Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Solid lipid nanoparticles (SLNs) are one of the extensively utilized nanocarriers in the pharmaceutical field due to their biocompatibility and biodegradability. These features of the carrier system have fuelled its use as the drug delivery system since the last three decades. This review presents different SLN preparation techniques, such as high shear homogenization, hot homogenization, cold homogenization, microemulsion-based technique, . The physicochemical nature of SLNs, comprising drug loading, drug release, particle size, zeta potential, stability, cytotoxicity, and cellular uptake, has been concisely discussed. The article also explains why SLNs are preferred to develop drug delivery systems in several pharmaceutical preparations. The key ingredients like lipid, surfactant/stabilizer accompanied by co-surfactant, cryoprotectant, or charge modifiers used to fabricate SLNs are also briefly conferred. Here is an elaborate discussion of drugs that are used through various routes by the SLN carrier system and their outcome for utilization of this system. Regulatory aspects, patent aspects, and future prospects of SLN are also discussed here.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385333634240911075833
2024-09-19
2025-09-28
Loading full text...

Full text loading...

References

  1. CharanTejaV.R. A glimpse on solid lipid nanoparticles as drug delivery systems.J. Global Trends Pharmaceut. Sci.201452164957
    [Google Scholar]
  2. JumaaM. MüllerB.W. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect.Eur. J. Pharm. Sci.20009328529010.1016/S0928‑0987(99)00071‑810594386
    [Google Scholar]
  3. DesmetE. Van GeleM. LambertJ. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders.Expert Opin. Drug Deliv.201714110912210.1080/17425247.2016.120607327348356
    [Google Scholar]
  4. CavalliR. CaputoO. GascoM.R. Solid lipospheres of doxorubicin and idarubicin.Int. J. Pharm.1993891R9R1210.1016/0378‑5173(93)90313‑5
    [Google Scholar]
  5. YadavN. KhatakS. Solid lipid nanoparticles a review.Int. J. Appl. Pharmaceut.201352818
    [Google Scholar]
  6. RamyaK. Solid lipid nanoparticles- future technology a review.World J. Pharm. Res.201548493515
    [Google Scholar]
  7. ButaniD. YewaleC. MisraA. Topical Amphotericin B solid lipid nanoparticles: Design and development.Colloids Surf. B Biointerfaces2016139172410.1016/j.colsurfb.2015.07.03226700229
    [Google Scholar]
  8. WiedenmannV. OehlkeK. van der SchaafU. KoivulaH.M. MikkonenK.S. KarbsteinH.P. Emulsifier Composition of Solid Lipid Nanoparticles (SLN) Affects Mechanical and Barrier Properties of SLN‐Protein Composite Films.J. Food Sci.201984123642365210.1111/1750‑3841.1495031774560
    [Google Scholar]
  9. EbrahimiH.A. JavadzadehY. HamidiM. JalaliM.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles.Daru20152314610.1186/s40199‑015‑0128‑326392174
    [Google Scholar]
  10. GanesanP. NarayanasamyD. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustain. Chem. Pharm.20176375610.1016/j.scp.2017.07.002
    [Google Scholar]
  11. EkambaramP. SathaliA. PriyankaK. Solid lipid nanoparticles: A review.Sci. Rev. Chem. Commun.2012280102
    [Google Scholar]
  12. KambleV.A. JagdaleD.M. KadamV.R.J. Solid lipid nanoparticles as drug delivery system.Int. J. Pharm. Biol. Sci.2010119
    [Google Scholar]
  13. ByrappaK. OharaS. AdschiriT. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications.Adv. Drug Deliv. Rev.200860329932710.1016/j.addr.2007.09.00118192071
    [Google Scholar]
  14. ChenY.J. JinR.X. ZhouY.Q. ZengJ. ZhangH. FengQ.R. [Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release].Zhongguo Zhongyao Zazhi200631537637916711418
    [Google Scholar]
  15. GlaubittK. RicciM. GiovagnoliS. Exploring the Nano Spray-Drying Technology as an Innovative Manufacturing Method for Solid Lipid Nanoparticle Dry Powders.AAPS PharmSciTech20192011910.1208/s12249‑018‑1203‑030604256
    [Google Scholar]
  16. PeppasN.A. Analysis of Fickian and non-Fickian drug release from polymers.Pharm. Acta Helv.19856041101114011621
    [Google Scholar]
  17. DarabiF. SaidijamM. NouriF. MahjubR. SoleimaniM. Anti-CD44 and EGFR Dual-Targeted Solid Lipid Nanoparticles for Delivery of Doxorubicin to Triple-Negative Breast Cancer Cell Line: Preparation, Statistical Optimization, and In Vitro Characterization.BioMed Res. Int.2022202211310.1155/2022/625397835845934
    [Google Scholar]
  18. HeH. WangP. CaiC. YangR. TangX. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.Int. J. Pharm.20154931-245145910.1016/j.ijpharm.2015.08.00426253378
    [Google Scholar]
  19. RainaH. KaurS. JindalA.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation.J. Drug Deliv. Sci. Technol.20173918019110.1016/j.jddst.2017.02.013
    [Google Scholar]
  20. RingeK. WalzC. SabelB. Nanoparticle drug delivery to the brain.Encyclopedia of Nanoscience and Nanotechnology. NalwaH.S. New YorkAmerican Scientific Publishers2004
    [Google Scholar]
  21. SohaibM. ShahS.U. ShahK.U. ShahK.U. KhanN.R. IrfanM.M. NiaziZ.R. AlqahtaniA.A. AlasiriA. WalbiI.A. MahmoodS. Physicochemical Characterization of Chitosan-Decorated Finasteride Solid Lipid Nanoparticles for Skin Drug Delivery.BioMed Res. Int.2022202211010.1155/2022/779218035971450
    [Google Scholar]
  22. KumarS. RandhawaJ.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone.RSC Advances2015584687436875010.1039/C5RA10642G
    [Google Scholar]
  23. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery.Adv. Pharm. Bull.2021121173310.34172/apb.2022.00735517874
    [Google Scholar]
  24. MadkhaliO.A. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems.Molecules2022275154310.3390/molecules2705154335268643
    [Google Scholar]
  25. AdekiyaT.A. KumarP. KondiahP.P.D. UbanakoP. ChoonaraY.E. In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models.Int. J. Mol. Sci.20222316948510.3390/ijms2316948536012770
    [Google Scholar]
  26. Scioli MontotoS. MuracaG. RuizM.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  27. DantasI.L. BastosK.T.S. MachadoM. GalvãoJ.G. LimaA.D. GonsalvesJ.K.M.C. AlmeidaE.D.P. AraújoA.A.S. de MenesesC.T. SarmentoV.H.V. NunesR.S. LiraA.A.M. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus.J. Therm. Anal. Calorim.201813231557156610.1007/s10973‑018‑7072‑7
    [Google Scholar]
  28. MishraV. BansalK.K. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems.Pharmaceutics201810419110.3390/pharmaceutics1004019130340327
    [Google Scholar]
  29. PanditaD. AhujaA. VelpandianT. LatherV. DuttaT. KharR.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique.Pharmazie200964530131019530440
    [Google Scholar]
  30. SmithT. AfframK. NottinghamE.L. HanB. AmissahF. KrishnanS. TrevinoJ. AgyareE. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer.Sci. Rep.20201011698910.1038/s41598‑020‑73218‑633046724
    [Google Scholar]
  31. RompicharlaS.V.K. BhattH. ShahA. KomanduriN. VijayasarathyD. GhoshB. BiswasS. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity.Chem. Phys. Lipids2017208101810.1016/j.chemphyslip.2017.08.00928842128
    [Google Scholar]
  32. GargN.K. SinghB. JainA. NirbhavaneP. SharmaR. TyagiR.K. KushwahV. JainS. KatareO.P. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics.Colloids Surf. B Biointerfaces201614611412610.1016/j.colsurfb.2016.05.05127268228
    [Google Scholar]
  33. JiP. YuT. LiuY. JiangJ. XuJ. ZhaoY. HaoY. QiuY. ZhaoW. WuC. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics.Drug Des. Devel. Ther.20161091192527041995
    [Google Scholar]
  34. NaseriN. Zakeri-MilaniP. HamishehkarH. Pilehvar-SoltanahmadiY. ValizadehH. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method.Drug Res. (Stuttg.)201767634334810.1055/s‑0043‑10240428288490
    [Google Scholar]
  35. RajpootK. JainS.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation.Artif. Cells Nanomed. Biotechnol.20184661236124710.1080/21691401.2017.136633828849671
    [Google Scholar]
  36. Rodenak-KladniewB. IslanG.A. de BravoM.G. DuránN. CastroG.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy.Colloids Surf. B Biointerfaces201715412313210.1016/j.colsurfb.2017.03.02128334689
    [Google Scholar]
  37. RahiminejadA. DinarvandR. JohariB. NodooshanS.J. RashtiA. RismaniE. MahdavianiP. SaltanatpourZ. RahiminejadS. RaiganiM. KhosravaniM. Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells.Cell Biol. Int.201943121110.1002/cbin.1103730080277
    [Google Scholar]
  38. MoriN.M. ShethN.R. MendaparaV.P. AsharaK.C. PaunJ.S. SLN brain targeting drug delivery for CNS: A novel approach.Int. Res. J. Pharm.20145965866210.7897/2230‑8407.0509134
    [Google Scholar]
  39. PiconeP. BondiM.L. PiconeP. BondiM.L. MontanaG. BrunoA. PitarresiG. GiammonaG. Di CarloM. Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles.Free Radic. Res.200943111133114510.1080/1071576090321445419863373
    [Google Scholar]
  40. ZhanS.M. HouD.Z. PingQ.N. XuY. Preparation and entrapment efficiency determination of solid lipid nanoparticles loaded levodopa.Zhongguo Yiyuan Yaoxue Zazhi20101411711175
    [Google Scholar]
  41. BoafoG.F. MagarK.T. EkpoM.D. QianW. TanS. ChenC. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation.Int. J. Mol. Sci.202223201248710.3390/ijms23201248736293340
    [Google Scholar]
  42. EspositoE. FantinM. MartiM. DrechslerM. PaccamiccioL. MarianiP. SivieriE. LainF. MenegattiE. MorariM. CortesiR. Solid lipid nanoparticles as delivery systems for bromocriptine.Pharm. Res.20082571521153010.1007/s11095‑007‑9514‑y18172580
    [Google Scholar]
  43. TsaiM.J. HuangY.B. WuP.C. FuY.S. KaoY.R. FangJ.Y. TsaiY.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations.J. Pharm. Sci.2011100254755710.1002/jps.2228520740670
    [Google Scholar]
  44. PardeshiC.V. RajputP.V. BelgamwarV.S. TekadeA.R. SuranaS.J. Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: Application of factorial design approach.Drug Deliv.2013201475610.3109/10717544.2012.75242123311653
    [Google Scholar]
  45. BhattR. SinghD. PrakashA. MishraN. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease.Drug Deliv.201522793193910.3109/10717544.2014.88086024512295
    [Google Scholar]
  46. SamiaO. HananR. KamalE.T. Carbamazepine Mucoadhesive Nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa.Drug Deliv.2012191586710.3109/10717544.2011.64434922191715
    [Google Scholar]
  47. GaoY. GuW. ChenL. XuZ. LiY. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases.Biomaterials200829304129413610.1016/j.biomaterials.2008.07.00818667234
    [Google Scholar]
  48. MorsiN.M. GhorabD.M. BadieH.A. Brain targeted solid lipid nanoparticles for brain ischemia: Preparation and in vitro characterization.Pharm. Dev. Technol.201318373674410.3109/10837450.2012.73451323477526
    [Google Scholar]
  49. MontenegroL. CampisiA. SarpietroM.G. CarboneC. AcquavivaR. RacitiG. PuglisiG. In vitro evaluation of idebenone-loaded solid lipid nanoparticles for drug delivery to the brain.Drug Dev. Ind. Pharm.201137673774610.3109/03639045.2010.53923121204752
    [Google Scholar]
  50. DangH. MengM.H.W. ZhaoH. IqbalJ. DaiR. DengY. LvF. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies.J. Nanopart. Res.2014164234710.1007/s11051‑014‑2347‑9
    [Google Scholar]
  51. BargoniA. CavalliR. ZaraG.P. FundaròA. CaputoO. GascoM.R. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (sln) after duodenal administration to rats. Part II—Tissue distribution.Pharmacol. Res.200143549750210.1006/phrs.2001.081311394943
    [Google Scholar]
  52. BondìM.L. CraparoE.F. GiammonaG. DragoF. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution.Nanomedicine (Lond.)201051253210.2217/nnm.09.6720025461
    [Google Scholar]
  53. AbdelbaryG. FahmyR.H. Diazepam-loaded solid lipid nanoparticles: Design and characterization.AAPS PharmSciTech200910121121910.1208/s12249‑009‑9197‑219277870
    [Google Scholar]
  54. Leyva-GómezG. González-TrujanoM.E. López-RuizE. CouraudP.O. WekslergB. RomeroI. MillerF. DelieF. AllémannE. Quintanar-GuerreroD. Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole-induced seizures: Behavior and electroencephalogram.J. Pharm. Sci.201410382509251910.1002/jps.2404424916334
    [Google Scholar]
  55. TranT.H. RamasamyT. ChoH.J. KimY.I.I. PoudelB.K. ChoiH.G. YongC.S. KimJ.O. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability.J. Nanosci. Nanotechnol.20141474820483110.1166/jnn.2014.872224757949
    [Google Scholar]
  56. HassanM. TuckmanH.P. PatrickR.H. KountzD.S. KohnJ.L. Hospital length of stay and probability of acquiring infection.Int. J. Pharm. Healthc. Mark.20104432433810.1108/17506121011095182
    [Google Scholar]
  57. NamasivayamS.K.R. Nanoformulation of antibacterial antibiotics cefpirome with biocompatible polymeric nanoparticles and evaluation for the improved antibacterial activity and nontarget toxicity studies.Asian J. Pharm.201711269281
    [Google Scholar]
  58. DongZ. XieS. ZhuL. WangY. WangX. ZhouW. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery.Drug Deliv.201118644145010.3109/10717544.2011.57710921554156
    [Google Scholar]
  59. SharmaM. GuptaN. GuptaS. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety.RSC Advances2016680766217663110.1039/C6RA12841F
    [Google Scholar]
  60. AljaeidB. HosnyK.M. Miconazole-loaded solid lipid nanoparticles: Formulation and evaluation of a novel formula with high bioavailability and antifungal activity.Int. J. Nanomedicine20161144144710.2147/IJN.S10062526869787
    [Google Scholar]
  61. BhandariR. KaurI.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles.Int. J. Pharm.20134411-220221210.1016/j.ijpharm.2012.11.04223220081
    [Google Scholar]
  62. NegiJ.S. ChattopadhyayP. SharmaA.K. RamV. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique.Eur. J. Pharm. Sci.2013481-223123910.1016/j.ejps.2012.10.02223153618
    [Google Scholar]
  63. GaurP.K. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: In vitro drug release and pharmacokinetics studies.Biomed Res Int.20142014363404
    [Google Scholar]
  64. CarboneC. FuochiV. ZielińskaA. MusumeciT. SoutoE.B. BonaccorsoA. PugliaC. Petronio PetronioG. FurneriP.M. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis.Colloids Surf. B Biointerfaces202018611070510.1016/j.colsurfb.2019.11070531830707
    [Google Scholar]
  65. HosseiniS.M. FarmanyA. AbbasalipourkabirR. Soleimani AslS. NourianA. ArabestaniM.R. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: In vivo study.Ann. Clin. Microbiol. Antimicrob.20191813310.1186/s12941‑019‑0333‑x31706304
    [Google Scholar]
  66. Yurtdaş-KırımlıoğluG. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic ® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity.Pharm. Dev. Technol.202126447648910.1080/10837450.2021.188958433616480
    [Google Scholar]
  67. ShazlyGamal A. Ciprofloxacin Controlled-Solid Lipid Nanoparticles: Characterization, In Vitro Release, and Antibacterial Activity Assessment.Biomed Res Int201720172120734
    [Google Scholar]
  68. GasparD.P. GasparM.M. EleutérioC.V. GrenhaA. BlancoM. GonçalvesL.M.D. TaboadaP. AlmeidaA.J. Remuñán-LópezC. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery.Mol. Pharm.20171492977299010.1021/acs.molpharmaceut.7b00169
    [Google Scholar]
  69. GhanbarzadehS. HaririR. KouhsoltaniM. ShokriJ. JavadzadehY. HamishehkarH. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles.Colloids Surf. B Biointerfaces20151361004101010.1016/j.colsurfb.2015.10.04126579567
    [Google Scholar]
  70. JenningV GyslerA Schäfer-KortingM GohlaSH Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin.Eur. J. Pharm. Biopharm.2000493211810.1016/S0939‑6411(99)00075‑2
    [Google Scholar]
  71. MontenegroL. SinicoC. CastangiaI. CarboneC. PuglisiG. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: In vitro evaluation.Int. J. Pharm.20124341-216917410.1016/j.ijpharm.2012.05.04622659127
    [Google Scholar]
  72. JainA.K. JainA. GargN.K. AgarwalA. JainA. JainS.A. TyagiR.K. JainR.K. AgrawalH. AgrawalG.P. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment.Colloids Surf. B Biointerfaces201412122222910.1016/j.colsurfb.2014.05.04125016424
    [Google Scholar]
  73. VaghasiyaH. KumarA. SawantK. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride.Eur. J. Pharm. Sci.201349231132210.1016/j.ejps.2013.03.01323557842
    [Google Scholar]
  74. AnsariH. SinghP. Formulation and in-vivo Evaluation of Novel Topical Gel of Lopinavir for Targeting HIV.Curr. HIV Res.201916427027910.2174/1570162X1666618092410165030246641
    [Google Scholar]
  75. KurakulaM. AhmedO.A.A. FahmyU.A. AhmedT.A. Solid lipid nanoparticles for transdermal delivery of avanafil: Optimization, formulation, in-vitro and ex-vivo studies.J. Liposome Res.201626428829610.3109/08982104.2015.111749026784833
    [Google Scholar]
  76. KheradmandniaS. Vasheghani-FarahaniE. NosratiM. AtyabiF. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.Nanomedicine20106675375910.1016/j.nano.2010.06.00320599527
    [Google Scholar]
  77. VyasS.P. PaliwalR. PaliwalS.R. Ocular delivery of peptides and proteins.Peptide and protein delivery. Van Der WalleC. LondonAcademic Press201110.1016/B978‑0‑12‑384935‑9.10005‑7
    [Google Scholar]
  78. Üstündag-OkurN. GökçeE.H. EğrilmezS. ÖzerÖ. ErtanG. Novel ofloxacin-loaded microemulsion formulations for ocular delivery.J. Ocul. Pharmacol. Ther.201430431933210.1089/jop.2013.011424367973
    [Google Scholar]
  79. LiN. ZhuangC. WangM. SunX. NieS. PanW. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery.Int. J. Pharm.2009379113113810.1016/j.ijpharm.2009.06.02019559775
    [Google Scholar]
  80. Üstündağ-OkurN. GökçeE.H. BozbıyıkD.İ. EğrilmezS. ÖzerÖ. ErtanG. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis.Eur. J. Pharm. Sci.20146320421510.1016/j.ejps.2014.07.01325111119
    [Google Scholar]
  81. MehnertW. MäderK. Solid lipid nanoparticles Production, characterization and applications.Adv. Drug Deliv. Rev.2001472-316519610.1016/S0169‑409X(01)00105‑311311991
    [Google Scholar]
  82. del Pozo-RodríguezA. DelgadoD. SolinísM.A. GascónA.R. PedrazJ.L. Solid lipid nanoparticles for retinal gene therapy: Transfection and intracellular trafficking in RPE cells.Int. J. Pharm.20083601-217718310.1016/j.ijpharm.2008.04.02318508211
    [Google Scholar]
  83. LiX. NieS. KongJ. LiN. JuC. PanW. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers.Int. J. Pharm.20083631-217718210.1016/j.ijpharm.2008.07.01718706987
    [Google Scholar]
  84. GökçeE.H. SandriG. BonferoniM.C. RossiS. FerrariF. GüneriT. CaramellaC. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity.Int. J. Pharm.20083641768610.1016/j.ijpharm.2008.07.02818725276
    [Google Scholar]
  85. EkambaramP. Solid lipid nanoparticles: A review.Sci. Revs. Chem. Commun.20122180102
    [Google Scholar]
  86. SureshG. ManjunathK. VenkateswarluV. SatyanarayanaV. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles.AAPS PharmSciTech200781E162E17010.1208/pt080102417408223
    [Google Scholar]
  87. BaekJS SoJW ShinSC ChoCW Solid lipid nanoparticles of paclitaxel strengthened by hydroxypropyl-b-cyclodextrin as an oral delivery system.Int. J. Mol. Med.2012304953910.3892/ijmm.2012.1086
    [Google Scholar]
  88. ChoHJ ParkJW YoonIS KimDD Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: Enhanced intestinal absorption and lymphatic uptake.Int J Nanomedicine20149495504
    [Google Scholar]
  89. PatroN.M. DeviK. PaiR.S. SureshS. Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles.J. Nanopart. Res.20131512212410.1007/s11051‑013‑2124‑1
    [Google Scholar]
  90. HansrajGP SinghSK KumarP Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced antimigraine potential.Int. J. Biol. Macromol.201581467476
    [Google Scholar]
  91. GomesF.L.T. MaranhãoR.C. TavaresE.R. CarvalhoP.O. HiguchiM.L. MattosF.R. PittaF.G. HatabS.A. Kalil-FilhoR. SerranoC.V.Jr Regression of atherosclerotic plaques of cholesterol-fed rabbits by combined chemotherapy with Paclitaxel and Methotrexate carried in lipid core nanoparticles.J. Cardiovasc. Pharmacol. Ther.201823656156910.1177/107424841877883629779420
    [Google Scholar]
  92. Vicente-PascualM. AlbanoA. SolinísM.Á. SerpeL. Rodríguez-GascónA. FogliettaF. MuntoniE. TorrecillaJ. Pozo-RodríguezA. BattagliaL. Gene delivery in the cornea: In vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors.Nanomedicine (Lond.)201813151847185410.2217/nnm‑2018‑011229792369
    [Google Scholar]
  93. TranP.A. ZhangL. WebsterT.J. Carbon nanofibers and carbon nanotubes in regenerative medicine.Adv. Drug Deliv. Rev.200961121097111410.1016/j.addr.2009.07.01019647768
    [Google Scholar]
  94. JiS. LiuC. ZhangB. YangF. XuJ. LongJ. JinC. FuD. NiQ. YuX. Carbon nanotubes in cancer diagnosis and therapy.Biochim. Biophys. Acta Rev. Cancer201018061293510.1016/j.bbcan.2010.02.00420193746
    [Google Scholar]
  95. JinJ. BaeK.H. YangH. LeeS.J. KimH. KimY. JooK.M. SeoS.W. ParkT.G. NamD.H. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles.Bioconjug. Chem.201122122568257210.1021/bc200406n22070554
    [Google Scholar]
  96. CarrilloCarolina The distribution of electronic charge in some biologically active amines .Proc R Soc Lond B Biol Sci1977199113529130710.1016/j.ejps.2013.02.011
    [Google Scholar]
  97. JinR. ZhuW. LinG. LiuG. AiH. MRI-Visible Nanovehicle for Efficient siRNA Delivery.Methods Mol. Biol.2021228219520810.1007/978‑1‑0716‑1298‑9_1333928578
    [Google Scholar]
  98. MontanaG. BondìM.L. CarrottaR. PiconeP. CraparoE.F. San BiagioP.L. GiammonaG. Di CarloM. Employment of cationic solid-lipid nanoparticles as RNA carriers.Bioconjug. Chem.200718230230810.1021/bc060116617253655
    [Google Scholar]
  99. StelznerJ.J. BehrensM. BehrensS.E. MäderK. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines.Vaccine201836172314232010.1016/j.vaccine.2018.03.01929567034
    [Google Scholar]
  100. LiS. YangY. LinX. LiZ. MaG. SuZ. ZhangS. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines.Vaccine202038112478248610.1016/j.vaccine.2020.02.00432057580
    [Google Scholar]
  101. Zambrano-ZaragozaM. González-RezaR. Mendoza-MuñozN. Miranda-LinaresV. Bernal-CouohT. Mendoza-ElviraS. Quintanar-GuerreroD. Nanosystems in edible coatings: A novel strategy for food preservation.Int. J. Mol. Sci.201819370510.3390/ijms1903070529494548
    [Google Scholar]
  102. AlbuquerqueJ. MouraC. SarmentoB. ReisS. Solid lipid nanoparticles: A potential multifunctional approach towards rheumatoid arthritis theranostics.Molecules2015206111031111810.3390/molecules20061110326087258
    [Google Scholar]
  103. JainD. BajajA. MaskareR. BrarooP. BabulN. KaoH. Design of solid lipid nanoparticles of the NSAID dexflurbiprofen for topical delivery.J. Pain2013144S8610.1016/j.jpain.2013.01.680
    [Google Scholar]
  104. MaiaCS MehnertW Schäfer-KortingM Solid lipid nanoparticles as drug carriers for topical glucocorticoids.Int J Pharm.20001962165710.1016/S0378‑5173(99)00413‑5
    [Google Scholar]
  105. KhuranaS. BediP.M.S. JainN.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam.Chem. Phys. Lipids2013175-176657210.1016/j.chemphyslip.2013.07.01023994283
    [Google Scholar]
  106. AhangarpourA. OroojanA.A. KhorsandiL. KouchakM. BadaviM. Solid Lipid Nanoparticles of Myricitrin Have Antioxidant and Antidiabetic Effects on Streptozotocin‐Nicotinamide‐Induced Diabetic Model and Myotube Cell of Male Mouse.Oxid. Med. Cell. Longev.201820181749693610.1155/2018/749693630116491
    [Google Scholar]
  107. AnsariM.J. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats.Drug Deliv.20162361972910.3109/10717544.2015.1039666
    [Google Scholar]
  108. MohseniR. ArabSadeghabadiZ. ZiamajidiN. AbbasalipourkabirR. RezaeiFarimaniA. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes.Nanoscale Res. Lett.201914122710.1186/s11671‑019‑3042‑731290033
    [Google Scholar]
  109. SarmentoB. MartinsS. FerreiraD. SoutoE.B. Oral insulin delivery by means of solid lipid nanoparticles.Int. J. Nanomedicine20072474374918203440
    [Google Scholar]
  110. ElkarrayS.M. FaridR.M. Abd-AlhaseebM.M. OmranG.A. HabibD.A. Intranasal repaglinide-solid lipid nanoparticles integrated in situ gel outperform conventional oral route in hypoglycemic activity.J. Drug Deliv. Sci. Technol.20226810308610.1016/j.jddst.2021.103086
    [Google Scholar]
  111. PoojaD. KulhariH. KunchaM. RachamallaS.S. AdamsD.J. BansalV. SistlaR. Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles.Mol. Pharm.201613113903391210.1021/acs.molpharmaceut.6b0069127696858
    [Google Scholar]
  112. HashemF.M. NasrM. KhairyA. In vitro cytotoxicity and bioavailability of solid lipid nanoparticles containing tamoxifen citrate.Pharm. Dev. Technol.201419782483210.3109/10837450.2013.83621824032414
    [Google Scholar]
  113. ThakkarA. ChenreddyS. WangJ. PrabhuS. Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles.Cell Biosci.2015514610.1186/s13578‑015‑0041‑y26301084
    [Google Scholar]
  114. GirotraP. SinghS.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management.AAPS PharmSciTech201618251752810.1208/s12249‑016‑0532‑027126007
    [Google Scholar]
  115. RamalingamP. KoY.T. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles.Colloids Surf. B Biointerfaces2016139526110.1016/j.colsurfb.2015.11.05026700233
    [Google Scholar]
  116. OmwoyoWN OgutuB OlooF SwaiH KalomboL MelaririP MahangaGM GathirwaJW Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles.Int J Nanomedicine20149386574
    [Google Scholar]
  117. SouzaA.L.R. AndreaniT. de OliveiraR.N. KiillC.P. SantosF.K. AllegrettiS.M. ChaudM.V. SoutoE.B. SilvaA.M. GremiãoM.P.D. In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment.Int. J. Pharm.20144631313710.1016/j.ijpharm.2013.12.02224370839
    [Google Scholar]
  118. RamalingamP. KoY.T. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluations.Pharm. Res.201532238940210.1007/s11095‑014‑1469‑125082210
    [Google Scholar]
  119. ShazlyG.A. AlshehriS. IbrahimM.A. TawfeekH.M. RazikJ.A. HassanY.A. ShakeelF. Development of Domperidone Solid Lipid Nanoparticles: In Vitro and In Vivo Characterization.AAPS PharmSciTech20181941712171910.1208/s12249‑018‑0987‑229532427
    [Google Scholar]
  120. EirasF. AmaralM.H. SilvaR. MartinsE. LoboJ.M.S. SilvaA.C. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles.Int. J. Pharm.20175191-237338010.1016/j.ijpharm.2017.01.04528131849
    [Google Scholar]
  121. ShastriVP SussmanE JayagopalA Functionalized solid lipid nanoparticles and methods of making and using same.US Patent 20060083781A12006
  122. HerzogB. Formulation of UV absorbers by incorporation in solid lipid nanoparticles.US Patent 7147841B22006
  123. GascoMR Lipid nanoparticles as vehicles for nucleic acids.EP Patent 1761251A12007
  124. ChungGJ HahmKB JinSW LeeDH NaK ShinnHC Solid lipid nanoparticles for drug delivery, a production method therefor, and an injectable preparation comprising the nanoparticles.WO Patent 2009102121A22009
  125. IvriY. Intracochlear drug delivery to the central nervous system.US Patent 20110208161A12011
  126. GasconAR AspíazuMAS RodríguezADP VicenteDDS MuñozJLP Lipid nanoparticles for Gene therapy.US Patent 20120183589A12012
  127. ViladotPJL DelgadoGR FernándezBA Lipid nanoparticle cap sules.EP Patent 2549977A22013
  128. CalK WosickaH Solid lipid nanoparticles of roxithromycin for hair loss or acne.WO Patent 2014077712A12014
  129. GallarateM PeiraE BattagliaLS Method for preparing solid lipid nanoparticles containing antibodies in ion pair form using the fatty acid coacervation technique.WO Patent 2015007398A12015
  130. ParveenS MisraR SahooSK Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging.Nanomed Nanotechnol Biol Med201282147e66
    [Google Scholar]
  131. MarchanR ReifR HengstlerJG Toxicology of magnetic nanoparticles: Disturbed body iron homeostasis?Arch Toxicol.2012865683e4
    [Google Scholar]
  132. ShindeSK Toxicity induced by nanoparticles.Asian Pac J Trop Dis201224331e4
    [Google Scholar]
  133. DoktorovováS. KovačevićA.B. GarciaM.L. SoutoE.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation.Eur. J. Pharm. Biopharm.2016108Suppl. C23525210.1016/j.ejpb.2016.08.00127519829
    [Google Scholar]
  134. Monteiro-RiviereN ClT. Nanotoxicology: Characterization, dosing and health effects.Boca RatoCRC Press200710.3109/9781420045154
    [Google Scholar]
  135. DhawanA SharmaV Toxicity assessment of nanomaterials: Methods and challenges.Anal Bioanal Chem2010398258960510.1007/s00216‑010‑3996‑x
    [Google Scholar]
  136. MarquisB Analytical methods to assess nanoparticle toxicity.Analyst2009134425e3910.1039/b818082b
    [Google Scholar]
  137. SilvaA.M. AlvaradoH.L. AbregoG. Martins-GomesC. Garduño-RamirezM.L. GarcíaM.L. CalpenaA.C. SoutoE.B. In vitro Cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines.Pharmaceutics201911836210.3390/pharmaceutics1108036231344882
    [Google Scholar]
  138. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.00318992314
    [Google Scholar]
  139. IlićT. PantelićI. SavićS. The Implications of Regulatory Framework for Topical Semisolid Drug Products: From Critical Quality and Performance Attributes towards Establishing Bioequivalence.Pharmaceutics202113571010.3390/pharmaceutics1305071034068036
    [Google Scholar]
  140. JanaM. BiswasU.K. PatraC.S. DebnathB. SharmaS. NaskarS. Solid Lipid Nanoparticles: A Review of their Biomedical Applications and Preparation.Pharm. Nanotechnol.202412210001810.2174/012211738531217524050210001838797906
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385333634240911075833
Loading
/content/journals/pnt/10.2174/0122117385333634240911075833
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test