Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385286925240221111601
2024-03-08
2025-10-04
Loading full text...

Full text loading...

References

  1. PatelA. CholkarK. AgrahariV. MitraA.K. Ocular drug delivery systems: An overview.World J. Pharmacol.201322476410.5497/wjp.v2.i2.4725590022
    [Google Scholar]
  2. López-CanoJ.J. González-Cela-CasamayorM.A. Andrés-GuerreroV. Herrero-VanrellR. Molina-MartínezI.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection.Expert Opin. Drug Deliv.202118781984710.1080/17425247.2021.187254233412914
    [Google Scholar]
  3. KrishnaswamiV. KandasamyR. AlagarsamyS. PalanisamyR. NatesanS. Biological macromolecules for ophthalmic drug delivery to treat ocular diseases.Int. J. Biol. Macromol.201811071610.1016/j.ijbiomac.2018.01.12029378276
    [Google Scholar]
  4. ChitraP.S. ChakiD. BoirojuN.K. MokallaT.R. GaddeA.K. AgraharamS.G. ReddyG.B. Status of oxidative stress markers, advanced glycation index, and polyol pathway in age-related cataract subjects with and without diabetes.Exp. Eye Res.20202000610823010.1016/j.exer.2020.10823032931824
    [Google Scholar]
  5. AdriantoM.F. AnnuryantiF. WilsonC.G. SheshalaR. ThakurR.R.S. In vitro dissolution testing models of ocular implants for posterior segment drug delivery.Drug Deliv. Transl. Res.20221261355137510.1007/s13346‑021‑01043‑z34382178
    [Google Scholar]
  6. AhmedS. AminM.M. El-KoranyS.M. SayedS. Corneal targeted fenticonazole nitrate-loaded novasomes for the management of ocular candidiasis: Preparation, in vitro characterization, ex vivo and in vivo assessments.Drug Deliv.20222912428244110.1080/10717544.2022.210360035880688
    [Google Scholar]
  7. KunoN. FujiiS. Recent advances in ocular drug delivery systems.Polymers20113119322110.3390/polym3010193
    [Google Scholar]
  8. AhmedS. AminM.M. SayedS. Ocular drug delivery: A comprehensive review.AAPS PharmSciTech20232426610.1208/s12249‑023‑02516‑936788150
    [Google Scholar]
  9. EdelhauserH.F. BoatrightJ.H. NickersonJ.M. Drug delivery to posterior intraocular tissues: Third annual ARVO/Pfizer ophthalmics research institute conference.Invest. Ophthalmol. Vis. Sci.200849114712472010.1167/iovs.08‑190418708617
    [Google Scholar]
  10. TangriP. KhuranaS. Basics of ocular drug delivery systems.Int. J. Res. Pharm. Biomed. Sci.20112415411552
    [Google Scholar]
  11. WadhwaS. PaliwalR. PaliwalS. VyasS. Nanocarriers in ocular drug delivery: An update review.Curr. Pharm. Des.200915232724275010.2174/13816120978892388619689343
    [Google Scholar]
  12. GaudanaR. AnanthulaH.K. ParenkyA. MitraA.K. Ocular drug delivery.AAPS J.201012334836010.1208/s12248‑010‑9183‑320437123
    [Google Scholar]
  13. GoteV. SikderS. SicotteJ. PalD. Ocular drug delivery: Present innovations and future challenges.J. Pharmacol. Exp. Ther.2019370360262410.1124/jpet.119.25693331072813
    [Google Scholar]
  14. LiangH. BaudouinC. PaulyA. Brignole-BaudouinF. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride.Br. J. Ophthalmol.20089291275128210.1136/bjo.2008.13876818723745
    [Google Scholar]
  15. DubaldM. BourgeoisS. AndrieuV. FessiH. Ophthalmic drug delivery systems for antibiotherapy—a review.Pharmaceutics20181011010.3390/pharmaceutics1001001029342879
    [Google Scholar]
  16. Al-GhabeishM. XuX. KrishnaiahY.S.R. RahmanZ. YangY. KhanM.A. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.Int. J. Pharm.2015495278379110.1016/j.ijpharm.2015.08.09626343911
    [Google Scholar]
  17. LeeV.H.L. RobinsonJ.R. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits.J. Pharm. Sci.197968667368410.1002/jps.2600680606458563
    [Google Scholar]
  18. SubriziA. del AmoE.M. Korzhikov-VlakhV. TennikovaT. RuponenM. UrttiA. Design principles of ocular drug delivery systems: Importance of drug payload, release rate, and material properties.Drug Discov. Today20192481446145710.1016/j.drudis.2019.02.00130738982
    [Google Scholar]
  19. SilvaB. São BrazB. DelgadoE. GonçalvesL. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery.Int. J. Pharm.20216060612087310.1016/j.ijpharm.2021.12087334246741
    [Google Scholar]
  20. VadlapudiA.D. MitraA.K. Nanomicelles: An emerging platform for drug delivery to the eye.Ther. Deliv.2013411310.4155/tde.12.12223323774
    [Google Scholar]
  21. LutharS.S. CicchettiD. BeckerB. The construct of resilience: A critical evaluation and guidelines for future work.Child Dev.200071354356210.1111/1467‑8624.0016410953923
    [Google Scholar]
  22. TrivediR. KompellaU.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles.Nanomedicine20105348550510.2217/nnm.10.1020394539
    [Google Scholar]
  23. VaishyaR.D. KhuranaV. PatelS. MitraA.K. Controlled ocular drug delivery with nanomicelles.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20146542243710.1002/wnan.127224888969
    [Google Scholar]
  24. DasguptaI. ChatterjeeA. Recent advances in miRNA delivery systems.Methods Protoc.2021411010.3390/mps401001033498244
    [Google Scholar]
  25. TorchilinV.P. Structure and design of polymeric surfactant-based drug delivery systems.J. Control. Release2001732-313717210.1016/S0168‑3659(01)00299‑111516494
    [Google Scholar]
  26. CholkarK. GilgerB.C. MitraA.K. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery.Transl. Vis. Sci. Technol.201543110.1167/tvst.4.3.125964868
    [Google Scholar]
  27. SinghP. PradeshU. A Review on impact of nanomicelle for ocular drug deliery.Int J Pharmceutical Sci Reserach.20179413971404
    [Google Scholar]
  28. BoseA. Roy BurmanD. SikdarB. PatraP. Nanomicelles: Types, properties and applications in drug delivery.IET Nanobiotechnol.2021151192710.1049/nbt2.1201834694727
    [Google Scholar]
  29. BaeY. NishiyamaN. FukushimaS. KoyamaH. YasuhiroM. KataokaK. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy.Bioconjug. Chem.200516112213010.1021/bc049816615656583
    [Google Scholar]
  30. ChevalierY. ZembT. The structure of micelles and microemulsions.Rep. Prog. Phys.199053327937110.1088/0034‑4885/53/3/002
    [Google Scholar]
  31. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  32. LiuJ. ZengF. AllenC. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent.J. Control. Release2005103248149710.1016/j.jconrel.2004.12.01315763628
    [Google Scholar]
  33. KangN. LerouxJ.C. Triblock and star-block copolymers of N-(2-hydroxypropyl)methacrylamide or N-vinyl-2-pyrrolidone and d,l-lactide: synthesis and self-assembling properties in water.Polymer200445268967898010.1016/j.polymer.2004.10.081
    [Google Scholar]
  34. QiuM. OuyangJ. SunH. MengF. ChengR. ZhangJ. ChengL. LanQ. DengC. ZhongZ. Biodegradable micelles based on poly(ethylene glycol)- b -polylipopeptide copolymer: A robust and versatile nanoplatform for anticancer drug delivery.ACS Appl. Mater. Interfaces2017933275872759510.1021/acsami.7b1053328782928
    [Google Scholar]
  35. RostamiN. GomariM.M. AbdoussM. MoeinzadehA. ChoupaniE. DavarnejadR. HeidariR. BencherifS.A. Synthesis and characterization of folic acid-functionalized dpla-co-peg nanomicelles for the targeted delivery of letrozole.ACS Appl. Bio Mater.2023651806181510.1021/acsabm.3c0004137093754
    [Google Scholar]
  36. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  37. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics1408163636015262
    [Google Scholar]
  38. NishiyamaN. KoizumiF. OkazakiS. MatsumuraY. NishioK. KataokaK. Differential gene expression profile between PC-14 cells treated with free cisplatin and cisplatin-incorporated polymeric micelles.Bioconjug. Chem.200314244945710.1021/bc025555t12643756
    [Google Scholar]
  39. AlakhovV.Y. KabanovA.V. Block copolymeric biotransport carriers as versatile vehicles for drug delivery.Expert Opin. Investig. Drugs1998791453147310.1517/13543784.7.9.145315992043
    [Google Scholar]
  40. WakaskarR.R. Polymeric micelles and their properties.J. Nanomed. Nanotechnol.20178210.4172/2157‑7439.1000433
    [Google Scholar]
  41. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  42. RochaC.V. GonçalvesV. da SilvaM.C. Bañobre-LópezM. GalloJ. PLGA-based composites for various biomedical applications.Int. J. Mol. Sci.2022234203410.3390/ijms2304203435216149
    [Google Scholar]
  43. CholkarK. PatelA. VadlapudiA.D. MitraA.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery.Recent Pat. Nanomed.201222829510.2174/187791231120202008225400717
    [Google Scholar]
  44. Rangel-YaguiC.O. HsuH.W.L. PessoaA. TavaresL.C. Micellar solubilization of ibuprofen - Influence of surfactant head groups on the extent of solubilization.Braz. J. Pharm. Sci.2005412237246
    [Google Scholar]
  45. ZhengX. XieJ. ZhangX. SunW. ZhaoH. LiY. WangC. An overview of polymeric nanomicelles in clinical trials and on the market.Chin. Chem. Lett.202132124325710.1016/j.cclet.2020.11.029
    [Google Scholar]
  46. MandalA. BishtR. RupenthalI.D. MitraA.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.J. Control. Release20172489611610.1016/j.jconrel.2017.01.01228087407
    [Google Scholar]
  47. SalamaA.H. ShammaR.N. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: In-vitro characterization, and in-vivo estimation of corneal permeation.Int. J. Pharm.20154921-2283910.1016/j.ijpharm.2015.07.01026151106
    [Google Scholar]
  48. PignatelloR. CorsaroR. BonaccorsoA. ZingaleE. CarboneC. MusumeciT. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs.Drug Deliv. Transl. Res.20221281991200610.1007/s13346‑022‑01182‑x35604634
    [Google Scholar]
  49. YuB.G. OkanoT. KataokaK. KwonG. Polymeric micelles for drug delivery: Solubilization and haemolytic activity of amphotericin B.J. Control. Release1998531-313113610.1016/S0168‑3659(97)00245‑99741920
    [Google Scholar]
  50. AlmeidaM. MagalhãesM. VeigaF. FigueirasA. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer.J. Polym. Res.20182513110.1007/s10965‑017‑1426‑x
    [Google Scholar]
  51. ParraA. JarakI. SantosA. VeigaF. FigueirasA. Polymeric micelles: A promising pathway for dermal drug delivery.Materials20211423727810.3390/ma1423727834885432
    [Google Scholar]
  52. SongK. YanM. LiM. GengY. WuX. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin.Colloids Surf. B Biointerfaces202019411115710.1016/j.colsurfb.2020.11115732505061
    [Google Scholar]
  53. PerinelliD.R. CespiM. LorussoN. PalmieriG.F. BonacucinaG. BlasiP. Surfactant self-assembling and critical micelle concentration: One approach fits all?Langmuir202036215745575310.1021/acs.langmuir.0c0042032370512
    [Google Scholar]
  54. TopelÖ. ÇakırB.A. BudamaL. HodaN. Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering.J. Mol. Liq.2013177404310.1016/j.molliq.2012.10.013
    [Google Scholar]
  55. ShenS. WuY. LiuY. WuD. High drug-loading nanomedicines : Progress, current status, and prospects.Int J Nanomedicine. 20171240854109
    [Google Scholar]
  56. KumarA. A comprehensive review on polymeric micelles: A promising drug delivery carrier.J. Anal. Pharm. Res.202110310210710.15406/japlr.2021.10.00372
    [Google Scholar]
  57. WongP.T. ChoiS.K. Mechanisms of drug release in nanotherapeutic delivery systems.Chem. Rev.201511593388343210.1021/cr500463425914945
    [Google Scholar]
  58. YounesN.F. Abdel-HalimS.A. ElassasyA.I. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization.Drug Deliv.20182511706171710.1080/10717544.2018.149710730442039
    [Google Scholar]
  59. AhmedS. KassemM.A. SayedS. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation.Int. J. Nanomedicine2020159783979810.2147/IJN.S27868833324052
    [Google Scholar]
  60. TerreniE. ZucchettiE. TampucciS. BurgalassiS. MontiD. ChetoniP. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (Odds) for cyclosporine-a.Pharmaceutics202113219210.3390/pharmaceutics1302019233535607
    [Google Scholar]
  61. SinghM. BharadwajS. LeeK.E. KangS.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery.J. Control. Release202032889591610.1016/j.jconrel.2020.10.02533069743
    [Google Scholar]
  62. MalekhosseiniS. RezaieA. KhaledianS. AbdoliM. ZangenehM.M. HosseiniA. BehboodL. Fabrication and characterization of hydrocortisone loaded Dextran-Poly Lactic-co-Glycolic acid micelle.Heliyon202065e0397510.1016/j.heliyon.2020.e0397532455174
    [Google Scholar]
  63. BongiovìF. Di PrimaG. PalumboF.S. LicciardiM. PitarresiG. GiammonaG. Hyaluronic acid‐based micelles as ocular platform to modulate the loading, release, and corneal permeation of corticosteroids.Macromol. Biosci.20171712170026110.1002/mabi.20170026129144603
    [Google Scholar]
  64. MunE.A. MorrisonP.W.J. WilliamsA.C. KhutoryanskiyV.V. On the barrier properties of the cornea: A microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein.Mol. Pharm.201411103556356410.1021/mp500332m25165886
    [Google Scholar]
  65. GrimaudoM.A. PescinaS. PadulaC. SantiP. ConcheiroA. Alvarez-LorenzoC. NicoliS. Topical application of polymeric nanomicelles in ophthalmology: A review on research efforts for the noninvasive delivery of ocular therapeutics.Expert Opin. Drug Deliv.201916439741310.1080/17425247.2019.159784830889977
    [Google Scholar]
  66. CaiR. ZhangL. ChiH. Recent development of polymer nanomicelles in the treatment of eye diseases.Front. Bioeng. Biotechnol.20231108124697410.3389/fbioe.2023.124697437600322
    [Google Scholar]
  67. GrimaudoMA AmatoG CarboneC Diaz-RodriguezP MusumeciT ConcheiroA Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm20195762019118986
    [Google Scholar]
  68. GreeneR. PisanoM.M. Genetic changes NIH Public Access.Birth Defects Res. C Embryo Today201290213315410.1002/bdrc.2018020544696
    [Google Scholar]
  69. Varela-GarciaA. ConcheiroA. Alvarez-LorenzoC. Soluplus micelles for acyclovir ocular delivery: Formulation and cornea and sclera permeability.Int. J. Pharm.20185521-2394710.1016/j.ijpharm.2018.09.05330253214
    [Google Scholar]
  70. OzturkM.R.B. PopaM. RataD.M. CadinoiuA.N. ParfaitF. DelaiteC. AtanaseL.I. SolcanC. DarabaO.M. Drug-loaded polymeric micelles based on smart biocompatible graft copolymers with potential applications for the treatment of glaucoma.Int. J. Mol. Sci.20222316938210.3390/ijms2316938236012646
    [Google Scholar]
  71. ElmowafyE. GadH. BiondoF. CasettariL. SolimanM.E. Exploring optimized methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy.Int. J. Pharm.201956657358410.1016/j.ijpharm.2019.06.01131176850
    [Google Scholar]
  72. TongYC. ChangSF. KaoWW. LiuCY. LiawJ. Polymeric micelle gene delivery of bcl-xL via eye drop reduced corneal apoptosis following epithelial debridement.Journal of controlled release : official journal of the Controlled Release Society20101477683
    [Google Scholar]
  73. XuJ. GeY. BuR. ZhangA. FengS. WangJ. GouJ. YinT. HeH. ZhangY. TangX. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma.J. Control. Release2019305182810.1016/j.jconrel.2019.05.02531103677
    [Google Scholar]
  74. GitlemanL Paper Knowledge: Toward a media history of documents.JSTORDuke University Press201412610.2307/j.ctv11smg09
    [Google Scholar]
  75. XuJ. ChenP. ZhaoG. WeiS. LiQ. GuoC. CaoQ. WuX. DiG. Copolymer micelle-administered melatonin ameliorates hyperosmolarity-induced ocular surface damage through regulating pink1-mediated mitophagy.Curr. Eye Res.202247568870310.1080/02713683.2021.202216335179400
    [Google Scholar]
  76. ShiS. PengF. ZhengQ. ZengL. ChenH. LiX. HuangJ. Micelle-solubilized axitinib for ocular administration in anti-neovascularization.Int. J. Pharm.2019560192610.1016/j.ijpharm.2019.01.05130710659
    [Google Scholar]
  77. LiC. ChenR. XuM. QiaoJ. YanL. GuoX.D. Hyaluronic acid modified MPEG- b -PAE block copolymer aqueous micelles for efficient ophthalmic drug delivery of hydrophobic genistein.Drug Deliv.20182511258126510.1080/10717544.2018.147497229847210
    [Google Scholar]
  78. BongiovìF. FioricaC. PalumboF.S. Di PrimaG. GiammonaG. PitarresiG. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases.Mol. Pharm.201815115031504510.1021/acs.molpharmaceut.8b0062030248267
    [Google Scholar]
  79. Alami-MilaniM. Zakeri-MilaniP. ValizadehH. SalehiR. JelvehgariM. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone.Iran. J. Basic Med. Sci.201821215316429456812
    [Google Scholar]
  80. SafwatM.A. MansourH.F. HusseinA.K. AbdelwahabS. SolimanG.M. Polymeric micelles for the ocular delivery of triamcinolone acetonide: preparation and in vivo evaluation in a rabbit ocular inflammatory model.Drug Deliv.20202711115112410.1080/10717544.2020.179724132720545
    [Google Scholar]
  81. PescinaS. SonvicoF. ClementinoA. PadulaC. SantiP. NicoliS. Preliminary investigation on simvastatin-loaded polymeric micelles in view of the treatment of the back of the eye.Pharmaceutics202113685510.3390/pharmaceutics1306085534207544
    [Google Scholar]
  82. LiY. LiZ. LiJ. Wu Yao Zhang ZhangW. Sun Shi LiangD. Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model.Int. J. Nanomedicine201272389239810.2147/IJN.S2994522661892
    [Google Scholar]
  83. MunJ. MokJ. JeongS. ChoS. JooC.K. HahnS.K. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome.RSC Advances2019929165781658510.1039/C9RA02858G35516366
    [Google Scholar]
  84. PsimadasD. GeorgouliasP. ValotassiouV. LoudosG. Molecular nanomedicine towards cancer: ¹¹¹In-labeled nanoparticles.J. Pharm. Sci.201210172271228010.1002/jps.2314622488174
    [Google Scholar]
  85. De CamposA.M. SánchezA. GrefR. CalvoP. AlonsoM.J. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa.Eur. J. Pharm. Sci.2003201738110.1016/S0928‑0987(03)00178‑713678795
    [Google Scholar]
  86. DvořákováM. RollerováE. ScsukováS. Bujňáková MlynarčíkováA. LaubertováL. ŽitňanováI. Effect of neonatal exposure to poly(ethylene glycol)-block-poly(lactic acid) nanoparticles on oxidative state in infantile and adult female rats.Oxid. Med. Cell. Longev.201720171810.1155/2017/743043529081892
    [Google Scholar]
  87. Alambiaga-CaravacaA.M. Calatayud-PascualM.A. RodillaV. ConcheiroA. López-CastellanoA. Alvarez-LorenzoC. Micelles of progesterone for topical eye administration: Interspecies and intertissues differences in ex vivo ocular permeability.Pharmaceutics202012870210.3390/pharmaceutics1208070232722548
    [Google Scholar]
  88. TsujinakaH. FuJ. ShenJ. YuY. HafizZ. KaysJ. McKenzieD. CardonaD. CulpD. PetersonW. GilgerB.C. CreanC.S. ZhangJ.Z. KananY. YuW. ClelandJ.L. YangM. HanesJ. CampochiaroP.A. Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles.Nat. Commun.202011169410.1038/s41467‑020‑14340‑x32019921
    [Google Scholar]
  89. WuH. XuY. CaiM. YouL. LiuJ. DongX. YinX. NiJ. QuC. Design of an L-valine-modified nanomicelle-based drug delivery system for overcoming ocular surface barriers.Pharmaceutics2022146127710.3390/pharmaceutics1406127735745853
    [Google Scholar]
  90. MehraN. AqilM. SultanaY. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study.Eur. J. Pharm. Sci.202115910573510.1016/j.ejps.2021.10573533516808
    [Google Scholar]
  91. PonnusamyC. SugumaranA. KrishnaswamiV. PalanichamyR. VelayuthamR. NatesanS. Development and evaluation of polyvinylpyrrolidone k90 and poloxamer 407 self-assembled nanomicelles: Enhanced topical ocular delivery of artemisinin.Polymers20211318303810.3390/polym1318303834577939
    [Google Scholar]
  92. AlshamraniM. SikderS. CoulibalyF. MandalA. PalD. MitraA.K. Self-assembling topical nanomicellar formulation to improve curcumin absorption across ocular tissues.AAPS PharmSciTech201920725410.1208/s12249‑019‑1404‑131317354
    [Google Scholar]
  93. LiM. LanJ. LiX. XinM. WangH. ZhangF. LuX. ZhuangZ. WuX. Novel ultra-small micelles based on ginsenoside Rb1: A potential nanoplatform for ocular drug delivery.Drug Deliv.201926148148910.1080/10717544.2019.160007730957571
    [Google Scholar]
  94. MandalA. PatelP. PalD. MitraA.K. Multi-layered nanomicelles as self-assembled nanocarrier systems for ocular peptide delivery.AAPS PharmSciTech20192026610.1208/s12249‑018‑1267‑x30627825
    [Google Scholar]
  95. KhopadeAJ HalderA Ophthalmic solution of difluprednate.W.O. Patent 2017064732A12016
  96. WeissSL MitraAK McNallyEJ Topical cyclosporine-containing formulations and uses thereof.W.O. Patent 20210145924A12021
  97. WeissSL Treatment of glaucoma and/or retinal diseases and formulations useful therefore.W.O. Patent 2017152129A22017
  98. HorneG. Artificial tears, contact lenses, and drug carrier compositions and methods of use thereof.W.O. Patent 110114119B2017
/content/journals/pnt/10.2174/0122117385286925240221111601
Loading
/content/journals/pnt/10.2174/0122117385286925240221111601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test