Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Introduction

Metal nanoparticles have received much attention due to their unique physical dynamics, chemical reactivity, and promising biological applications. Green synthesis using natural compounds is an alternative to traditional chemical methods for the synthesis of nanoparticles.

Materials and Methods

Herein, two secondary metabolites were isolated from different fractions of methanolic extract of (bitter apple) Schard. and identified as cucurbitacin E-glycoside () and methyl gallate (). Both compounds were used in the green nanoformulation of gold nanoparticles. Mass spectrometry and NMR spectroscopy were used for structure elucidation of compound and compound . UV-vis spectroscopy, FTIR, and AFM were performed to confirm the formation of AuNPs.

Results and Discussions

The spectra of UV-Vis showed a characteristic peak at 519 nm and 548 nm for goldnanoparticles stabilized by compounds 1 and 2, respectively. AuNPs ranged mostly between 1 and 50 nm measured using AuNPs capped by AFM. The FTIR analysis confirmed the presence of phytochemicals on the surface of AuNPs. The synthesized AuNPs showed good antibacterial activity against , , and .

Conclusion

The synthesized AuNPs demonstrated good antibiofilm activity against . Thus, the green synthesized AuNPs can combat the pathogenicity of several human pathogens.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385314421241009075737
2024-12-19
2025-09-27
Loading full text...

Full text loading...

References

  1. NdikauM. NoahN.M. AndalaD.M. MasikaE. Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract.Int. J. Anal. Chem.201720171910.1155/2017/810850428316627
    [Google Scholar]
  2. AdhikariA. ChhetriK. AcharyaD. PantB. AdhikariA. Green synthesis of iron oxide nanoparticles using Psidium guajava L. leaves extract for degradation of organic dyes and anti-microbial applications.Catalysts20221210118810.3390/catal12101188
    [Google Scholar]
  3. FalahatiM. AttarF. SharifiM. SabouryA.A. SalihiA. AzizF.M. KostovaI. BurdaC. PriecelP. Lopez-SanchezJ.A. LaurentS. HooshmandN. El-SayedM.A. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine.Biochim. Biophys. Acta, Gen. Subj.20201864112943510.1016/j.bbagen.2019.12943531526869
    [Google Scholar]
  4. ShnoudehA.J. HamadI. AbdoRW. Synthesis, characterization, and applications of metal nanoparticles.In: Biomaterials and BionanotechnologyAcademic Press201952761210.1016/B978‑0‑12‑814427‑5.00015‑9
    [Google Scholar]
  5. ZargarM. HamidA.A. BakarF.A. ShamsudinM.N. ShameliK. JahanshiriF. FarahaniF. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.Molecules20111686667667610.3390/molecules1608666725134770
    [Google Scholar]
  6. KulkarniN. MuddapurU. Biosynthesis of metal nanoparticles: A review.J. Nanotechnol.2014201411810.1155/2014/510246
    [Google Scholar]
  7. MarchiolL. Synthesis of metal nanoparticles in living plants.Ital. J. Agron.2012733710.4081/ija.2012.e37
    [Google Scholar]
  8. WilletsK.A. DuyneR.P.V. Localized surface plasmon resonance spectroscopy and sensing.Ann Rev Phys Chem20075826729710.1146/annurev.physchem.58.032806.104607
    [Google Scholar]
  9. EaliaS.A.M. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their application.IOP Conf. Ser.: Mater. Sci. Eng.2017263303201910.1088/1757‑899X/263/3/032019
    [Google Scholar]
  10. AminaS.J. GuoB. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle.Int. J. Nanomedicine2020159823985710.2147/IJN.S27909433324054
    [Google Scholar]
  11. WuY. AliM.R.K. ChenK. FangN. El-SayedM.A. Gold nanoparticles in biological optical imaging.Nano Today20192412014010.1016/j.nantod.2018.12.006
    [Google Scholar]
  12. PaciottiG.F. MyerL. WeinreichD. GoiaD. PavelN. McLaughlinR.E. TamarkinL. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery.Drug Deliv.200411316918310.1080/1071754049043389515204636
    [Google Scholar]
  13. DasM. ShimK.H. AnS.S.A. YiD.K. Review on gold nanoparticles and their applications.Toxicol. Environ. Health Sci.20113419320510.1007/s13530‑011‑0109‑y
    [Google Scholar]
  14. AshrafR. AmnaT. SheikhF.A. Unique properties of the gold nanoparticles: Synthesis, functionalization and applications.Application of Nanotechnology in Biomedical Sciences. SheikhF.A. SingaporeSpringer2020759810.1007/978‑981‑15‑5622‑7_5
    [Google Scholar]
  15. YehY.C. CreranB. RotelloV.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology.Nanoscale2012461871188010.1039/C1NR11188D22076024
    [Google Scholar]
  16. GiljohannD.A. SeferosD.S. DanielW.L. MassichM.D. PatelP.C. MirkinC.A. Gold nanoparticles for biology and medicine.Angew. Chem. Int. Ed.201049193280329410.1002/anie.20090435920401880
    [Google Scholar]
  17. HussainA.I. RathoreH.A. SattarM.Z.A. ChathaS.A.S. SarkerS.D. GilaniA.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential.J. Ethnopharmacol.20141551546610.1016/j.jep.2014.06.01124936768
    [Google Scholar]
  18. KhanM. Evaluation of chemical analysis profile of Citrullus colocynthis growing in Southern areas of Khyber Pukhtunkhwa Pakistan.World Appl. Sci. J.201010402405
    [Google Scholar]
  19. Al-SnafiD. A. E. Chemical constituents and pharmacological effects of Citrullus colocynthis - A review.J Nat Prod Plant Resour20111317
    [Google Scholar]
  20. Al-ArdiM.H. The uses of gold nanoparticles and Citrullus colocynthis L. nanoparticles against Giardia lamblia in vivo .Clin. Epidemiol. Glob. Health2020841282128610.1016/j.cegh.2020.04.028
    [Google Scholar]
  21. SharmaA. DahiyaR. NagT.N. Antibacterial activity of Citrullus colocynthis and Tribulus terrestris against some pathogenic bacteria.Asian J. Microbiol. Biotechnol. Environ. Sci.201012633637
    [Google Scholar]
  22. MarzoukB. MarzoukZ. DécorR. EdziriH. HalouiE. FeninaN. AouniM. Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine.J. Ethnopharmacol.2009125234434910.1016/j.jep.2009.04.02519397972
    [Google Scholar]
  23. MarzoukB. MarzoukZ. HalouiE. FeninaN. BouraouiA. AouniM. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia.J. Ethnopharmacol.20101281151910.1016/j.jep.2009.11.02719962436
    [Google Scholar]
  24. KumarS. KumarD. JushaM. SarohaK. SinghN. VashishtaB. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract.Acta Pharm.200858221522010.2478/v10007‑008‑0008‑118515231
    [Google Scholar]
  25. MarzoukZ. MarzoukB. MahjoubMA. Screening of the antioxidant and the free radical scavenging potential of Tunisian Citrullus colocynthis Schrad. from Mednine.J. Agric. Food Environ.201082261265
    [Google Scholar]
  26. MarzoukB. MarzoukZ. HalouiE. Anti-inflammatory evaluation of immature fruit and seed aqueous extracts from several populations of Tunisian Citrullus colocynthis Schrad.Afr. J. Biotechnol.201110204217422510.5897/AJB10.2181.
    [Google Scholar]
  27. WasfiI.A. BashirA.K. AbdallaA.A. BannaN.R. TaniraM.O.M. Antiinflammatory activity of some medicinal plants of the United Arab Emirates.Int J Pharmacog199533212412810.3109/13880209509055211
    [Google Scholar]
  28. Abdel-HassanI.A. Abdel-BarryJ.A. Tariq MohammedaS. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits.J. Ethnopharmacol.2000711-232533010.1016/S0378‑8741(99)00215‑910904181
    [Google Scholar]
  29. RajangamJ. ShivakumarA. AnithaT. JoshiV. PaleiN.N. Antidiabetic effect of petroleum ether extract of Citrullus colocynthis fruits against streptozotocin-induced hyperglycemic rats.Romjbiol-Plant Biol200954127134
    [Google Scholar]
  30. MohammadD. In vivo , hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloxan-induced diabetic rats.Afr. J. Biotechnol.201310489898990310.5897/AJB11.268
    [Google Scholar]
  31. Tannin-SpitzT. BergmanM. GrossmanS. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities.Biochem. Biophys. Res. Commun.2007364118118610.1016/j.bbrc.2007.09.07517942079
    [Google Scholar]
  32. LiuT. ZhangM. ZhangH. SunC. YangX. DengY. JiW. Combined antitumor activity of cucurbitacin B and docetaxel in laryngeal cancer.Eur. J. Pharmacol.20085871-3788410.1016/j.ejphar.2008.03.03218442812
    [Google Scholar]
  33. ZhangZ.R. GaoM.X. YangK. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways.Exp. Ther. Med.201714180581210.3892/etm.2017.454728673003
    [Google Scholar]
  34. YoshikawaM. MorikawaT. KobayashiH. NakamuraA. MatsuhiraK. NakamuraS. MatsudaH. Bioactive saponins and glycosides. XXVII. Structures of new cucurbitane-type triterpene glycosides and antiallergic constituents from Citrullus colocynthis .Chem. Pharm. Bull. (Tokyo)200755342843410.1248/cpb.55.42817329885
    [Google Scholar]
  35. MikhailovaE.O. Gold nanoparticles: Biosynthesis and potential of biomedical application.J. Funct. Biomater.20211247010.3390/jfb1204007034940549
    [Google Scholar]
  36. HussainA.I. RathoreH.A. SattarM.Z.A. ChathaS.A.S. AhmadF. AhmadA. JohnsE.J. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora.Ind. Crops Prod.20134541642210.1016/j.indcrop.2013.01.002
    [Google Scholar]
  37. SelvarajG. Ramanathan KaliamurthiS. Characterization of volatile compounds from bitter apple (Citrullus colocynthis ) using GC-MS.Int J Chem Anal Sci20112108110
    [Google Scholar]
  38. GurudeebanS. SatyavaniK. RamanathanT. Bitter apple (Citrullus colocynthis ): An overview of chemical composition and biomedical potentials.Asian J. Plant Sci.20109739440110.3923/ajps.2010.394.401.
    [Google Scholar]
  39. DelazarA. GibbonsS. KosariAR. Flavonoid C-glycosides and cucurbitacin glycosides from Citrullus colocynthis .Daru, J. Fac. Pharm.200614109114
    [Google Scholar]
  40. SayedM. BalbaaS. AfifiM. Nitrogenous bases of the different organs of Citrullus colocynthis .Planta Med.197324726026510.1055/s‑0028‑10994954776283
    [Google Scholar]
  41. NajafiS. SanadgolN. NejadB. S. BeiragiM. A. SanadgolE. Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) Schrad against Staphylococcus aureus .J Med Plants Res20104222321232510.5897/JMPR10.192.
    [Google Scholar]
  42. SebbaghN. Cruciani-GuglielmacciC. OualiF. BerthaultM.F. RouchC. SariD.C. MagnanC. Comparative effects of Citrullus colocynthis , sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats.Diabetes Metab.200935317818410.1016/j.diabet.2008.10.00519264524
    [Google Scholar]
  43. PatraJ.K. BaekK.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques.J. Nanomater.20142014141730510.1155/2014/417305
    [Google Scholar]
  44. SuC. HuangK. LiH.H. LuY.G. ZhengD.L. Antibacterial properties of functionalized gold nanoparticles and their application in oral biology.J. Nanomater.20202020111310.1155/2020/5616379
    [Google Scholar]
  45. TimoszykA. GrochowalskaR. Mechanism and antibacterial activity of gold nanoparticles (AuNPs) functionalized with natural compounds from plants.Pharmaceutics20221412259910.3390/pharmaceutics1412259936559093
    [Google Scholar]
  46. AqawiM. SionovR.V. GallilyR. FriedmanM. SteinbergD. Anti-biofilm activity of cannabigerol against Streptococcus mutans. Microorganisms2021910203110.3390/microorganisms910203134683353
    [Google Scholar]
  47. MubeenB. RasoolM.G. UllahI. RasoolR. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. NadeemM.S. KazmiI. Phytochemicals mediated synthesis of AuNPs from Citrullus colocynthis and Their characterization.Molecules2022274130010.3390/molecules2704130035209086
    [Google Scholar]
  48. BenkovicovaM. VegsoK. SiffalovicP. JergelM. LubyS. MajkovaE. Preparation of gold nanoparticles for plasmonic applications.Thin Solid Films201354313814110.1016/j.tsf.2013.01.048
    [Google Scholar]
  49. PonsankarA. SahayarajK. Senthil-NathanS. Vasantha-SrinivasanP. KarthiS. ThanigaivelA. PetchiduraiG. MadasamyM. HunterW.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny.Environ. Sci. Pollut. Res. Int.20202719233902340110.1007/s11356‑019‑04438‑130734910
    [Google Scholar]
  50. JayaseelanC. RamkumarR. RahumanA.A. PerumalP. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity.Ind. Crops Prod.20134542342910.1016/j.indcrop.2012.12.019
    [Google Scholar]
  51. KatasH. LimC.S. Nor AzlanA.Y.H. BuangF. Mh BusraM.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan.Saudi Pharm. J.201927228329210.1016/j.jsps.2018.11.01030766441
    [Google Scholar]
  52. RaoV. PooniaA. Citrullus colocynthis (bitter apple): Bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review.Food Prod Process Nutr202351410.1186/s43014‑022‑00118‑9
    [Google Scholar]
  53. Flores-MaldonadoO. Dávila-AviñaJ. GonzálezG.M. Becerril-GarcíaM.A. Ríos-LópezA.L. Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli.Folia Microbiol. (Praha)2024Jun10.1007/s12223‑024‑01182‑z38904883
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385314421241009075737
Loading
/content/journals/pnt/10.2174/0122117385314421241009075737
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test