintonM.F. FazioS. HaseltonF.R. Quantum dot mediated imaging of atherosclerosis.Nanotechnology2009201616510210.1088/0957‑4484/20/16/16510219420562
    [Google Scholar]
  50. WeiH. BrunsO.T. KaulM.G. HansenE.C. BarchM. WiśniowskaA. ChenO. ChenY. LiN. OkadaS. CorderoJ.M. HeineM. FarrarC.T. MontanaD.M. AdamG. IttrichH. JasanoffA. NielsenP. BawendiM.G. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.Proc. Natl. Acad. Sci. USA201711492325233010.1073/pnas.162014511428193901
    [Google Scholar]
  51. SuX. ChanC. ShiJ. TsangM.K. PanY. ChengC. GerileO. YangM. A graphene quantum dot@Fe 3 O 4 @SiO 2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells.Biosens. Bioelectron.20179248949510.1016/j.bios.2016.10.07627839733
    [Google Scholar]
  52. WangW. SunX. ZhangH. YangC. LiuY. YangW. GuoC. WangC. Controlled release hydrogen sulfide delivery system based on mesoporous silica nanoparticles protects graft endothelium from ischemia–reperfusion injury.Int. J. Nanomedicine2016113255326310.2147/IJN.S10460427486324
    [Google Scholar]
  53. PerioliL. PaganoC. CeccariniM.R. Current highlights about the safety of inorganic nanomaterials in healthcare.Curr. Med. Chem.201926122147216510.2174/092986732566618072312180430033865
    [Google Scholar]
  54. MishraS. SharmaS. JavedM.N. PottooF.H. BarkatM.A. Harshita AlamM.S. AmirM. SarafrozM. Bioinspired nanocomposites: applications in disease diagnosis and treatment.Pharm. Nanotechnol.20197320621910.2174/221173850766619042512150931030662
    [Google Scholar]
  55. JavedMN AlamMS WaziriA PottooFH YadavAK HasnainMS AlmalkiFA QbD applications for the development of nanopharmaceutical products. In: Pharmaceutical quality by designAcademic Press201922925310.1016/B978‑0‑12‑815799‑2.00013‑7
    [Google Scholar]
  56. BertrandN. LerouxJ.C. The journey of a drug-carrier in the body: An anatomo-physiological perspective.J. Control. Release2012161215216310.1016/j.jconrel.2011.09.09822001607
    [Google Scholar]
  57. ZhangR.X. WongH.L. XueH.Y. EohJ.Y. WuX.Y. Nanomedicine of synergistic drug combinations for cancer therapy – Strategies and perspectives.J. Control. Release201624048950310.1016/j.jconrel.2016.06.01227287891
    [Google Scholar]
  58. WongC.H. SiahK.W. LoA.W. Estimation of clinical trial success rates and related parameters.Biostatistics201920227328610.1093/biostatistics/kxx06929394327
    [Google Scholar]
  59. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  60. XuX. HoW. ZhangX. BertrandN. FarokhzadO. Cancer nanomedicine: from targeted delivery to combination therapy.Trends Mol. Med.201521422323210.1016/j.molmed.2015.01.00125656384
    [Google Scholar]
  61. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S6886125678787
    [Google Scholar]
  62. LiangR. WeiM. EvansD.G. DuanX. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics.Chem. Commun. (Camb.)20145091140711408110.1039/C4CC03118K24955443
    [Google Scholar]
  63. EnglertC. BrendelJ.C. MajdanskiT.C. YildirimT. SchubertS. GottschaldtM. WindhabN. SchubertU.S. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications.Prog. Polym. Sci.20188710716410.1016/j.progpolymsci.2018.07.005
    [Google Scholar]
  64. TarescoV. AlexanderC. SinghN. PearceA.K. Stimuli‐responsive prodrug chemistries for drug delivery.Adv. Ther.201814180003010.1002/adtp.201800030
    [Google Scholar]
  65. RampakaR. OmmiK. ChellaN. Role of solid lipid nanoparticles as drug delivery vehicles on the pharmacokinetic variability of Erlotinib HCl.J. Drug Deliv. Sci. Technol.20216610288610.1016/j.jddst.2021.102886
    [Google Scholar]
  66. La-BeckN.M. LiuX. WoodL.M. Harnessing liposome interactions with the immune system for the next breakthrough in cancer drug delivery.Front. Pharmacol.20191022010.3389/fphar.2019.0022030914953
    [Google Scholar]
  67. IndoriaS. SinghV. HsiehM.F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review.Int. J. Pharm.202058211931410.1016/j.ijpharm.2020.11931432283197
    [Google Scholar]
  68. ThapaR.K. KuS.K. ChoiH.G. YongC.S. ByeonJ.H. KimJ.O. Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy.Nanoscale20181041742174910.1039/C7NR07603G29308494
    [Google Scholar]
  69. RozalenM. Sánchez-PoloM. Fernández-PeralesM. WidmannT.J. Rivera-UtrillaJ. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells.RSC Adv.20201018106461066010.1039/C9RA08657A35492913
    [Google Scholar]
  70. HalevasE.G. PantazakiA.A. Copper nanoparticles as therapeutic anticancer agents.Nanomed. Nanotechnol. J.201821119139
    [Google Scholar]
  71. DuttaSD GangulyK BandiR AlleM A new era of cancer treatment: Carbon nanotubes as drug delivery tools. In: Smart Nanomaterials in Biomedical ApplicationsChamSpringer International Publishing2022155171
    [Google Scholar]
  72. WilhelmS. TavaresA.J. DaiQ. OhtaS. AudetJ. DvorakH.F. ChanW.C.W. Analysis of nanoparticle delivery to tumours.Nat. Rev. Mater.2016151601410.1038/natrevmats.2016.14
    [Google Scholar]
  73. HrubýM. FilippovS.K. ŠtěpánekP. Smart polymers in drug delivery systems on crossroads: Which way deserves following?Eur. Polym. J.201565829710.1016/j.eurpolymj.2015.01.016
    [Google Scholar]
  74. JavedMN DahiyaES IbrahimAM AlamMS KhanFA PottooFH Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs.Nanophytomedicine BegS. BarkatM. AhmadF. SpringerSingapore202010.1007/978‑981‑15‑4909‑0_9
    [Google Scholar]
  75. JavedMN PottooFH ShamimA HasnainMS AlamMS Design of experiments for the development of nanoparticles, nanomaterials, and nanocomposites. In: Design of Experiments for Pharmaceutical Product Development: Volume II: Applications and Practical Case studies202115116910.1007/978‑981‑33‑4351‑1_9
    [Google Scholar]
  76. KopečekJ. YangJ. Hydrogels as smart biomaterials.Polym. Int.20075691078109810.1002/pi.2253
    [Google Scholar]
  77. LeeB.K. YunY.H. ParkK. Smart nanoparticles for drug delivery: Boundaries and opportunities.Chem. Eng. Sci.201512515816410.1016/j.ces.2014.06.04225684780
    [Google Scholar]
  78. BamrungsapS. ZhaoZ. ChenT. WangL. LiC. FuT. TanW. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system.Nanomedicine2012781253127110.2217/nnm.12.8722931450
    [Google Scholar]
  79. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  80. CouvreurP. Nanoparticles in drug delivery: Past, present and future.Adv. Drug Deliv. Rev.2013651212310.1016/j.addr.2012.04.01022580334
    [Google Scholar]
  81. Alvarez-LorenzoC. ConcheiroA. Smart drug delivery systems: From fundamentals to the clinic.Chem. Commun.201450587743776510.1039/C4CC01429D24805962
    [Google Scholar]
  82. CrommelinD.J.A. FlorenceA.T. Towards more effective advanced drug delivery systems1.Int. J. Pharm.2013454149651110.1016/j.ijpharm.2013.02.02023415662
    [Google Scholar]
  83. HolzapfelB.M. ReichertJ.C. SchantzJ.T. GbureckU. RackwitzL. NöthU. JakobF. RudertM. GrollJ. HutmacherD.W. How smart do biomaterials need to be? A translational science and clinical point of view.Adv. Drug Deliv. Rev.201365458160310.1016/j.addr.2012.07.00922820527
    [Google Scholar]
  84. GrundS. BauerM. FischerD. Polymers in drug delivery—state of the art and future trends.Adv. Eng. Mater.2011133B61B8710.1002/adem.201080088
    [Google Scholar]
  85. AnnabiN. TamayolA. UquillasJ.A. AkbariM. BertassoniL.E. ChaC. Camci-UnalG. DokmeciM.R. PeppasN.A. KhademhosseiniA. 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine.Adv. Mater.20142618512410.1002/adma.20130323324741694
    [Google Scholar]
  86. ChangH.I. YehM.K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy.Int. J. Nanomedicine20127496022275822
    [Google Scholar]
  87. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.00119782542
    [Google Scholar]
  88. RossiF. FerrariR. CastiglioneF. MeleA. PeraleG. MoscatelliD. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery.Nanotechnology201526101560210.1088/0957‑4484/26/1/01560225490351
    [Google Scholar]
  89. ShimoniO. PostmaA. YanY. ScottA.M. HeathJ.K. NiceE.C. ZelikinA.N. CarusoF. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting.ACS Nano2012621463147210.1021/nn204319b22260171
    [Google Scholar]
  90. StumpelJ.E. GilE.R. SpoelstraA.B. BastiaansenC.W.M. BroerD.J. SchenningA.P.H.J. Stimuli‐responsive materials based on interpenetrating polymer liquid crystal hydrogels.Adv. Funct. Mater.201525223314332010.1002/adfm.201500745
    [Google Scholar]
  91. INHALERS DPCommittee for Proprietary Medicinal Products.CPMP1998
    [Google Scholar]
  92. SanderV.A. Sánchez LópezE.F. Mendoza MoralesL. Ramos DuarteV.A. CoriglianoM.G. ClementeM. Use of veterinary vaccines for livestock as a strategy to control foodborne parasitic diseases.Front. Cell. Infect. Microbiol.20201028810.3389/fcimb.2020.0028832670892
    [Google Scholar]
  93. RousseauA. La CarbonaS. DumètreA. RobertsonL.J. GargalaG. Escotte-BinetS. FavennecL. VillenaI. GérardC. AubertD. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii : a review of methods.Parasite2018251410.1051/parasite/201800929553366
    [Google Scholar]
  94. FeganN. JensonI. The role of meat in foodborne disease: Is there a coming revolution in risk assessment and management?Meat Sci.2018144222910.1016/j.meatsci.2018.04.01829716760
    [Google Scholar]
  95. FlühmannB. NtaiI. BorchardG. SimoensS. MühlebachS. Nanomedicines: The magic bullets reaching their target?Eur. J. Pharm. Sci.2019128738010.1016/j.ejps.2018.11.01930465818
    [Google Scholar]
  96. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  97. KupferschmidtK CohenJ. Race to find COVID-19 treatments accelerates.Science.202036764851412141310.1126/science.367.6485.1412
    [Google Scholar]
  98. BrandhonneurN. ChevanneF. ViéV. FrischB. PrimaultR. Le PotierM.F. Le CorreP. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages.Eur. J. Pharm. Sci.2009364-547448510.1016/j.ejps.2008.11.01319110055
    [Google Scholar]
  99. GomesA.J. LunardiC.N. CaetanoF.H. LunardiL.O. MachadoA.E.H. Phagocytosis of PLGA microparticles in rat peritoneal exudate cells: A time-dependent study.Microsc. Microanal.200612539940510.1017/S143192760606028416984666
    [Google Scholar]
  100. TorchilinV. Multifunctional nanocarriers.Adv. Drug Deliv. Rev.200658141532155510.1016/j.addr.2006.09.00917092599
    [Google Scholar]
  101. DanhierF. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?J. Control. Release2016244Pt A10812110.1016/j.jconrel.2016.11.01527871992
    [Google Scholar]
  102. PaderaT.P. StollB.R. TooredmanJ.B. CapenD. TomasoE. JainR.K. Cancer cells compress intratumour vessels.Nature2004427697669569510.1038/427695a14973470
    [Google Scholar]
  103. JainR.K. StylianopoulosT. Delivering nanomedicine to solid tumors.Nat. Rev. Clin. Oncol.201071165366410.1038/nrclinonc.2010.13920838415
    [Google Scholar]
  104. LammersT. KiesslingF. HenninkW.E. StormG. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress.J. Control. Release2012161217518710.1016/j.jconrel.2011.09.06321945285
    [Google Scholar]
  105. HareJ.I. LammersT. AshfordM.B. PuriS. StormG. BarryS.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.Adv. Drug Deliv. Rev.2017108253810.1016/j.addr.2016.04.02527137110
    [Google Scholar]
  106. AccomassoL. CristalliniC. GiachinoC. Risk assessment and risk minimization in nanomedicine: A need for predictive, alternative, and 3Rs strategies.Front. Pharmacol.2018922810.3389/fphar.2018.0022829662451
    [Google Scholar]
  107. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd259120616808
    [Google Scholar]
  108. RagelleH. DanhierF. PréatV. LangerR. AndersonD.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures.Expert Opin. Drug Deliv.201714785186410.1080/17425247.2016.124418727730820
    [Google Scholar]
  109. JainM.M. PatilS. PathakA.B. DeshmukhC.D. BhattN. BabuK.G. HarithaC. BondardeS.A. DigumartiR. BajpaiJ. KumarR. GupteS.U. BakshiA.V. BhattacharyyaG.S. PatilP. SubramanianS. VaidA.K. DesaiC.J. BapsyP.P. DivekarG. The efficacy and safety of paclitaxel injection concentrate for nano-dispersion (PICN) at two different doses versus paclitaxel albumin-stabilized nanoparticle formulation in subjects with metastatic breast cancer (MBC).J. Clin. Oncol.20143215_suppl1069106910.1200/jco.2014.32.15_suppl.1069
    [Google Scholar]
  110. O’BrienM.E.R. WiglerN. InbarM. RossoR. GrischkeE. SantoroA. CataneR. KiebackD.G. TomczakP. AcklandS.P. OrlandiF. MellarsL. AllandL. TendlerC. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer.Ann. Oncol.200415344044910.1093/annonc/mdh09714998846
    [Google Scholar]
  111. CabralH. MatsumotoY. MizunoK. ChenQ. MurakamiM. KimuraM. TeradaY. KanoM.R. MiyazonoK. UesakaM. NishiyamaN. KataokaK. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.Nat. Nanotechnol.201161281582310.1038/nnano.2011.16622020122
    [Google Scholar]
  112. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  113. SunX. RossinR. TurnerJ.L. BeckerM.L. JoralemonM.J. WelchM.J. WooleyK.L. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution.Biomacromolecules2005652541255410.1021/bm050260e16153091
    [Google Scholar]
  114. PeerD. Harnessing RNAi nanomedicine for precision therapy.Mol. Cell. Ther.201421510.1186/2052‑8426‑2‑526056574
    [Google Scholar]
  115. HrkachJ. Von HoffD. AliM.M. AndrianovaE. AuerJ. CampbellT. De WittD. FigaM. FigueiredoM. HorhotaA. LowS. McDonnellK. PeekeE. RetnarajanB. SabnisA. SchnipperE. SongJ.J. SongY.H. SummaJ. TompsettD. TroianoG. Van Geen HovenT. WrightJ. LoRussoP. KantoffP.W. BanderN.H. SweeneyC. FarokhzadO.C. LangerR. ZaleS. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile.Sci. Transl. Med.20124128128ra3910.1126/scitranslmed.300365122491949
    [Google Scholar]
  116. RazaK KumarP KumarN MalikR Pharmacokinetics and biodistribution of the nanoparticles.. In: Advances in nanomedicine for the delivery of therapeutic nucleic acidsWoodhead publishing201716518610.1016/B978‑0‑08‑100557‑6.00009‑2
    [Google Scholar]
  117. Soo ChoiH. LiuW. MisraP. TanakaE. ZimmerJ.P. Itty IpeB. BawendiM.G. FrangioniJ.V. Renal clearance of quantum dots.Nat. Biotechnol.200725101165117010.1038/nbt134017891134
    [Google Scholar]
  118. FangC. ShiB. PeiY.Y. HongM.H. WuJ. ChenH.Z. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size.Eur. J. Pharm. Sci.2006271273610.1016/j.ejps.2005.08.00216150582
    [Google Scholar]
  119. BertrandN. GrenierP. MahmoudiM. LimaE.M. AppelE.A. DormontF. LimJ.M. KarnikR. LangerR. FarokhzadO.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics.Nat. Commun.20178177710.1038/s41467‑017‑00600‑w28974673
    [Google Scholar]
  120. YamamotoY. NagasakiY. KatoY. SugiyamaY. KataokaK. Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge.J. Control. Release2001771-2273810.1016/S0168‑3659(01)00451‑511689257
    [Google Scholar]
  121. van VlerkenL.E. VyasT.K. AmijiM.M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery.Pharm. Res.20072481405141410.1007/s11095‑007‑9284‑617393074
    [Google Scholar]
  122. BertholonI. VauthierC. LabarreD. Complement activation by core-shell poly(isobutylcyanoacrylate)-polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide.Pharm. Res.20062361313132310.1007/s11095‑006‑0069‑016715369
    [Google Scholar]
  123. HuY. XieJ. TongY.W. WangC.H. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells.J. Control. Release2007118171710.1016/j.jconrel.2006.11.02817241684
    [Google Scholar]
  124. MusyanovychA. DausendJ. DassM. WaltherP. MailänderV. LandfesterK. Criteria impacting the cellular uptake of nanoparticles: A study emphasizing polymer type and surfactant effects.Acta Biomater.20117124160416810.1016/j.actbio.2011.07.03321855659
    [Google Scholar]
  125. RejmanJ. OberleV. ZuhornI.S. HoekstraD. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.Biochem. J.2004377115916910.1042/bj2003125314505488
    [Google Scholar]
  126. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.527003448
    [Google Scholar]
  127. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  128. BartlettD.W. SuH. HildebrandtI.J. WeberW.A. DavisM.E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging.Proc. Natl. Acad. Sci. USA200710439155491555410.1073/pnas.070746110417875985
    [Google Scholar]
  129. MatsumuraY. MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.19864612 Pt 1638763922946403
    [Google Scholar]
  130. FangJ. NakamuraH. MaedaH. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.Adv. Drug Deliv. Rev.201163313615110.1016/j.addr.2010.04.00920441782
    [Google Scholar]
  131. StrebhardtK. UllrichA. Paul Ehrlich’s magic bullet concept: 100 years of progress.Nat. Rev. Cancer20088647348010.1038/nrc239418469827
    [Google Scholar]
  132. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑527299311
    [Google Scholar]
  133. DuncanR. Polymer therapeutics: Top 10 selling pharmaceuticals — What next?J. Control. Release201419037138010.1016/j.jconrel.2014.05.00124818766
    [Google Scholar]
  134. VentolaC.L. Progress in nanomedicine: approved and investigational nanodrugs.P&T2017421274275529234213
    [Google Scholar]
  135. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.00924270007
    [Google Scholar]
  136. ByrneJ.D. BetancourtT. Brannon-PeppasL. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.00518840489
    [Google Scholar]
  137. KarmaliP.P. KotamrajuV.R. KastantinM. BlackM. MissirlisD. TirrellM. RuoslahtiE. Targeting of albumin-embedded paclitaxel nanoparticles to tumors.Nanomedicine200951738210.1016/j.nano.2008.07.00718829396
    [Google Scholar]
  138. MarcucciF. LefoulonF. Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress.Drug Discov. Today20049521922810.1016/S1359‑6446(03)02988‑X14980540
    [Google Scholar]
  139. MaruyamaK. PEG-Immunoliposome.Biosci. Rep.200222225126610.1023/A:102013862268612428903
    [Google Scholar]
  140. ToporkiewiczM. MeissnerJ. MatusewiczL. CzogallaA. SikorskiA.F. Toward a magic or imaginary bullet? Ligands for drug targeting to cancer cells: principles, hopes, and challenges.Int. J. Nanomedicine2015101399141425733832
    [Google Scholar]
  141. AllenT.M. Ligand-targeted therapeutics in anticancer therapy.Nat. Rev. Cancer200221075076310.1038/nrc90312360278
    [Google Scholar]
  142. PrabhakarU. MaedaH. JainR.K. Sevick-MuracaE.M. ZamboniW. FarokhzadO.C. BarryS.T. GabizonA. GrodzinskiP. BlakeyD.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology.Cancer Res.20137382412241710.1158/0008‑5472.CAN‑12‑456123423979
    [Google Scholar]
  143. LammersT. RizzoL.Y. StormG. KiesslingF. Personalized Nanomedicine.Clin. Cancer Res.201218184889489410.1158/1078‑0432.CCR‑12‑141422829203
    [Google Scholar]
  144. NatfjiA.A. RavishankarD. OsbornH.M.I. GrecoF. Parameters affecting the enhanced permeability and retention effect: the need for patient selection.J. Pharm. Sci.2017106113179318710.1016/j.xphs.2017.06.01928669714
    [Google Scholar]
  145. GregoriadisG. SwainC.P. WillsE.J. TavillA.S. Drug-carrier potential of liposomes in cancer chemotherapy.Lancet197430378701313131610.1016/S0140‑6736(74)90682‑54134296
    [Google Scholar]
  146. SegalA.W. GregoriadisG. LavenderJ.P. TarinD. PetersT.J. Tissue and hepatic subcellular distribution of liposomes containing bleomycin after intravenous administration to patients with neoplasms.Clin. Sci. Mol. Med.197651442142510.1042/cs051042161088
    [Google Scholar]
  147. RichardsonV.J. RymanB.E. JewkesR.F. JeyasinghK. TattersallM.N. NewlandsE.S. KayeS.B. Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients.Br. J. Cancer1979401354310.1038/bjc.1979.138475960
    [Google Scholar]
  148. Perez-SolerR. Lopez-BeresteinG. KasiL.P. CabanillasF. JahnsM. GlennH. HershE.M. HaynieT. Distribution of technetium-99m-labeled multilamellar liposomes in patients with Hodgkin’s disease.J. Nucl. Med.19852677437493925093
    [Google Scholar]
  149. Lopez-BeresteinG. KasiL. RosenblumM.G. HaynieT. JahnsM. GlennH. MehtaR. MavligitG.M. HershE.M. Clinical pharmacology of 99mTc-labeled liposomes in patients with cancer.Cancer Res.19844413753786317172
    [Google Scholar]
  150. TurnerA.F. PresantC.A. ProffittR.T. WilliamsL.E. WinsorD.W. WernerJ.L. In-111-labeled liposomes: dosimetry and tumor depiction.Radiology1988166376176510.1148/radiology.166.3.33407743340774
    [Google Scholar]
  151. Perez-SolerR. Lopez-BeresteinG. KasiLP. Cabanillas F, Jahns M, Glenn H, Hersh EM, Haynie T.Distribution of technetium-99mlabeled multilamellar liposomes in patients with Hodgkin's disease. J Nuclear Med19852677439
    [Google Scholar]
  152. TurnerAF PresantCA. Proffitt RT, Williams LE, Winsor DW, Werner JL. In-111-labeled liposomes: dosimetry and tumor depiction. Radiology 198816637615
    [Google Scholar]
  153. PresantCA. TurnerAF Proffitt RT. Potential for improvement in clinical decision-making: tumor imaging with in-111 labeled liposomes results of a phase ii-iii study. J Liposome Res1994429851008
    [Google Scholar]
  154. FlackeS. FischerS. ScottM.J. FuhrhopR.J. AllenJ.S. McLeanM. WinterP. SicardG.A. GaffneyP.J. WicklineS.A. LanzaG.M. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques.Circulation2001104111280128510.1161/hc3601.09430311551880
    [Google Scholar]
  155. FrankJ.A. MillerB.R. ArbabA.S. ZywickeH.A. JordanE.K. LewisB.K. BryantL.H.Jr BulteJ.W.M. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.Radiology2003228248048710.1148/radiol.228102063812819345
    [Google Scholar]
  156. KraitchmanD.L. HeldmanA.W. AtalarE. AmadoL.C. MartinB.J. PittengerM.F. HareJ.M. BulteJ.W.M. in vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction.Circulation2003107182290229310.1161/01.CIR.0000070931.62772.4E12732608
    [Google Scholar]
  157. NikaljeAP Nanotechnology and its applications in medicine.Med chem.20155208108910.4172/2161‑0444.1000247
    [Google Scholar]
  158. ThiruppathiR. MishraS. GanapathyM. PadmanabhanP. GulyásB. Nanoparticle functionalization and its potentials for molecular imaging.Adv. Sci. (Weinh.)201743160027910.1002/advs.20160027928331783
    [Google Scholar]
  159. IaconoP. KarabeberH. KircherM.F. A “schizophotonic” all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging.Angew. Chem. Int. Ed.20145344117561176110.1002/anie.20140383525164141
    [Google Scholar]
  160. MuthukumarT. ChamundeeswariM. PrabhavathiS. GurunathanB. ChandhuruJ. SastryT.P. Carbon nanoparticle from a natural source fabricated for folate receptor targeting, imaging and drug delivery application in A549 lung cancer cells.Eur. J. Pharm. Biopharm.201488373073610.1016/j.ejpb.2014.09.01125305584
    [Google Scholar]
  161. GhaghadaK.B. BadeaC.T. KarumbaiahL. FettigN. BellamkondaR.V. JohnsonG.A. AnnapragadaA. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging.Acad. Radiol.2011181203010.1016/j.acra.2010.09.00321145026
    [Google Scholar]
  162. HainfeldJ.F. SmilowitzH.M. O’ConnorM.J. DilmanianF.A. SlatkinD.N. Gold nanoparticle imaging and radiotherapy of brain tumors in mice.Nanomedicine (Lond.)20138101601160910.2217/nnm.12.16523265347
    [Google Scholar]
  163. NahrendorfM. ZhangH. HembradorS. PanizziP. SosnovikD.E. AikawaE. LibbyP. SwirskiF.K. WeisslederR. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis.Circulation2008117337938710.1161/CIRCULATIONAHA.107.74118118158358
    [Google Scholar]
  164. WongH.L. WuX.Y. BendayanR. Nanotechnological advances for the delivery of CNS therapeutics.Adv. Drug Deliv. Rev.201264768670010.1016/j.addr.2011.10.00722100125
    [Google Scholar]
  165. PottooF.H. SharmaS. JavedM.N. BarkatM.A. Harshita AlamM.S. NaimM.J. AlamO. AnsariM.A. BarretoG.E. AshrafG.M. Lipid-based nanoformulations in the treatment of neurological disorders.Drug Metab. Rev.202052118520410.1080/03602532.2020.172694232116044
    [Google Scholar]
  166. IbrahimA.M. ChauhanL. BhardwajA. SharmaA. FayazF. KumarB. AlhashmiM. AlHajriN. AlamM.S. PottooF.H. Brain-derived neurotropic factor in neurodegenerative disorders.Biomedicines2022105114310.3390/biomedicines1005114335625880
    [Google Scholar]
  167. AslamM. JavedM.N. DeebH.H. NicolaM.K. SabirA.M. HasnainM.S. AlamM.S. WaziriA. Lipid carriers mediated targeted delivery of nutraceuticals: Challenges, role of blood brain barrier and promises of nanotechnology based ap-proaches in neuronal disorders.Curr. Drug Metab.2020212110.2174/1389200221999200728143511
    [Google Scholar]
  168. JavedMN AkhterMH TaleuzzamanM FaiyazudinM AlamMS Cationic nanoparticles for treatment of neurological diseases.Fundamentals of BionanomaterialsElsevier202227329210.1016/B978‑0‑12‑824147‑9.00010‑8
    [Google Scholar]
  169. KumariN DaramN AlamMS VermaAK Rationalizing the use of polyphenol nano-formulations in the therapy of neurodegenerative diseases.CNS Neurol Disord Drug Targets20222110966976
    [Google Scholar]
  170. PottooF.H. TabassumN. JavedM.N. NigarS. RasheedR. KhanA. BarkatM.A. AlamM.S. MaqboolA. AnsariM.A. BarretoG.E. AshrafG.M. The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy.Mol. Neurobiol.20195621233124710.1007/s12035‑018‑1121‑x29881945
    [Google Scholar]
  171. PottooF.H. JavedM.N. BarkatM.A. AlamM.S. NowshehriJ.A. AlshaybanD.M. AnsariM.A. Estrogen and serotonin: complexity of interactions and implications for epileptic seizures and epileptogenesis.Curr. Neuropharmacol.201917321423110.2174/1570159X1666618062816443229956631
    [Google Scholar]
  172. PottooF.H. TabassumN. JavedM.N. NigarS. SharmaS. BarkatM.A. Harshita AlamM.S. AnsariM.A. BarretoG.E. AshrafG.M. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice.Eur. J. Pharm. Sci.202014610526110.1016/j.ejps.2020.10526132061655
    [Google Scholar]
  173. ChiuSS TerpstraK Woodbury-FarinaM MishraR BadmaeV VaugheseJ RahebH LuiE CernovskyZ BureauY Transforming curry extract to liposomal curcumin (LipocurcTM) in Parkinson disease (PD) therapeutics landscape: Emerging role of epigenetics signaling and nanotechnology.EC Neurology20201220112
    [Google Scholar]
  174. HuK. ShiY. JiangW. HanJ. HuangS. JiangX. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease.Int. J. Pharm.20114151-227328310.1016/j.ijpharm.2011.05.06221651967
    [Google Scholar]
  175. KoW.C. WangS.J. HsiaoC.Y. HungC.T. HsuY.J. ChangD.C. HungC.F. Pharmacological role of functionalized gold nanoparticles in disease applications.Molecules2022275155110.3390/molecules2705155135268651
    [Google Scholar]
  176. LiaoX. GeK. CaiZ. QiuS. WuS. LiQ. LiuZ. GaoF. TangQ. Hybridization chain reaction triggered poly adenine to absorb silver nanoparticles for label-free electrochemical detection of Alzheimer’s disease biomarkers amyloid β-peptide oligomers.Anal. Chim. Acta2022119233939110.1016/j.aca.2021.33939135057926
    [Google Scholar]
  177. PohankaM. Copper and copper nanoparticles toxicity and their impact on basic functions in the body.Bratisl. Med. J.2019120639740910.4149/BLL_2019_06531223019
    [Google Scholar]
  178. XiangC. ZhangY. GuoW. LiangX.J. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication.Acta Pharm. Sin. B202010223924810.1016/j.apsb.2019.11.00332082970
    [Google Scholar]
  179. KreuterJ. RamgeP. PetrovV. HammS. GelperinaS.E. EngelhardtB. AlyautdinR. von BriesenH. BegleyD.J. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles.Pharm. Res.200320340941610.1023/A:102260412095212669961
    [Google Scholar]
  180. CostiganS. The toxicology of nanoparticles used in health care products., Medicines and Healthcare Products.Department of Health2006
    [Google Scholar]
  181. de Jong Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine200813313310.2147/IJN.S596
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385267911231109184511
Loading
/content/journals/pnt/10.2174/0122117385267911231109184511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test